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22 Boundary Element Grid Optimization for Stokes Flow With Corner
Singularities

C. Pozrikidis

29 Uncertainty Quantification for Multiscale Simulations
B. DeVolder, J. Glimm, J. W. Grove, Y. Kang, Y. Lee, K. Pao,
D. H. Sharp, and K. Ye

42 Probabilistic Modeling of Flow Over Rough Terrain
Roger Ghanem and Bernard Hayek

51 Stochastic Modeling of Flow-Structure Interactions Using Generalized
Polynomial Chaos

Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis

60 Approach for Input Uncertainty Propagation and Robust Design in CFD
Using Sensitivity Derivatives

Michele M. Putko, Arthur C. Taylor III, Perry A. Newman, and
Lawrence L. Green

70 Reliable Real-Time Solution of Parametrized Partial Differential Equations:
Reduced-Basis Output Bound Methods

C. Prud’homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday,
A. T. Patera, and G. Turinici

ADDITIONAL TECHNICAL PAPERS
81 Large Eddy Simulation of Turbulent Wake Behind a Square Cylinder With

a Nearby Wall
Tong-Miin Liou, Shih-Hui Chen, and Po-Wen Hwang

91 Large Eddy Simulation of a Flow Past a Free Surface Piercing Circular
Cylinder

T. Kawamura, S. Mayer, A. Garapon, and L. Sørensen

102 A Finite-Mode PDF Model for Turbulent Reacting Flows
Kuochen Tsai, Paul A. Gillis, Subrata Sen, and Rodney O. Fox

108 LDA-Measurements of Transitional Flows Induced by a Square Rib
S. Becker, C. M. Stoots, K. G. Condie, F. Durst, and D. M. McEligot

118 Modification of Near-Wall Structure in a Shear-Driven 3-D Turbulent
Boundary Layer

Robert O. Kiesow and Michael W. Plesniak

127 Surface Roughness Effects on Turbulent Boundary Layer Structures
L. Keirsbulck, L. Labraga, A. Mazouz, and C. Tournier

Journal of
Fluids Engineering
Published Quarterly by The American Society of Mechanical Engineers

VOLUME 124 • NUMBER 1 • MARCH 2002

„Contents continued on inside back cover …

Downloaded 03 Jun 2010 to 171.66.16.159. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000001000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000002000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000004000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000011000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000022000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000029000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000042000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000051000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000060000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000070000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000081000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000091000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000102000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000108000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000118000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000127000001


136 Application of Boundary Layer Fences and Vortex Generators in Improving Performance of S-Duct Diffusers
R. K. Sullerey, Sourabh Mishra, and A. M. Pradeep

143 Measurement of the Instantaneous Velocity Gradients in Plane and Axisymmetric Turbulent Wake Flows
T. Schenck and J. Jovanovic ´

154 An Investigation of Flow Fields Over Multi-Element Aerofoils
S. R. Maddah and H. H. Bruun

166 Study of Wake-Blade Interactions in a Transonic Compressor Using Flow Visualization and DPIV
J. Estevadeordal, S. Gogineni, L. Goss, W. Copenhaver, and S. Gorrell

176 Fluid Flow Equations for Rotordynamic Flows In Seals and Leakage Paths
Y. Hsu and C. E. Brennen

182 On the Theoretical Prediction of Fuel Droplet Size Distribution in Nonreactive Diesel Sprays
Jianming Cao

186 Scale Effect of Cavitation Inception on a 2D Eppler Hydrofoil
E. L. Amromin

194 Models for Analysis of Water Hammer in Piping With Entrapped Air
M. A. Chaiko and K. W. Brinckman

205 An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular
Microchannels

S. Garimella, J. D. Killion, and J. W. Coleman

215 Numerical Simulations of Hydraulic Jumps in Water Sloshing and Water Impacting
Tzung-hang Lee, Zhengquan Zhou, and Yusong Cao

227 Computational Evaluation of the Periodic Performance of a NACA 0012 Fitted With a Gurney Flap
James C. Date and Stephen R. Turnock

235 The Effect of Finite Amplitude Disturbance Magnitude on Departures From Laminar Conditions in Impulsively
Started and Steady Pipe Entrance Flows

E. A. Moss and A. H. Abbot

241 Numerical Prediction of Hot-Wire Corrections Near Walls
Franz Durst, Jun-Mei Shi, and Michael Breuer

251 Numerical Simulation of Polymer Flow Into a Cylindrical Cavity
Amit Kumar and P. S. Ghoshdastidar

263 The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
K. Boomsma and D. Poulikakos

273 Creeping Flow Through an Axisymmetric Sudden Contraction or Expansion
Sourith Sisavath, Xudong Jing, Chris C. Pain, and Robert W. Zimmerman

TECHNICAL BRIEFS
279 Normal Stresses on the Surface of a Rigid Body in an Oldroyd-B Fluid

N. A. Patankar, P. Y. Huang, D. D. Joseph, and H. H. Hu

280 Total Unsteadiness Downstream of an Axial Flow Fan With Variable Pitch Blades
Sandra Velarde-Sua´rez, Rafael Ballesteros-Tajadura, Carlos Santolaria-Morros, and
Eduardo Blanco-Marigorta

284 Comparison of the Numerical and Experimental Flowfield Downstream of a Plate Array
D. W. Guillaume and J. C. LaRue

287 Flow Characteristics of the Molecular Pump of Holweck Type in the Slip Regime
Yeng-Yung Tsui, Yuan-Sheng Su, and Hong-Ping Cheng

291 List of Reviewers

294 Fluids Engineering Calendar

ANNOUNCEMENTS
297 First Call for Forum Papers—2003 Fluids Engineering Conference

305 Final Call for Symposium Papers—2003 Fluids Engineering Conference

„Contents continued …

Volume 124, Number 1Journal of Fluids Engineering MARCH 2002

Downloaded 03 Jun 2010 to 171.66.16.159. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000136000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000143000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000154000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000166000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000176000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000182000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000186000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000194000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000205000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000215000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000227000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000235000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000241000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000251000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000263000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000273000001
getpdf?KEY=JFEGA4&cvips=JFEGA4000124000001000279000001


Journal of
Fluids

Engineering Editorial

Another year has passed and with it, some Associate Editors
have completed their three-year terms and new ones have joined
us. I would like to take this opportunity to express my gratitude to
the departing Associate Editors, Prof. Peter Bearman, Dr. Khairul
Zaman, Prof. Urmila Ghia, Prof. Peter Raad and Prof. Muhammad
Hajj for their substantial and very valuable service. Their efforts
in selecting referees, obtaining reviews, evaluating the papers
based on these reviews, communicating with the authors and over-
seeing modifications is critical for the successful operation and
quality of the journal.

Four new Associate Editors have recently joined us, and I
would like to introduce and welcome them to our team. This new
group will greatly enhance our range of expertise that is essential
for effective reviews of papers, especially in the experimental and
complex flows areas. Dr. William Copenhaver from the Air Force
Research Laboratory is an accomplished expert on all aspects of
flows within axial turbomachines, both computational and experi-
mental. He is joining the presently overloaded group of Associate
Editors that handle the growing number of papers focusing on
flows within pumps, turbomachines and related complex systems.
Prof. Steven Ceccio from the University of Michigan is an experi-
mentalist and has substantial experience in cavitation, multiphase

flows, boundary layers, tomography, and applied large-scale ex-
periments. He is joining the multiphase flow group, and will focus
mainly on the experimental aspects of this area. Prof. Volkan O¨ tü-
gen from Polytechnic University is an expert in compressible and
incompressible three-dimensional, turbulent shear flows. He also
has considerable experience in development of optical diagnostic
techniques involving combined scalar and velocity measurements.
He is joining the fluid mechanics group, and will handle papers
dealing with turbulent shear flows and complex measurement
techniques. Last, but not least, Prof. Michael Plesniak from Pur-
due University is an experimentalist and an expert in turbulent
transport and mixing, aerosols, sprays and related pollution prob-
lems. He also has substantial experience in a variety of measure-
ment techniques and applied heat transfer. He will mainly handle
papers in the turbulent mixing area. As is evident, the diverse
experience of the new Associate Editors will enhance our capabil-
ity to review papers effectively. We promise to take advantage of
their expertise and willingness to contribute.

Joseph Katz
Editor

Copyright © 2002 by ASMEJournal of Fluids Engineering MARCH 2002, Vol. 124 Õ 1
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Journal of
Fluids

Engineering Editorial

Quantifying Uncertainty in CFD

There has been recently an intense interest inverification and
validation of large-scale simulations and in quantifying uncer-
tainty, and several workshops have been organized to address this
subject. Characterization of uncertainty is a complex subject in
general, but it can be roughly classified as numerical uncertainty
and physical uncertainty. The former includes spatiotemporal dis-
cretization errors, errors in numerical boundary conditions~e.g.,
outflow!, errors in solvers or geometry description, etc. On the
other hand, physical uncertainty includes errors due to unknown
boundary and initial conditions, imprecise transport coefficients or
interaction terms, insufficient knowledge of the flow geometry,
approximate constitutive laws, etc. Coupled problems involving
source and interaction terms tend to be particularly difficult to
simulate even deterministically, so providing error bars for such
solutions is an even more difficult task. Uncertainty can also be
characterized asepistemic, i.e., reducible, or asirreducible. For
example, if much finer simulations are performed or better experi-
ments with higher resolution instruments are conducted, that will
provide more accurate boundary conditions. This will reduce the
uncertainty level. But even in such cases, and certainly in many
simulations of realistic configurations, uncertainty is irreducible

beyond some level due to insufficient detail of input, e.g., back-
ground turbulence and random roughness. There are no absolutely
quiet wind tunnels and the ocean or the atmosphere are not quiet
environments either.

Progress, however, has been made. With regards to numerical
uncertainty, accuracy tests and error control have been employed
in simulations for some time now, at least for the more modern
discretizations. While fully-adaptive simulations are limited to
some demonstration examples at the moment, at least the algorith-
mic framework and mesh generation technology exists for routine
adaptive CFD in the near future. Also, a posteriori error bounds
and other post-processing tools are available and are used~albeit
not very often! in CFD. To this end, the editorial policy statement
on the control of numerical accuracy that JFE pioneered in 1986
along with more recent enhancements, has positively influenced
the field.

With regards to physical uncertainty, it is only recently that a
systematic effort has been made to address it. Most of the effort in
CFD research so far has been in developing efficient algorithms
for different applications, assuming an ideal input with precisely
defined computational domains. With the field reaching now some

Fig. 1 Stochastic simulation of flow past a vibrating cylinder with a noisy
inflow. Shown is the instantaneous pressure distribution on the cylinder.
The error band is shown by gray and the deterministic and mean stochastic
solutions are superimposed on this polar plot. „Courtesy of Didier Lucor and
Dongbin Xiu, Brown University ….
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degree of maturity, we naturally pose the more general question of
how to model uncertainty and stochastic input, and how to formu-
late algorithms so that the simulation output reflects accurately the
propagation of uncertainty. That is, in addition to a posteriori error
bounds, the new objective is to model uncertainty from the begin-
ning of the simulation and not simply as an afterthought. Stochas-
tic simulations have been going on in solid mechanics for some
time now, especially in the finite elements community, so in that
respect CFD is about ten years behind! But stochastic CFD simu-
lations have begun, and the first results have provided very valu-
able information, as shown in the figure.

This special issue of JFE on quantifying uncertainty in CFD is
in response to such pressing needs as error bars in CFD, and for
reliable answers even for ‘‘nonsterilized’’ problems. The eight in-
vited papers address both numerical accuracy and physical uncer-
tainty issues. They present different techniques and sometimes
diverse philosophies, as this is a new field and no absolute con-
sensus exists at the moment.

The first paper by Roache presents a straightforward approach
to verification of codes by using manufactured solutions. Roache
has been a long-time advocate of verification and validation in
CFD and he presents here an overview and new clarifications of
his previous work. Of particular interest is the blind study work
that he reviews, where his proposed method of manufactured so-
lutions was employed for correcting an intentionally sabotaged
code.

The second and third papers deal with numerical accuracy as
well. In particular, the paper by Cadafalch et al. is a comprehen-
sive study of solution errors in finite volumes, and addresses lami-
nar flows, turbulent flows with two-equations models, and reactive
flows at steady state. The generalized Richardson extrapolation is
employed and the grid convergence index is used along with other
metrics for providing local and global estimators. The next paper
by Pozrikidis addresses convergence of boundary element meth-
ods in the presence of sharp corners. This is a notoriously hard
problem for any discretization~e.g., Motz problem in finite ele-
ments! and the paper presents an effective way of distributing the
elements in a geometric fashion to restore uniform convergence.

The fourth paper by DeVolder et al. presents a general frame-
work for quantifying uncertainty in multiscale simulations. It is
based on the Bayesian approach for statistical inference and pre-
sents methods for determining the Bayesian likelihood and for fast
integration. The case of flow in porous media is addressed first,
and the shock wave dynamics is then considered. In particular, the
stochastic Riemann problem is identified as a fundamental para-
digm and analyzed in some detail.

The next two papers address modeling of physical uncertainty
and its propagation through the simulation using polynomial
chaos expansions. In particular, the paper by Ghanem and Hayek
considers the dynamics of overland flow as a model problem.
Ghanem pioneered the use of Wiener-Hermite expansions in mod-
eling random input and solving stochastic partial differential equa-
tions. In this paper, the use of the Karhunen-Loeve expansion to
represent stochastic input reduces significantly the dimensionality
of the problem, thus requiring substantially less computational
effort compared to Monte Carlo simulation. In the next paper by
Xiu et al. a generalized polynomial chaos approach is introduced
that extends the work of Wiener to best representations for other
non-Gaussian distributions. A new class of polynomial function-
als, the Askey family, is introduced and the Wiener-Askey chaos
is formulated for the Navier-Stokes equations. The method is used
to model flow-structure interaction problems.

The seventh paper by Putko et al. addresses robust design with
the uncertainties in the input incorporated into the optimization
procedure. Specifically, the approximate statistical moment
method is employed for uncertainty propagation and statistical
moments involving first-order sensitivity derivatives appear in the
objective function and system constraints. The method is applied
to shape optimization of a nozzle using a one-dimensional Euler
code.

The final paper by Prud’homme et al. is more mathematical and
is one of the first attempts to rigorously quantify uncertainty in
simulations based on reduced-basis representations. Specifically,
this new method involves the a priori generation of several solu-
tions corresponding to different values of the uncertain parameter,
and subsequently a fast solution at a specified parameter value
based on a projection to the pre-computed solution space. This
approach is demonstrated for heat conduction problems but a for-
mulation for the convection-diffusion problem is also discussed.

I hope that the readers of JFE enjoy these exciting papers col-
lected in this volume, as well as similar future publications that
address uncertainty quantification. I would like to thank all the
authors and referees for their contribution, and also the editor, Joe
Katz, for recognizing how timely and important is this subject.

Guest Editor:
George Em Karniadakis

Brown University

Journal of Fluids Engineering MARCH 2002, Vol. 124 Õ 3
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Code Verification by the Method
of Manufactured Solutions
Verification of Calculations involves error estimation, whereas Verification of Codes in-
volves error evaluation, from known benchmark solutions. The best benchmarks are exact
analytical solutions with sufficiently complex solution structure; they need not be realistic
since Verification is a purely mathematical exercise. The Method of Manufactured Solu-
tions (MMS) provides a straightforward and quite general procedure for generating such
solutions. For complex codes, the method utilizes Symbolic Manipulation, but here it is
illustrated with simple examples. When used with systematic grid refinement studies,
which are remarkably sensitive, MMS produces strong Code Verifications with a theorem-
like quality and a clearly defined completion point.@DOI: 10.1115/1.1436090#

Introduction
In the semantic tangle of the subject of ‘‘Quantification of Un-

certainty’’ ~a term which itself generates some disagreement! the
three most important terms, and the most universally agreed upon,
are Verification of Codes, Verification of Calculations, and Vali-
dation. For reasons both logical and practical, these activities must
be performed in this order@1,2#. Verification of a Calculation in-
volves errorestimation, whereas Verification of a Code involves
error evaluation, from a known solution. Both Verifications are
purely mathematical activities, with no concern whatever for the
accuracy of physical laws. That is the concern of Validation, i.e.,
the agreement of the mathematics with science.

Journal Policy Statements on reporting of numerical uncer-
tainty, of which this journal’s 1986 statement@3# was the original,
refer only to Verification of Calculations; the code used is as-
sumed to be correct. ‘‘Correct’’ is perhaps preferable to ‘‘accu-
rate.’’ It can be misleading to describe a code as ‘‘accurate,’’ be-
cause naive users of commercial software may think that, if the
code they use is accurate, then their calculation will be accurate.
This neglects their own burden to perform systematic discretiza-
tion convergence tests for their particular calculation, i.e., Verifi-
cation of a Calculation. Determining the correctness of the code
itself can only be done by systematic discretization convergence
tests using a known solution or ‘‘benchmark’’~another term with
inconsistent connotations!. The best benchmark solution or stan-
dard of comparison is an exact analytical solution, i.e. a solution
expressed in simple primitive functions like sin, exp, tanh, etc.
Note that benchmark solutions involving infinite series are not
desirable, typically being more numerical trouble to evaluate ac-
curately than the CFD code itself@1#. It is not sufficient that the
analytical solution be exact; it is also necessary that the solution
structure be sufficiently complex that all terms in the governing
equation being tested are exercised. For example, some early and
misleading claims of accuracy of commercial codes which used
the notoriously inaccurate first-order upstream differencing for ad-
vection terms were based on comparisons with Poiseuille, Couette
or Rayleigh problems, which do not even ‘‘turn on’’ the advection
terms.

It has often been stated in research journal articles that general
accuracy Verification of Codes for difficult problems, e.g. the full
Navier-Stokes equations of fluid dynamics, is not possible because
exact solutions exist only for such relatively simple problems that
do not fully exercise the code. Many papers and reports approach
accuracy Verification of Codes in a haphazard and piecemeal way,
comparing single-grid results for a few exact solutions on prob-

lems of reduced complexity. In fact, a very general procedure
exists for generating analytical solutions for accuracy Verification
of Codes. I first presented the method in@4#, and later expanded
the applications@1,2#. Although a few respected authorities~e.g.
@5–9#! have recognized the power of the method, acceptance has
been slow and misunderstanding is not uncommon. Based on my
experience in many discussions with professional colleagues in-
cluding teaching short courses with participations by senior re-
searchers, the misunderstanding is due to the deceptive simplicity
~elegance?! of the concept. This article is written in an attempt to
clarify the concepts with simple examples, to dispel concerns of-
ten voiced, to add a few fine points, and to provide some recent
references. It is hoped that the reader will bear with the somewhat
conversational style, since the paper is part tutorial, part review.

The methodology provides for convincing, rigorous Verification
of the numerical accuracy of a code via systematic grid conver-
gence testing. This procedure is straightforward though somewhat
tedious to apply, and verifies all accuracy aspects of the code:
formulation of the discrete equations~interior and boundary con-
ditions! and their order of accuracy, the accuracy of the solution
procedure, and the user instructions.

The Method of Manufactured Solutions
The Method of Manufactured Solutions~MMS! provides a gen-

eral procedure for generating an analytical solution for code ac-
curacy verification.

The basic idea of the procedure is to simply manufacture an
exact solution, without being concerned about its physical realism.
~The ‘‘realism’’ or lack thereof has nothing to do with the math-
ematics, and Verification is a purely mathematical exercise.! In the
original, most straightforward and most universally applicable
version of the method, one simply includes in the code a general
source term,Q(x,y,z,t) and uses it to generate a nontrivial but
known solution structure. We follow the counsel of G. Polya@10#:
Only a fool starts at the beginning; the wise one starts at the end.

We first pick a continuum solution. Interestingly enough, we
can pick a solution virtually independent of the code or of the
hosted equations. That is, we can pick a solution, then use it to
verify an incompressible Navier-Stokes code, a Darcy flow in po-
rous media code, a heat conduction code, an electrode design
code, a materials code, etc.

We want a solution that is non-trivial but analytic, and that
exercises all ordered derivatives in the error expansion and all
terms, e.g., cross-derivative terms. For example, chose a solution
involving tanh. This solution also defines boundary conditions, to
be applied in any~all! forms, i.e., Dirichlet, Neumann, Robin, etc.
Then the solution is passed through the governing PDE’s to give
the production termQ(x,y,z,t) that produces this solution. Since
this description sounds circular, we will demonstrate with con-

Contributed by the Fluids Engineering Division for publication in the JOURNAL
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
July 24, 2001; revised manuscript received November 12, 2001. Associate Editor:
G. Karniadakis.
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crete examples. In@4# we used Symbolic Manipulation to generate
Q, and this is still recommended for complex multidimensional
CFD codes. However, for illustration purposes, we can consider
simple one-dimensional transient problems and generate the re-
sults by hand, in unambiguous steps.

Three Example Problems in MMS. To emphasize the gen-
erality of the concept, we pick the first example solutionbefore we
specify the governing equations. Then we will use this same so-
lution for two different problems, i.e., set of governing PDE’s and
boundary conditions. The chosen solutionU(t,x) is the following.

U~ t,x!5A1sin~B!, B5x1Ct (1)

Example 1. First, let us apply this 1-D transient solution to the
nonlinear Burgers equation, often taken as a model for CFD algo-
rithm development@2#.

ut52uux1auxx (2)

Incidentally, this specified solutionU(t,x) is the exact solution for
the constant velocity advection equation with boundary condition
of u(t,0)5A1sin(Ct), so for the high Reynolds number problem
~small a! it may look ‘‘realistic’’ in some sense, but it is not a
solution to our governing Eq.~2!, and its ‘‘realism’’ or lack
thereof is irrelevant to the task of Code Verification.

We determine the source termQ(t,x) which, when added to the
Burgers equation foru(t,x), produces the solutionu(t,x)
5U(t,x). We write the Burgers equation as an operator~nonlin-
ear! of u,

L~u![ut1uux2auxx50 (3)

Then we evaluate theQ that producesU by operating onU with L.

Q~ t,x!5L~U~ t,x!!5]U/]t1U]U/]x2a]2U/]x2 (4)

By elementary operations on the manufactured solutionU(t,x)
stated in Eq.~1!,

Q~ t,x!5C cos~B!1@A1sin~B!#cos~B!1a sin~B! (5)

If we now solve the modified equation

L~u![ut1uux2auxx5Q~ t,x! (6)

or

ut52uux1auxx1Q~ t,x! (7)

with compatible initial and boundary conditions, the exact solu-
tion will be U(t,x) given by Eq.~1!.

The initial conditions are obviously justu(0,x)5U(0,x) every-
where. The boundary conditions are determined from the manu-
factured solutionU(t,x) of Eq. ~1!. Note that we have not even
specified the domain of the solution as yet. If we want to consider
the usual model 0<x<1 or something like210<x<100, the
same solution Eq.~1! applies, but of course the boundary values
are determined at the corresponding locations inx. Note also that
we have not even specified thetypeof boundary condition as yet.
This aspect of the methodology has often caused confusion. Ev-
eryone knows that different boundary conditions on a PDE pro-
duce different answers; not everyone recognizes immediately that
the same solutionU(t,x) can be produced by more than one set of
boundary condition types. The following combinations of inflow
~left boundary, e.g.,x50! or outflow ~e.g.,x51! boundary con-
ditions will produce the same solutionU(t,x) over the domain
0<x<1.
Dirichlet—Dirichlet:

u~ t,0!5U~ t,0!5A1sin~Ct!,u~ t,1!5A1sin~11Ct! (8)

Dirichlet—Outflow Gradient~Neumann!:

u~ t,0!5U~ t,0!5A1sin~Ct!,]u/]xu~ t,1!5cos~11Ct! (9)

Robin ~mixed!—Outflow Gradient~Neumann! at x5p:

au1bux5c at ~ t,0!→given a and b, select

5c@A1sin~Ct!#1b cos~Ct!
(10)

]u/]xu~ t,p!5cos~p1Ct!

For this time-dependent solution, the boundary values are time-
dependent. It also will be possible to manufacture time-dependent
solutions with steady boundary values, if required by the code.

Example 2. To further clarify the concept, we now apply the
same solution to a different problem, choosing as the new govern-
ing PDE a Burgers-like equation that might be a candidate for a
1-D turbulence formulation based on the mixing length concept.

ut52uux1auxx1l]/]x@~x]u/]x!2#

52uux1auxx12l@x~ux!
21x2uxx# (11)

Writing the mixing-length model equation as a nonlinear operator
of u,

L~u![ut1uux2auxx22l@x~ux!
21x2uxx#50 (12)

we evaluate theQm that producesU by operating onU with Lm .

Qm~ t,x!5Lm~U~ t,x!!5]U/]t1U]U/]x2a]2U/]x2

22l@x~]U/]x!21x2]2U/]x2# (13)

By elementary operations on the~same! manufactured solution
U(t,x) stated in Eq.~1!,

Q~ t,x!5C cos~B!1@A1sin~B!#cos~B!1a sin~B!

22l@x cos2~B!2x2 sin~B!# (14)

If we now solve the modified model equation

Lm~u![ut1uux2auxx22l@x~ux!
21x2uxx#5Qm~ t,x!

(15)

or

ut52uux1auxx12l@x~ux!
21x2uxx#1Qm~ t,x! (16)

with compatible initial and boundary conditions, the exact solu-
tion for this turbulent problem again will beU(t,x) given by Eq.
~1!, as it was for the previous laminar problem.

Note: the same initial and boundary conditions and boundary
values from the previous problem can apply, since these are de-
termined from the solution, not from the governing PDE, nor from
Q or Qm .

Example 3. We have shown how the same solution can be
used as the exact solution to verify two different codes with dif-
ferent governing equations, with different source terms being cre-
ated to Manufacture the same solution. A third example will dem-
onstrate the arbitrariness of the solution form. Rather than the
somewhat ‘‘realistic’’ solution to the constant velocity advection
equation given by Eq.~1!, let us consider the ‘‘unrealistic’’ but
equally valuable solution as follows.

Ue~ t,x!5sin~ t !ex (17)

Following the same procedure for the Burgers Equation~2!, we
evaluate the terms in Eq.~4! from the solutionUe of Eq. ~17! and
obtain

Qe~ t,x!5cos~ t !ex1@sin~ t !ex#22a sin~ t !ex (18)

~arranged for readability rather than compactness!. ThisQe , when
added to Eq.~2!, produces the Manufactured Solution Eq.~17!
when compatible initial and boundary conditions are evaluated
from Eq. ~17!.

Application to Verification of Codes. Once a nontrivial ex-
act analytic solution has been generated, by this Method of Manu-
factured Solutions or perhaps another method, the solution is now
used to Verify a Code by performing systematic discretization
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convergence tests~usually, grid convergence tests! and monitoring
the convergence asD→0, whereD is a measure of discretization
~e.g., Dx, Dt in a finite difference or finite volume code, and
element size in a finite element code, etc.!.

The principle definition of ‘‘order of convergence’’ is based on
behavior of the error of the discrete solution. There are various
measures of error, but in some sense we are always referring to
the difference between the discrete solutionf (D) ~or a functional
of the solution, such as lift coefficient! and the exact~continuum!
solution,

E5 f ~D!2 f exact (19)

For an orderp method, and for a well-behaved problem~excep-
tions are discussed in Chapters 6 and 8 of@1#!, the error in the
solutionE asymptotically will be proportional toDp. This termi-
nology applies to every ‘‘consistent’’ methodology: finite differ-
ence methods~FDM!, finite volume methods~FVM!, finite ele-
ment methods~FEM!, spectral, pseudo-spectral, vortex-in-cell,
etc., regardless of solution smoothness. Thus,

E5 f ~D!2 f exact5CDp1H.O.T. (20)

where H.O.T. are higher order terms.~For smooth problems, it
may be possible in principle to evaluate the coefficientC and the
H.O.T. from the continuum solution, but as a practical matter, we
do not do this in the accuracy Verification procedure.! We then
monitor the numerical error as the grid is systematically refined.
Successive grid halving is not required, just refinement.~See@1#
for examples, analysis and extensive discussion.! Thorough itera-
tive convergence is required. Theoretically~from Eq. 20!, values
of C5error/Dp should become constant as the grid is refined for
a uniformlyp-th order method~‘‘uniformly’’ implying at all points
for all derivatives!. Details and many examples are given in@1#.

The following summary points from@1# are worth noting.
The procedure detects all ordered errors. It will not detect cod-

ing mistakes that do not affect the answer obtained, e.g. mistakes
in an iterative solution routine which affect only the iterative con-
vergence rate. In the present view, these mistakes are not consid-
ered as Code Verification issues, since they affect only code effi-
ciency, not accuracy.

The procedure does not evaluate the adequacy of non-ordered
approximations, e.g., distance to an outflow boundary, distance to
an outer~wind-tunnel wall-like! boundary, use of]p/]y50 at a
wall as a boundary condition~this is not a rigorous physical
boundary condition for Navier-Stokes equations!. The errors of
these approximations do not vanish asD→0, hence are ‘‘non-
ordered approximations.’’ The adequacy of these approximations
must be assessed by sensitivity tests which may be described as
‘‘Justification’’ exercises@1#; these are similar to Verification of
Calculations in that they involve only mathematics, but are simply
the results of calculations. If the code manual says it uses a 2nd
order accurate discretization of]p/]y50 at walls and the MMS
procedure shows that it does, then the Code is Verified on this
point.

When this systematic grid convergence test is verified~for all
point-by-point values!, we have verified

1. any equation transformations used~e.g., nonorthogonal
boundary fitted coordinates!,

2. the order of the discretization,
3. the encoding of the discretization, and
4. the matrix solution procedure.

This technique was originally applied in@4# to long Fortran
code produced by Artificial Intelligence~Symbol Manipulation!
methods. The original 3-D nonorthogonal coordinate code con-
tained about 1800 lines of dense Fortran. It would be impossible
to check this by reading the source code, yet the procedure de-
scribed Verified the code convincingly. Roundoff error was not a
problem.

The arbitrary solution, produced inversely by the specification
of the source termQ, has been aptly described by Oberkampf
et al. @5# and Reed et al.@9# as a ‘‘Manufactured Solution.’’ The
approach was independently developed and named the ‘‘Pre-
scribed Solution Forcing Method’’ by Dee@11#. Others who inde-
pendently developed the same philosophy and essentially the
same methodology are Ethier and Steinman@12# and Powers@13–
16#. The first systematic exposition of the method with application
to multidimensional nonlinear problems appears to be@4#, but in
retrospect, it seems that early instances of the use of what we now
call the Method of Manufactured Solutions were cited in 1972
~the original version of@2#, pp. 363–365!. Although the authors
did not mention the method they used, it seems clear that they
used this approach to generate anad hocexact solution for time-
dependent model equations. Obviously, the simple solution form
was chosen first, then passed through the PDE to generate the
problem; see the ‘‘Errata and Addenda’’ section of the website
www.hermosa-pub.com/hermosa for references and details. Un-
doubtedly, many of the non-infinite-series classical solutions in
engineering were obtained this way, i.e. beginning with a solution
form. What is strange is that the notion persisted, often repeated,
that we did not have any non-trivial solutions to the full nonlinear
Navier-Stokes equations, when all we have to do is ‘‘complicate’’
the problem a little with the addition of a source term, and we can
generate all the solutions we want. The key concept is that, for
Verification of Codes, these solutions need not be physically real-
istic.

The technique is applicable to systems of equations, including
full Navier-Stokes in general non-orthogonal coordinates~e.g., see
@17,18#!, provided that the code is capable~or modifiable! to treat
source terms in each PDE.

The technique of Code Verification by monitoring grid conver-
gence is extremely powerful. Upon initial exposure to the tech-
nique, engineers are often negative about the method because they
intuit that it cannot be sensitive enough to pick up subtle errors.
After exposure to numerous examples, if they remain negative it
is usually because the method isexcessivelysensitive, revealing
minor inconsistencies such as first-order discretizations at a single
boundary point in an elliptic problem that effects the size of the
error very little ~as correctly intuited! but still reduces the rate of
convergence to first order for the entire solution. For examples,
see@1#.

The fact that the Manufactured Solution may bear no relation to
any physical problem does not affect the rigor of the accuracy
Verification of Codes. The only important point is that the solution
~manufactured or otherwise! be non-trivial, i.e., that it exercise all
the terms in the error expansion. The algebraic complexity may be
something of a difficulty, but is not insurmountable, and in prac-
tice has been easily handled using Symbolic Manipulation pack-
ages like Macsyma, Mathematica, Maple, etc. Using the source-
code ~Fortran! writing capability of Macsyma, it is not even
necessary for the analyst to look at the form ofQ. Rather, the
specification of the solution~e.g., tanh function! to the Symbolic
Manipulation code results in some complicated analytical expres-
sion that can be directly converted by the Symbolic Manipulation
code to a Fortran~or Pascal,C, etc.! source code segment, which
is then readily emplaced in a source code module~subroutine,
function, etc.! that then is called in the accuracy Verification of
Code procedure.~This ‘‘emplacement’’ can be performed by hand
by the analyst, without actually reading the complicated source
code expressions, or can itself be automated in the Symbolic Ma-
nipulation code.!

The procedure has been applied successfully to nonlinear sys-
tems of equations, with separateQ’s generated for each equation.
Both unsteady and steady solutions are possible.~It may be useful
to avoid exponential solution growth in time so as to avoid con-
fusion with instabilities; e.g., see the fully 3D incompressible
Navier-Stokes analytical solutions of Ethier and Steinman@12#.!
Nonlinearity is an issue only because of uniqueness questions;
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otherwise, the source term complexity may be worse because of
nonlinearity, but that is the job of the Symbolic Manipulation
code. Nonuniqueness could be an issue because the code could
converge to another legitimate solution other than the Manufac-
tured Solution, producing a false-negative accuracy Verification
test for a correct code. However, it would be difficult to contrive a
situation in which a false positive accuracy Verification was ob-
tained. In much experience, non-uniqueness has not been an issue.
In @4#, we applied the procedure to the nonlinear~quasi-linear!
PDE’s of the elliptic grid generation method for nonorthogonal
coordinates. Here, the Manufactured Solution was an analytical
3-D coordinate transformation; see examples in@1#.

While the simple example problems herein were chosen for
transparency, complex nonlinear systems~like Navier-Stokes
equations in non-orthogonal coordinates! benefit from use of com-
puter Symbolic Manipulation routines to perform the differentia-
tion and algebra which generate the source term. As noted above,
in this approach it is not necessary to even examine the source
term; using the Fortran or C code writing capabilities of software
packages like Macsyma, Maple, etc. a subroutine can be produced
to generate the pointwise values of the source terms for inclusion
in the governing PDE’s. For coupled nonlinear PDE’s like those
of 3-D elliptic grid generation equations, the pointwise evaluation
requires simultaneous solution of 3 coupled~non-dimensional!
nonlinear equations at each point. We have always used full
Newton-Raphson iteration methods, the Jacobians of which are
also produced by Symbol Manipulation and Fortran source code
writing, so the process remains automated; i.e., one never per-
forms any algebra or calculus manipulations by hand. In fact, for
our work in grid generation via variational methods@19–24#, we
never even looked at the governing PDE’s themselves. We con-
sidered only the variational principle itself. The Symbolic Ma-
nipulation toolkits developed by Prof. Steinberg were used to au-
tomatically generate the PDE’s by~symbolic! differentiation of
the variational equations to produce the Euler-Lagrange equations,
to substitute 2nd order difference expressions for the PDE’s, to
gather terms, to write Fortran subroutines for their evaluation, to
generate a specified Manufactured Solution~i.e., ‘‘a continuum
grid’’ or parameterization which, when discrete values are evalu-
ated, produces a computational grid!, to write Fortran code for the
source term including Newton-Raphson point solutions, and to
perform the entire Code Verification procedure, without the re-
searcher ever having to look at either the continuum or discretized
PDE’s or source terms.

Note that the Manufactured Solution should be generated in
original ~‘‘physical space’’! coordinates (x,y,z,t). Then the same
solution can be used directly with various non-orthogonal grids or
coordinate transformations.

The only disadvantage of the procedure is the requirement that
the CFD code being Verified must include accurate treatment of a
source term and that the code’s boundary condition values not be
hard-wired. Many codes are built with source terms included, and
many algorithms allow trivial extension to includeQ’s. However,
in directionally-split algorithms such as Approximate Factoriza-
tion @2# the time-accurate treatment ofQ(x,y,z,t) involves subtle-
ties and complexities at boundaries, especially for non-orthogonal
coordinates@2,18#. Thus, CFD code extensions may be required in
order to apply this procedure involving ‘‘Manufactured Solutions’’
for Code Verification. Likewise, some groundwater flow codes are
built with hard-wired homogeneous Neumann boundary condi-
tions, ] f /]n50. In order to use an arbitrary solution function,
nonhomogeneous boundary values like] f /]n5g would be re-
quired. Alternately, one could restrict the choice of Manufactured
Solution functions to fit the hard-wired values.

Likewise, to test periodic boundary conditions, one must chose
a periodic function for the Manufactured Solution.

The paper by Pelletier and Ignat@8# ~see also@1#, pp. 162–163!
will be of interest to turbulence modelers interested in Code Veri-

fication. It provides simple analytical solutions for an incompress-
ible free shear layer applicable tok2«, k2v andk2t models.

The practical difficulties arising from large numbers of option
combinations are discussed extensively in@1#. Briefly, option
combinations are countable, and pessimistic computer science
conclusions about complex codes being unverifiable are based on
unrealistic conditions like ‘‘arbitrary complexity.’’ Furthermore,
the number of option combinations required often can be greatly
reduced by ‘‘partitioning the option matrix’’@1# based on common
sense and knowledge of code structure~a ‘‘glass box’’ philosophy
@7# as opposed to the more demanding ‘‘black box’’ philosophy!.
Failing this, codes can be Verified only for a subset of option
combinations. In any case, these issues are an essential part of
Code Verification by any method; they are not unique to the
MMS, and in fact the generality of the MMS approach will reduce
the difficulties arising from option complexity because less testing
will be required for each option combination compared to the
usual haphazard and piecemeal approach to Code Verification.

Also see @1# for the following topics: early applications of
MMS concepts, discussions and examples of mixed first- and
second-order differencing, the small parameter~high Reynolds
number! problem, economics of dimensionality, applications of
MMS to 3D grid generation codes, effects of strong and inappro-
priate coordinate stretching, debugging with Manufactured Solu-
tions ~when the Code Verification initial result is negative!, ex-
amples of many manufactured or otherwise contrived analytical
solutions in the literature, approximate but highly accurate solu-
tions ~often obtained by perturbation methods! that can also be
utilized in Code Verification, the possibility of a useful theorem
related to MMS, special considerations required for turbulence
modeling and other fields with multiple scales, example of MMS
Code Verification with a 3-D grid-tracked moving free surface
~see@17#!, code robustness, examples of the remarkable sensitivity
of Code Verification via systematic grid convergence testing, and
several methodologies for Verification of Calculations, including
the recommended use of the Grid Convergence Index~GCI! for
uniform reporting of systematic grid convergence studies.

Recent Work and Further Discussion

Blind Study. Salari and Knupp@17# have exercised the MMS
in a blind study, in which one author~Knupp! modified a CFD
code previously developed and Verified by the other~Salari!, de-
liberately introducing errors. Then the code author tested the sabo-
taged code with the MMS. This exercise was not performed on
simple model problems, but on a full time-dependent, compress-
ible and incompressible, Navier-Stokes code with plenty of op-
tions. In all, 21 cases were studied, including one ‘‘placebo’’~no
mistake introduced! and several that involved something other
than the solution~e.g., wrong time step, post-processing errors!.
Several formal mistakes~not order-of-convergence errors! went
undetected, as expected.

Two cases showed possible limitations or cautions of MMS.
Case E.4 involved an error in a DO loop for updating density
arrays. Although MMS was successful, it would not have been if
my suggestion~on p. 78 of@1#! had been followed to use exact
continuum solutions as the initial conditions to reduce run time.
~This is a caution note not just for the MMS but for any Code
Verification by systematic grid convergence testing using any
benchmark solution.! Also, Case E.12 showed that an error in a
convergence test of one variable~a ‘‘.le.’’ test replaced with a
‘‘.ge.’’ test! could go undetected on a particular problem because
the convergence test was successfully implemented for another
variable.

All ten of the OAM ~Order-of-Accuracy Mistake! errors, i.e.,
all that could prevent the governing equations from being cor-
rectly solved, were successfully detected. In addition, several less
serious mistakes were detected using the procedure.

The report also discusses error~and mistake! taxonomies, pro-
vides examples and Manufactured Solutions~with source terms!
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from compressible Navier-Stokes codes as well as heat conduc-
tion and 2-D Burgers equation codes in both Cartesian and curvi-
linear coordinates, and discusses approaches for developing
Manufactured Solutions without using source terms.

From the Abstract: ‘‘The principle advantage of the MMS pro-
cedure over traditional methods of Code Verification is that code
capabilities are tested in full generality. The procedure thus results
in a high degree of confidence that all coding mistakes which
prevent the equations from being solved correctly have been iden-
tified.’’

The understanding and experience of the authors is profound,
and the report should be read in its entirety by anyone interested
in pursuing the Method of Manufactured Solutions.

Two Multidimensional Features. In the first 1-D example
problem above, we noted that the Manufactured Solution, since it
is analytic, can be applied over any range of the dependent spatial
variable x, e.g. the domain could extend overxP@0,1# or xP
@2p,1p# etc. This feature extends to multidimensions, e.g., the
same multidimensional analytic solution could be applied to a
square driven cavity problem, a rectangular cavity, a backstep, a
wing, etc. Also, multidimensional problems might require a little
more thought to assure that all terms of the governing equations
are exercised. For example, a Manufactured Solution of form
U(t,x,y)5F1(t)•F2(x)•F3(y) will not be adequate to exercise
governing equations containing cross derivative terms such as
]2u/]x]y since these are identically zero no matter how complex
are the F’s.

Mixed Order Methods. Roy @25,26# has shown how to treat
mixed-differencing~e.g., first-order upstream differencing for ad-
vection and second-order differencing for other terms! in the sys-
tematic grid convergence tests. These two papers present the reso-
lution, in an elegant manner, of a long-standing and practical
difficulty in grid convergence studies and the GCI~Grid Conver-
gence Index!, namely, the treatment of mixed-order convergence.
The mixed order behavior can arise either from the explicit use of
1st-order advection discretization and 2nd-order diffusion, or from
the 1st-order observed convergence rate of nominally second-
order methods caused by shocks. The procedure simply involves
another grid level to evaluate thetwo leading coefficients in the
error expansion. The analysis includes non-integer grid refinement
factorsr . The papers also demonstrate how nonmonotonic conver-
gence occurs from mixed-order methods in the non-asymptotic
range. The method is applicable to both Verification of Codes and
Verification of Calculations, and would enable more accurate~less
conservative! error estimation by way of the GCI@1# for QUICK
and similar methods using 2nd order accurate diffusion terms and
3rd order accurate advection terms.

Radiation Transport Code Including Eigenvalue Problems
Pautz@27# presents his experience applying MMS to the radiation
transport code ATTILA. The application was inspired by Salari
and Knupp@17# and contains some early 1970’s references on the
basic ideas, but these are ‘‘ . . . more limited than the more recent
and general treatment by Salari and Knupp.’’

The Code Verification described includes angular flux, scatter-
ing cross sections, and spherical harmonics. In the approach used,
by choosing the termf (r )51 ~versus a more general form! in the
assumed form of the manufactured Solution, one can isolate spa-
tial differencing terms~they cancel! and Verify whether the code
handles angular terms correctly.

The code uses 3-D tetrahedral elements~utilizing linear discon-
tinuous finite element discretization! in space and discrete ordi-
nates in the angular discretization. The study treated the following
features: Steady State—Monoenergetic, Steady State—
Multigroup, Monoenergetic K-Eigenvalue, Gray Infrared.

The experience with the MMS approach was quite successful.
With f (r )51, the author discovered coding mistakes in input rou-
tines ~and a divide by zero for a particular combination of input
options!. Also, the procedure revealed mistakes in discretization

of certain boundary data for the gray infrared problem. The ap-
proach Verified 2nd order convergence for norms and 3rd order
convergence for average scalar flux. A subtle aspect required for
successful application of the MMS procedure was the consistent
finite element weighting on the MMS source term. Based on ear-
lier 1-D analysis in the literature, it was expected that all the
examined quantities~norms and average scalar flux! would exhibit
3rd order convergence, but the results of the MMS procedure
demonstrated only 2nd order convergence for the norms in multi-
dimensions. The author concluded that MMS is ‘‘ . . . a very pow-
erful verification tool’’ @27#. Further@pers.comm.# the author says
‘‘The power and conceptual simplicity of MMS make it an indis-
pensable tool for code development’’ and recommends that MMS
be required in any formal Code Verification system.

Nonhomogeneous Boundary Conditions. An arbitrary
Manufactured Solution will not necessarily have homogeneous
boundary conditions, e.g.,uÞ0 or ]u/]xÞ0. To use such a solu-
tion, the code would require this capability. This might be incon-
venient, e.g., many CFD codes have hard-wired no-slip conditions
at a wall, e.g.,u50. Rather than modify the code, some thought
will produce Manufactured Solutions with homogeneous bound-
ary values.

Nonlinear Boundary Conditions. So-called ‘‘radiation’’ out-
flow conditions are usually linear and are already covered by the
previous discussion. Nonlinear boundary conditions, e.g., simple
vortex conditions at outflow, or true~physical! heat-transfer radia-
tion boundary conditions, are possible. It may be possible to select
a Manufactured Solution that meets the nonlinear boundary con-
dition; otherwise, a source term would have to be added~if it is
not already present! in the nonlinear boundary equations to retain
the generality of the MMS.

Shocks. Shock solutions are treatable by the MMS, with ad-
ditional considerations. See pages 89–90 of@1#, which include the
work of J. Powers and associates@13–16#. The simplest approach
may be to Verify the shock capturing algorithms separately on
inviscid benchmark problems such as oblique shock solutions, if
shock curvature is not viewed as a major question, or if it is, by
using attached curved shock solutions obtained by the method of
characteristics and/or detached bow shock solutions obtained by
the classical inverse method. The benchmark solutions may in-
volve asymptotic approximations in geometry or Mach number,
e.g. an analysis@16# neglecting terms ofO(«2) where«51/M2.
This approximation can be made very accurate by choosing high
M, sayM;20, for the Code Verification exercise. Note again the
distinction of mathematics versus science; it is not a concern that
the code being tested might be built on perfect gas assumptions
that are not valid at such highM. This does not affect the math-
ematics of Code Verification; the code would not be applied at
such highM when accuracy of the physics becomes important,
during Code Validation.

The assumption involved in this approach is that the option
matrix of the code may be partitioned~see@1#, Chapter 6 for an
example!. That is, the Verification of the shock-capturing algo-
rithm and coding will not be affected by the later inclusion of
viscous terms, boundary conditions, etc. Other option-partitioning
assumptions will occur to the reader: separated Verification of a
direct banded Gaussian elimination routine in a FEM code; Veri-
fication of shock-capturing algorithm separate from non-ideal gas
effects; radioactive decay option~which is dimensionless! verified
separately from spatial discretization of flow equations. This par-
titioning approach requires the ‘‘black-box’’ Verification philoso-
phy to be modified to a ‘‘glass-box’’@7#, i.e. some knowledge of
code structure is required to justify the approach, and it will be
more difficult to convince reviewers, editors, contract monitors,
regulators, etc. that the approach is justified. The work savings can
be enormous, of course, avoiding the factorial increase of com-
plexity inherent in option combinations.

Another straightforward approach for shocks that does not in-
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volve partitioning the option matrix is to generate a Manufactured
Solution that is in fact~in the continuum! C` smooth, but that has
such strong gradients in some region that it appears as a shock
over the targeted range of grid resolutions. The possible difficulty
here is that some shock capturing algorithms are based on the
conservation equations without source terms, e.g., Godunov’s
method and modern variants, and these could conceivably fail
where source terms are present. Any shock-capturing algorithm
based purely on geometric limiters will be oblivious to the source
terms and should work without modification.

Requirement for Source Terms. In the version demon-
strated, the MMS requires that the code be capable of treating
source terms in each PDE. For some engineering codes, this is
always the case, e.g. time-dependent chemistry codes, grid gen-
eration codes based on elliptic generation. Another approach to
MMS developed by Knupp~see@17# and@1#, Chapters 3 and 6! is
applicable to variable coefficient problems, e.g., groundwater
transport codes or heat conduction codes with variable properties.
In this method, a Solution is Manufactured by solving directly for
the distribution of variable coefficients that produces it. Generally,
for Navier-Stokes codes, distributed source terms are nonphysical
and would not have been included, so these codes would have to
be modified to use the method. For codes developed ‘‘in house,’’
this is very little trouble. The only tricky situation we know of
occurs with implicit Approximate Factorization codes built for
second-order time accuracy, as noted above and in@1#; in this
case, the consistently second-order treatment of source terms is
subtle. Still, the trouble of adding source terms is small compared
to the alternative of a haphazard and piecemeal approach to Code
Verification. It is certainly trivial for FEM code using direct solv-
ers. For general purpose commercial codes, it is not an undue
hardship on vendors to be required to include source terms so that
users can Verify the Codes themselves.~CFD Software vendors
are notoriously uninterested in performing V&V and in sharing
results with customers, apparently for good reasons.!

Solution Realism. The MMS as presented generates solu-
tions to PDE’s, modified to include source terms for all dependent
variables, with no concern for realism of the solution. Thus, ac-
ceptance requires that the judge recognize that Code Verification
is a purely mathematical exercise. Physical realism and even
physical realizability are irrelevant. Actually, there is norequire-
mentthat the Manufactured Solution look unrealistic, and we can
invent appealing solutions if necessary to satisfy managers, regu-
lators, public stakeholders, etc. But it is worthwhile to understand
that this ‘‘realism’’ is mere window dressing. It is also risky, in
that it encourages a dangerous misconception and opens the door
to criticism and arguments about adequate ‘‘realism,’’ which after
all is a qualitative concept and again opens the door to piecemeal
and perpetual Code Verification exercises.

Furthermore, ‘‘realistic’’ solutions can actually be less desir-
able. For example, a realistic solution for Navier-Stokes equations
would have a boundary-layer behavior at walls. But then the terms
neglected in classical boundary layer theory~e.g.,]p/]y! will not
be strongly exercised in the code, and a minor error might con-
ceivably slip by undetected, e.g., a one-sided difference expres-
sion for ]p/]y near the wall thought to be 2nd order but actually
1st order will not affect the answer if]p/]y501O(D2) whereas
an ‘‘unrealistic’’ solution based on tanh, etc. would exercise these
terms.

Code Verification With a Clearly Defined Completion Point
As noted earlier, it is now well-recognized that benchmark solu-
tions for Code Verification must exhibit sufficiently complex
structure that all terms in the governing equation being tested are
exercised. What apparently is not so widely recognized today is
that, once a code~or rather, a specific set of code option combi-
nations! has been convincingly Verified on such a solution, it is
nearly pointless to continue exercising it on simpler problems. I

say ‘‘nearly’’ because the exercises have some value, but should
not be thought of as Verification, but as Confirmation exercises;
see Chapter 1 of@1#. In the present view, Code Verification has a
theorem-like quality, and therefore terminates. Like a high-school
student plugging numbers into the solution for the quadratic equa-
tions, a code user who performs Confirmation exercises gains con-
fidence in the code and in his ability to set up the code and to
interpret the results. Such Confirmation exercises are valuable,
indeed necessary, as part of user training, but these should not be
confused with Code Verification. Similarly, we recognize that
simple problems~e.g., 1-D linear wave propagation! are useful in
algorithm development, in exploring algorithm and code charac-
teristics, and in comparing performance of different codes, but
once again, these comparison exercises should not be confused
with Code Verification. For example, one could have three codes
of 1st, 2nd, and 4th order accuracy, each of which was rigorously
Verified to be so. Then a comparison exercise based on simple
wave propagation with a linear advection-diffusion equation
would be expected to show increasing accuracy; however, this
does not alter the previously determined and completed Code
Verifications.

Proof? Does such a Code Verification process deserve the
term ‘‘proof’’? This is another semantic question whose answer
depends on the community context. Logicians, philosophers and
pure mathematicians clearly view ‘‘proof’’ differently from engi-
neers, with an often other-worldly standard. For example, Fer-
mat’s Last Theorem is easily demonstrable; anyone can readily
convince themselves of its correctness, and a straightforward
computer program can be written to convincingly demonstrate its
correctness for systematic millions of cases. No one, not even the
philosophers or logicians or pure mathematicians, doubts it. In-
deed, if one were to put forward a counter-proof, it would be
rejected by all. Yet only recently has a book-length ‘‘proof’’ been
put forward ~and doubts about it remain!. Since some philoso-
phers maintain that it is not possible even in principle to prove
relativity, or Newton’s laws of gravity~which are certainly prov-
able within engineering accuracy! they are not going to accept the
notion of proof of correctness of a complex code, i.e., Verification
of Code

The notion of proof is at the heart of very important criticisms,
not just of the subject MMS, but of the concepts of Code Verifi-
cation and especially Certification@1# for large public-policy
projects. One might agree with some philosophers who maintain it
is not possible to prove relativity or Newton’s Laws, but would
one be willing to cancel a public policy project~e.g., a nuclear
waste project! because the modeling used Newton’s laws? Pre-
sumably not, but stakeholders are willing to cancel such projects
under the guise of unprovability of code correctness. The harm is
done when these standards for proof of philosophers, mathemati-
cians or logicians are applied to down-to-earth engineering
projects. If we accept such out-of-context standards for proof, we
cannot do anything, literally. For example, we have no proof of
convergence for real systems, because the Lax Equivalence theo-
rem only holds for linear systems. The word ‘‘proof’’ is itself a
technical term, with different appropriate standards in logic, pure
mathematics, applied mathematics, engineering, criminal law vs.
torts vs. civil law ~e.g., ‘‘beyond a reasonable doubt’’!, etc. The
first definition in one dictionary for ‘‘proof’’ is ‘‘The evidence or
argument that compels the mind to accept an assertion as true.’’ In
this sense, if not in a strict mathematical sense, one could claim
that the MMS approach can provide proof of Code Verification.

I am unhesitating in claiming ‘‘convincing demonstration’’ and
‘‘robust Verification’’ for the present MMS approach. A math-
ematical proof would require the formalism of a theorem; as
noted, it would seem that a theorem is possible, for some related
problem~s!. Further, if one allows the legitimacy of a non-
mathematical proof in principle, then I would claim that this
method provides it. It is highly unlikely that a code embodying the
Burgers equation~2! and passing the Verification test for the so-
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lution of the above example could be wrong~without a contrived
counter-example!. More complex codes with option combinations
require more tests, obviously. Computer Scientists like to negate
the possibility of complete Code Verification by considering codes
of ‘‘arbitrary complexity’’ or ‘‘arbitrary number of options,’’ but in
fact real codes have a countable, exercisable number of options; in
any case, a code can be conditionally Verified just for those sets of
options exercised. Geometry complexity is hard to address in gen-
eral, but once again the claim of Code Verification can be condi-
tionally stated to restrict geometry families to those tested. In
practice, difficulties with complex geometries~e.g., singularities!
are often not Code Verification issues at all, but are simply diffi-
culties with Verification of Calculations; i.e., they are not issues of
code correctness.

An Alternative View on Code Verification With a Clearly
Defined Completion Point. The present view of Code Verifica-
tion as a theorem-like process with a fixed termination is not
universally accepted. In an alternative view@5–7,28# held by re-
spected authorities, Code Verification~and Validation! are ‘‘ongo-
ing activities that do not have a clearly defined completion point’’
@28#, more akin to accumulating evidence for a legal case than to
proving a theorem@6,7#. Both viewpoints recognize, obviously,
that if the code is modified, it is a new code~even if the name of
the code remains! and the new code must be re-Verified. Also,
both viewpoints recognize that all plausible non-independent
combinations of input options must be exercised so that every line
of code is executed in order to claim that the entire code is Veri-
fied; otherwise, the Verification can be claimed only for the subset
of options exercised. And both viewpoints recognize the value of
ongoing code exercise by multiple users, both in an evidentiary
sense and in user training. In this alternative view these activities
could be part of formal Code Verification itself, rather than as
Code ‘‘Confirmation’’ as in the present view@1#.

The decision whether or not to include these activities under
‘‘Code Verification’’ rather than ‘‘Code Confirmation’’ is semantic
but it must be recognized that it has practical and possibly serious
consequences. For example, contractual and/or regulatory require-
ments for delivery or use of a ‘‘Verified Code’’ might be ambigu-
ous in this view, since ‘‘Code Verification’’ by definition is never-
ending. Also, any test~even a superficial one! could be claimed as
‘‘partial Verification.’’ However, some advantages exist for this
view, e.g., encourages more precision of the meaning of ‘‘Verified
Code,’’ and it more explicitly recognizes the value of ongoing
code exercise by the user community. Both viewpoints recognize
that ongoing code use and exercise can possibly uncover mistakes
missed in the Code Verification process~just as a theorem might
turn out to have a faulty proof or to have been misinterpreted! but
in this alternative view Code Verification cannot be completed,
except by specification~perhaps negotiated! of the meaning of
‘‘Verified Code.’’ Verification of individual calculations, and cer-
tainly Validations, are still viewed as ongoing processes in both
views, of course.@1,2,5–7,28#

Concluding Remarks
The Method of Manufactured Solutions for Code Verification is

typically met with skepticism, but in the experience of Oberkampf
and Trucano@7# and my own, people who actually try it are en-
thusiastic. The MMS enables one to produce many exact analyti-
cal solutions for use as benchmarks in systematic discretization
refinement tests, which tests are remarkably sensitive for Code
Verification. The method is straightforward and, when applied to
all option combinations in a code, can lead to complete and final
Code Verification, with a well-defined completion point. It elimi-
nates the typical haphazard, piecemeal and never-ending approach
of partial Code Verifications with various highly simplified prob-
lems that still leave the customer unconvinced.
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Verification of Finite Volume
Computations on Steady-State
Fluid Flow and Heat Transfer
This work presents a post-processing tool for the verification of steady-state fluid flow and
heat transfer finite volume computations. It is based both on the generalized Richardson
extrapolation and the Grid Convergence Index~GCI!. The observed order of accuracy
and a error band where the grid independent solution is expected to be contained are
estimated. The results corresponding to the following two and three-dimensional steady-
state simulations are post-processed: a flow inside a cavity with moving top wall, an
axisymmetric turbulent flow through a compressor valve, a premixed methane/air laminar
flat flame on a perforated burner, and the heat transfer from an isothermal cylinder
enclosed by a square duct. Discussion is carried out about the certainty of the estimators
obtained with the post-processing procedure. They have been shown to be useful param-
eters in order to assess credibility and quality to the reported numerical solutions.
@DOI: 10.1115/1.1436092#

1 Introduction
During the last decades the numerical methods on heat transfer

and fluid flow have been consolidated as an indispensable tool for
the resolution of thermal and mechanical engineering problems,
being nowadays an essential complement to the experimental
studies. The aim of the Computational Fluid Dynamics~CFD!
scientific community up to the last years was mainly focussed on
improving the performance of the numerical methods in order to
increase the range of applications, i.e., larger domains and more
and more complex physical phenomena. As a result, many com-
mercial codes have appeared on the market and are being used by
many engineers and technicians in their projects and companies
for design, evaluation and testing of new equipment and even
entire systems~virtual prototyping and virtual testing!, decreasing
dramatically the time and cost of bringing new products to the
market. Together with the increase of the number of users on these
techniques, a discussion about the need of assessing the credibility
of the numerical results has emerged in the scientific Computa-
tional Fluid Dynamics community. Prestigious journals and insti-
tutes in the field of CFD and heat transfer have adopted statement
policies about this subject@1,2#, and many papers have been pub-
lished concerning the quantification of the numerical errors and
the quality of the numerical solutions@3,4#.

A numerical solution is the final result of two steps: a modeling
of the physical phenomena so as to obtain a set of PDEs~physical
or mathematical model!, and the conversion of these PDEs to
algebraic equations and their solution on a computer~computa-
tional model!. The first step concerns modeling research such as
turbulence modeling and modeling of chemical kinetics. The sec-
ond step involves the discretization of the PDEs, the numerical
procedures to solve the algebraic equations, the programming of
the code, the criteria for finishing the convergence procedure and
the computer accuracy. Both steps introduce approximations in
the solutions, and the resulting errors should be independently
understood and quantified, if possible. The errors introduced in the
second step are known as computational errors and the process to
study these errors as verification process. Once the mathematical
model and the computational model have been independently
verified, the final validation of the simulation process should be

carried out by comparing the results predicted by the simulation
with experimental data, which is known as validation process. In
this context, validation process is the last step of the overall pro-
cedure required to assess credibility. Furthermore, in validation
processes, uncertainties arise in both the experimental results and
the computational results. Therefore, when analyzing discrepan-
cies between simulation and experimental data attention must be
focussed not only on the numerical solution~mathematical model
and computational model!, but also on the procedure adopted to
obtain the experimental data. For example, experimental uncer-
tainties can come about when testing is done under conditions
other than the operating conditions of the studied system or
equipment.

From the different processes involved to assess the credibility
of fluid dynamics and heat transfer computations~the study of the
physical model, the verification and the validation!, this work fo-
cuses on the verification process. The main source of computa-
tional errors is the discretization. In steady-state problems, using
double precision real numbers with strong enough convergence
criteria, and when the code is free of programming errors and
bugs, the remaining computational error is caused by the geomet-
ric discretization~mesh! and the numerical discretization~numeri-
cal scheme!. In order to quantify these errors, two different pa-
rameters are usually adopted:h, which is representative of the
mesh spacing, andp, which stands for the order of accuracy of the
numerical scheme. Theh-refinement treatment is commonly used
to reduce the grid discretization errors in finite volume techniques
~i.e., the numerical scheme is fixed and the mesh is refined!. In
these studies, the Richardson extrapolation can be adopted as a
formally upper-order extrapolated solution estimator and as an
error estimator@5#.

The goal of this work is to show the capability of a post-
processing tool for the computational error analysis of the simu-
lations of different kind of steady state flows and physical phe-
nomena: laminar flows, turbulent flows using two equations
turbulence models@6# and reactive flows@7#. The studies are
based on the generalized Richardson extrapolation for
h-refinement studies and on the Grid Convergence Index (GCI)
proposed by Roache@8#. First results using this tool for steady
state laminar and turbulent flows have already been reported by
the authors@9,10#.

The post-processing procedure here described, has been de-
signed so as to establish criteria about the sensitivity of the simu-
lation to the computational model parameters that account for the

Contributed by the Fluids Engineering Division for publication in the JOURNAL
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
May 16, 2001; revised manuscript received November 12, 2001. Associate Editor:
G. Karniadakis.

Copyright © 2002 by ASMEJournal of Fluids Engineering MARCH 2002, Vol. 124 Õ 11

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



discretization: the mesh spacing and the order of accuracy. For
transient calculations, not considered here, an additional param-
eter should be added in order to account for the order of accuracy
of the time-marching scheme. This tool estimates the order of
accuracy of the numerical solution~observed order of accuracy!
and an error band where the grid independent solution is expected
to be contained~uncertainty due to discretization!, also giving
criteria about the credibility of these estimations. Both global es-
timators and local estimators are calculated. Local estimators
make it possible to find out local source of error such as zones
with inadequate mesh concentration or problems with an inad-
equate formulation of the boundary conditions. Therefore, they
are very useful to improve the numerical solutions. However, as
they consist of a large amount of data such as maps of observed
order of accuracy or maps of estimated local discretization error,
they seem to give too much information and usually not clear
enough, for the final reporting of the results. For such purposes,
the global estimators are easier to be used and reproduced for
different authors in different reports.

To show the capability of these tools, different results of two
and three dimensional steady state problems solved on a
h-refinement criteria have been post processed: a flow inside a
cavity with moving top wall, an axisymmetric turbulent flow
through a compressor valve, a premixed methane/air laminar flat
flame on a perforated burner and the heat transfer from an isother-
mal cylinder enclosed by a square duct. Both structured rectangu-
lar or axisymmetric staggered grids, and body fitted non-staggered
grids are used. A solution with a very fine grid and high order
numerical scheme has been calculated for all the tested cases and
it has been considered the ‘‘exact’’ or reference solution. With this
‘‘exact’’ solution, the ‘‘exact’’ errors of the numerical solutions
have been calculated and compared to the uncertainty obtained
from the post-processing tool. The values of the global estimators
are given for all the post processed cases together with the ‘‘ex-
act’’ absolute error. The values of some local estimators for one of
the cases are also given and discussed.

So as to point out the credibility of the estimators obtained with
the post processing tool, a simple case with analytical solution has
been solved numerically using anh-refinement criteria. The un-
certainty due to discretization calculated from the post-processing
has been compared to the real discretization error obtained from
the comparison of the numerical solution to the analytical
solution.

In the following section an overview of the mathematical basis
on the evaluation of discretization errors is given. In Section 3
details of the post-processing tool are described. The test prob-
lems and the mesh used in each of them are explained in Section
4. Finally, the results are given and discussed in Section 5.

2 Fundamentals

2.1 Estimation of the Discretization Errors: Mathematical
Formulation. Assuming that the numerical solution of a prob-
lem is free of convergence errors, round-off errors and program-
ming errors, the computational error at a given pointx of the
computational domain is only due to the discretization process.
Therefore, the absolute error due to discretization can be defined
as the absolute difference between the computed solutionf~x! and
the exact solutionfE(x):

eD~x!5uf~x!2fE~x!u (1)

As in practical situations the exact solution or an estimation of
the exact solution is not available, the discretization error cannot
be calculated using Eq.~1!. In this section, it is shown how the
magnitude of the discretization error can be estimated by means of
the Richardson extrapolation theory@5# and the concept of Grid
Convergence Index~GCI! for uniform reporting of grid refine-
ment studies@4#.

In steady state computations, there are two discretization error
sources: the mesh and the numerical schemes. In order to quantify
each of them, two parameters of the computational model are
usually adopted:

h: geometric discretization parameter representative of the
mesh spacing

p: order of accuracy of the numerical schemes
According to the Richardson extrapolation theory, at a given

point x of the domain and when the solution is in the asymptotic
range~sufficient smallh!, the local absolute discretization error
can be expressed in terms of the above mentioned parameters and
of a coefficientCp(x) @5#:

eD~x!5uCp~x!hpu (2)

With three solutions of a problem~f1(x), f2(x) and f3(x)!
obtained by means of ah-refinement treatment on the gridsh1

5h ~fine grid!, h25rh ~middle grid!, andh35r 2h ~coarse grid!, a
three-equation system of the unknown variablesp(x), fE(x), and
Cp(x) can be posed:

eDi~x!5uf i~x!2fE~x!u5uCp~x!@r i 21h#p~x!u i 51,2,3 (3)

where the order of accuracyp has been assumed to be dependent
on the positionx, andr is the refinement ratio.

From Eq.~3! it can be determined that:

p~x!5
ln@~f2~x!2f3~x!!/~f1~x!2f2~x!!#

ln r
(4)

eD1
~x!5uf1~x!2fE~x!u5Uf1~x!2f2~x!

12r p~x! U (5)

where Eq.~4! is meaningful only in case of monotonic conver-
gence to the exact numerical solution as the grid is refined.

With this formulation, a formally upper-order extrapolated
value of fE(x) can be calculated@8#. However, the use of the
extrapolated value offE(x) is generally not recommended be-
cause of its lack of conservation, and because the assumptions
involved in its calculation not always apply in practical problems.
On the other hand, the estimator of the absolute discretization
error, Eq.~5!, is a good parameter in order to assess credibility to
the numerical solution. Roache@4# incorporates a safety factorFs
into this estimator and defines the Grid Convergence Index~GCI!.
At a given pointx of the computational domain, theGCI corre-
sponding to the fine grid solutionf1(x) takes the following form:

GCI1~x!5FsUf1~x!2f2~x!

12r p~x! U (6)

In a two-grid convergence study wherep(x) must be assumed
according to the formal order of accuracy, a conservative value of
Fs53 is recommended. For higher quality studies using three or
more grids, as those presented in this work, and wherep(x) can
be estimated by means of Eq.~4!, a value ofFs51.25 appears to
be adequately conservative.

2.2 Classification of the Calculation Nodes. As previously
stated, Eq.~4! can only be used for the estimation ofp(x) at those
nodes with monotone error convergence. Furthermore, as the ar-
gument of the logarithm function is the ratio between the solution
changes (f2(x)2f3(x)) and (f1(x)2f2(x)), numerical prob-
lems can arise when analysingf~x! values close to 0 or nodes
with both solution changes approaching 0.

It is useful to classify the calculation nodes into three groups
according to the following conditions:

Richardson node:@f2* ~x!2f3* ~x!#* @f1* ~x!2f2* ~x!#.C0

Converged node:u@f2* ~x!2f3* ~x!#* @f1* ~x!2f2* ~x!#u,C0
(7)

Oscillatory node: @f2* ~x!2f3* ~x!#* @f1* ~x!2f2* ~x!#,2C0
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where the upper-index* indicates that the solutions have been
normalized by means of the maximum absolutef~x!, andC0 is a
positive coefficient approaching 0~C0510230 in this work, where
all the computations have been performed using double precision
real numbers!.

From the numerical point of view, the Richardson nodes can be
defined as those nodes where Eq.~4! can be calculated. These
Richardson nodes do not necessarily fulfill all the requirements
for the generalized Richardson extrapolation. In fact, the solution
may be outside the asymptotic range~h not small enough!.

Formally, the condition of converged nodes is ill-defined be-
cause it can also be accomplished by inflection points in the so-
lution where all three solutions cross through the same point,
which are obviously not converged nodes. Nevertheless, no rel-
evant effects of these nodes have been observed in the results
post-processed by the authors of this work up to now.

2.3 The Observed Order of Accuracy as a Certainty Pa-
rameter. The formal or theoretical order of accuracy depends
on the accuracy of the numerical schemes used in the inner and
boundary nodes for both the diffusive and convective terms. In
some cases such as when the numerical scheme is fully first order
~upwind differential scheme! or second order~central differences!,
the accuracy of these terms is formally known. However, when
hybrid schemes such as Power Law are used, the order of accu-
racy is bounded but not fixed and it depends on the nature of the
problem. Furthermore, different schemes are usually used in the
evaluation of the diffusive and convective terms. Therefore, it is
plausible to expect an overall order of accuracyp bounded by the
order of accuracy of the schemes used. For example, a numerical
solution obtained with a code using the first order accurate upwind
difference scheme for convective terms and second order accurate
central differences for the diffusive terms, should have an order of
accuracy between 1 and 2.

A global observedp calculated using the procedure explained in
the following section contained within the expected limits of the
theoreticalp ~i.e., observed order of accuracy equals the theoreti-
cal order of accuracy!, indicates that the numerical solution is
converging asymptotically observing the assumptions of the Rich-
ardson extrapolation. When this condition is satisfied, the corre-
spondingGCI is expected to be reliable.

3 Post-Processing Tool for the Evaluation of the Dis-
cretization Errors

The goal of a tool for the evaluation of the discretization error
of a numerical solution is to provide a good estimation of the
magnitude of the error. If a grid independent solution is available,
this error can be easily calculated. Even for those more extended
benchmark problems generally only grid-independent global val-
ues are available, such as the average Nu or the velocity distribu-
tion in a section of a domain. They are useful for code validation
but are still limited for a detailed error evaluation. In fact, in most
practical problems the grid independent solution is not available,
and it is usually far beyond the available solutions in terms of
computational requirements. Therefore, a post-processing tool
must deal with concepts such as error estimators and extrapola-
tions, and must also give criteria about the certainty of these es-
timators and extrapolations as well.

The tool here described is based on the mathematical concepts
given in the previous section. This tool not only calculates an
error band where the grid-independent solution is expected to be
contained, but also the order of accuracy of the numerical solution
~observedp!. Both local and global estimators are given. When
analyzing a problem, local estimators give a detailed information
to the CFD code users in order to know where the convergence
problems occurs, to find out where more refinement is necessary
or to find bugs in the code. However, when reporting the results
they seem to give too much information. In this case, global esti-
mators are more useful.

The post-processing procedure is described in the following
subsection step by step. All these steps have to be carried out for
all the dependent variables of the problem obtaining for each of
them a global observedp andGCI, local valuesp(x) andGCI~x!,
and a measurement of the deviation of the local values from the
global values.

Step 1: Interpolation at the Post-Processing Grid.The dis-
cretized solution of three consecutive refinement levels of an
h-refinement study with a constant refinement ratior ~fine grid
solution f1(x), middle grid solutionf2(x), and coarse grid so-
lution f3(x)!, are interpolated at the main nodes of the grid where
the estimators are calculated~the post-processing grid!. This as-
pect is specially relevant when the numerical solution has been
obtained on non-staggered grids. Typically, this mesh could be the
coarsest one~grid 3!. So as not to introduce additional uncertain-
ties in the post processed numerical solution, third order accurate
Lagrangian interpolations are used. Second-order interpolations
could introduce additional inaccuracies in the numerical solutions
obtained with high order schemes such as SMART or QUICK.
Grids finer than the coarsest are also not recommended because
the extrapolations required in this situation could also introduce
additional inaccuracies.

Step 2: Classification of the Calculation Nodes.All the cal-
culation nodes of the post processing grid are classified into Ri-
chardson nodes, converged nodes and oscillatory nodes according
to the conditions described in Eq.~7!. The percentage of each type
of calculation node is computed. Boundary nodes and the nodes
with fixed f value~blocked-off nodes!, are not considered as cal-
culation nodes.

Step 3: Calculation of the Local Observed p.The local ob-
served order of accuracyp(x) is calculated at all the Richardson
nodes of the post-processing grid using Eq.~4!.

Step 4: Calculation of the Global Observed p.The global
observed order of accuracy is estimated by means of the average
of the local order of accuracy at the Richardson nodes. The stan-
dard deviation of the local values from the mean values is also
calculated. The standard deviation ofp(x) from the globalp can
be considered as a measure of how close the solutions are to the
asymptotic range, and, therefore, of the credibility of the estimates
obtained from the post-processing procedure.

Step 5: Calculation of the Local GCI.The local Grid Con-
vergence IndexGCI~x! of the fine mesh is calculated at all the
Richardson nodes and converged nodes. At the Richardson nodes
GCI~x! is calculated by means of Eq.~6! using Fs51.25 and
assuming the order of accuracyp(x) in Eq. ~6! to be equal to the
global observedp calculated in Step 4. At the converged nodes the
GCI(x) is assumed to be 0.

Step 6: Calculation of the Global GCI.The local GCI
weighted by the fraction of volume~between each control volume
and the overall volume occupied by all the Richardson nodes and
converged nodes! is calculated. The volume weighted average
value is taken as the estimator of the globalGCI. The standard
deviation of the local volume weightedGCI~x! is also calculated.
If the globalGCI is calculated from the statistical moments of the
distribution of the localGCIswithout weighting them by the frac-
tion of volume, when post-processing locally refined grids unex-
pected high values of the globalGCI are obtained because the
local refinement usually coincide with those zones where the dis-
cretization error~and thus theGCI! is higher. In these cases, the
globalGCIs corresponding to different meshes cannot be directly
compared. Another way to avoid this problem is to use a uniform
post processing grid instead of using the coarse grid of the studied
set of solution, which in practical problems may be refined in
some zones.
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4 Tested Cases
The cases presented in this section have been chosen so as to

show the capability of the post-processing tool described in this
paper for the evaluation of the computational error of different
kind of flows, using different grids and different numerical
schemes. All of them have been solved with ah-refinement crite-
rion using four, five or six different refinement levels with a re-
finement ratior 52 ~doubling the mesh!. Each refinement level is
referenced by means of the parametern which is properly defined
for each case. The values of some governing parameters are
pointed out: reference values of the dependent variables for the
normalization of the results, main features of the mesh and nu-

merical schemes used. More details about the numerical proce-
dure, solvers, boundary conditions and so on have been left out in
this work. They can be found in the references.

4.1 Case A: Cavity With Moving Top Wall. Laminar
forced flow inside a cavity whose top side moves with a uniform
velocity in its own plain in thex direction. The main parameters
describing the test case are: Re5102 and Re5103; reference
velocity5top wall velocity; reference length5wall length ~L!.
Several variants have been computed: two-dimensional flows with
side walls inclined at an angleu with respect to the vertical, see
Fig. 1~a!, and three-dimensional flow in a cubic cavity, see Fig.

Fig. 2 Case B: Axisymmetric turbulent flow through a compressor valve. „a… Idealized valve geometry. „b… Mesh and
computational domain.

Fig. 1 Case A: Cavity with moving top wall. „a… Two-dimensional case. „b… Three-dimensional case.
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1~b!. The cavity is discretized with a uniform mesh ofn* n control
volumes on five levels~n510, 20, 40, 80, and 160! in the two-
dimensional variants, see Fig. 1~a!, and with a uniform mesh of
n* n* n control volumes on four levels~n510, 20, 40, and 80! in
the three-dimensional variant, see Fig. 1~b!. Diffusive terms are
modeled by means of second order central differences while both
the first order accurate UDS scheme~upwind! or the high order
accurate SMART scheme are used for the convective terms. For
more details see@11,12#.

4.2 Case B: Axisymmetric Turbulent Flow Through a
Compressor Valve. Modeling of an axisymmetric turbulent
flow through an idealized discharge compressor valve by means of
low-Reynolds numberk2e turbulence models. The main param-
eters describing the test case are: Re5105; reference velocity
5average velocity at the entrance(v in); reference length5inlet
diameter~d!; valve lift5(s/d); reference k50.5v in

2 ; andreference
e5(d/s)v in

3 /d. The idealized physical domain is described in Fig.
2~a!. It is divided in zones with different number of nodes and
with a concentrated grid where necessary~i.e., in the boundary
layer close to the solid walls of the inlet port and the radial dif-
fuser!, see Fig. 2~b!. A concentration tanh-like function with a
concentration factor of 1 has been adopted. Roman numbers from
I to XII label the zones. The side of the zones with grid concen-
tration are indicated by a solid triangle, and the number of nodes
corresponding to each zone are indicated in terms of the grid
parametern ~e.g., whenn510, 40*40, 40*10, and 20*10 control
volumes are used in the zones I, III and IV, respectively!. The
h-refinement study is performed with five levels of refinement
(n55, 10, 20, 40, and 80!. The post-processing study has been
carried out in the zones of interest: the inlet valve port zone and
the radial diffuser~zones I, III, and IV in Fig. 2~b!!. The diffusive
terms are modeled by means of central differences, the convective
terms of the momentum equations with SMART scheme and the
convective terms of the additional convection-diffusion equations
for the turbulence modeling (k2e) with the Power-Law scheme.
See@6,13# for details.

4.3 Case C: Premixed MethaneÕAir Laminar Flat Flame
on a Perforated Burner. A methane-air homogeneous mixture

flows through a drilled burner plate to an open domain. The main
parameters describing the test case are:mass flow rate50.05925
g/cm2s; inlet temperature5298.2 K;stoichiometric mixture; refer-
ence velocity5mean inlet velocity; reference temperature5inlet
temperature; andreference mass fractions5ten per cent the mass
fractions of the stoichiometric combustion. The burner plate forms
a regular pattern of small drilled holes. This plate may be viewed
as an ensemble of tiny premixed Bunsen-like burners of a diam-
eter d ordered in a regular honeycomb structure with pitchp.
Choosing a small enough diameter and a small enough pitch, the
three-dimensional behavior of the flame is reduced notably adopt-
ing a global flat structure disturbed only at the edges of the burner
rim and in the vicinity of the drilled holes. Neglecting the effects
of the burner rim, the combustion phenomena can be modeled

Fig. 3 Case C: Premixed methane Õair laminar flat flame on a perforated burner. „a… Idealized
geometry. „b… Mesh and computational domain.

Fig. 4 Case D: Heat transfer from an isothermal cylinder en-
closed by a square duct. Mesh and computational domain.
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adopting a two-dimensional computational domain enclosed
within two symmetry planes, as shown in Fig. 3~a!, accounting for
a half burner hole and the corresponding part of the open domain
above the burner~L50.4 cm,d50.03 cm andp50.045 cm!. The
computational domain is divided in zones with different number
of nodes and with a concentrated grid where necessary~i.e. near
the burner walls and at the flame front! by means of a tanh-like
function. The number of grid nodes in each direction and zones is
schematically described in Fig. 3~b!. Roman numbers from I to X
label the zones. The side of the zones with grid concentration are
indicated by a solid triangle, and the number of nodes correspond-
ing to each zone are indicated in terms of the grid parametern.
The h-refinement study is performed with seven levels of refine-
ment~n55, 10, 20, 40, 80, 160, and 320!. This means that when
n5360, the domain is discretized with 332.800 control volumes.

The post-processing study has been carried out in the zones of
interest: flame front~zones III, V, VI, VII, and VIII in Fig. 3~b!!.
The diffusive terms are modeled by means of central differences
and both UDS or SMART scheme are used for the convective
terms. For details see@6,14,15#.

4.4 Case D: Heat Transfer From an Isothermal Cylinder
Enclosed by a Square Duct. Heat transfer from a cylinder
whose wall is maintained at a constant temperature and is en-
closed by an isothermal square duct. The main parameters de-
scribing the test case are: Ra5106; Pr510; reference length
5square duct side ~L!; reference temperature5reference
difference of temperature5cylinder temperature—square duct
temperature(DT); reference velocity5AgbDTL. Details about
the geometry and mesh are given in Fig. 4. The domain is divided

Table 1 Case A: Square cavity with moving top wall, Re Ä100. Post-processing results.
Numerical scheme: UDS and SMART for convective terms and central differences for diffu-
sive terms. „For table description see Section 5.1. …

Table 2 Case A: Square cavity with moving top wall, Re Ä1000. Post-processing results.
Numerical scheme: UDS and SMART for convective terms and central differences for diffu-
sive terms. „For table description see Section 5.1. …
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in three different zones. The number of nodes corresponding to
each zone is indicated in terms of the grid parametern. A solid
triangle in Fig. 4 indicates the zones where the grid has been
concentrated by means of a tanh-like function. The domain is
discretized using body fitted coordinates with nonstaggered grids
on five levels of refinement~n52, 4, 8, 16, and 32!. The diffusive
terms are modeled by means of central differences, while both
UDS or SMART schemes are used for the convective terms. See
@6,11,12# for details.

5 Results

5.1 Description.

Calculation of the ‘‘Exact’’ Computational Error. In order to
point out the certainty of the estimators obtained from the post-
processing tool, the ‘‘exact’’ computational error has been esti-
mated. To do so, the most accurate solution of each problem~fin-
est mesh with the higher order numerical scheme! has been
considered the ‘‘exact’’ solution,fE(x). For each solutioni in the
h-refinement, the absolute discretization erroreD(x) has been es-
timated at all the computational nodes of the post-processing grid
by means of Eq.~1!, and finally a global discretization error (eD)
and the standard deviation of the local values have been calcu-
lated. The interpolation of the ‘‘exact’’ solution and the solutioni
at the nodes of the post-processing grid has been performed as
indicated in Step 1 of Section 3, and the global discretization error
has been obtained from the local discretization error following the
same procedure used for theGCI, see Step 6 of Section 3.

Description of the Tables of Global Estimators.For each set
of three consecutive meshes on theh-refinement represented by
the grid parametern, the following values are indicated: the per-
centage of Richardson nodes~Rn!, the observed globalp, the stan-

dard deviation of the local observedp(x) from the global value,
the globalGCI and the global ‘‘exact’’ absolute discretization er-
ror eD . The upper-index* in the GCI andeD indicates that they
have been normalized using the reference values given in Section
4 for each of the tested cases~i.e., GCI* 5GCI/f re f and eD*
5eD /f re f!.

Other data also obtained from the post-processing tool and that
have not been included in the tables of global estimators are the
percentage of converged nodes and oscillatory nodes, and the
standard deviation of the local values ofGCI and eD from the
global values. For all the post-processing results presented in this
work, the percentage of converged nodes was always 0. Therefore,
all those nodes that did not accomplish the condition of Richard-
son node, Eq.~7!, were oscillatory nodes. On the other hand,
observed deviations of theGCI and eD in all the cases were of
similar magnitude and tended to vanish with the mesh refinement.

For example, Table 3 shows the global estimators of the three-
dimensional driven cavity with moving top wall~case A!. As four
refinement levels are used in this case, two sets of solutions can be
analyzed. For the set of solutions involving the gridsn520, n
540 andn580 and the numerical scheme UDS, when evaluating
the x2velocity, 90 percent of Richardson nodes have been de-
tected~i.e., 10 percent of oscillatory nodes!. The global order of
accuracy of the finest solution of this set (n580) is 1.2 with a
standard deviation of 1.2. The globalGCI has a good coincidence
with the ‘‘exact’’ absolute erroreD , being 0.32 and 0.22 percent
of thex2velocityreference value, respectively. As the most accu-
rate solution is used as ‘‘exact’’ solution for the estimation ofeD* ,
theeD* of these solutions is equal to 0. The cells corresponding to
these situations are indicated with a dash~i.e., the set of gridsn
520, n540 andn580 using the SMART scheme!.

Table 3 Case A: Cubic cavity with moving top wall, Re Ä100. Post-processing results. Numerical scheme: UDS and
SMART for convective terms and central differences for diffusive terms. „For table description see Section 5.1. …

Table 4 Case B: Axisymmetric turbulent flow through a valve. Post-processing re-
sults. Numerical scheme: central differences for diffusive terms and SMART and
PLDS for the momentum and turbulent quantities convective terms, respectively. „For
table description see Section 5.1. …
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5.2 Discussion About the Tested Cases.Case A is a lami-
nar forced flow mainly dominated by internal forces in the inner
regions, and the tangential forces at the boundaries. There are no
additional source terms that make the convergence with the grid
spacing difficult. When solving the Reynolds number Re5102,
both for the two-dimensional variants~considering two different
inclination anglesu! and the three-dimensional variant, even the
most coarse meshes seem to belong to the asymptotic range where
the generalized Richardson extrapolation can be applied. There-
fore, the calculated estimators are expected to be reliable. The
global estimators obtained from the post-processing tool are given
in Tables 1 to 3.

The results of the variants corresponding to Re5102 are given
in Table 1~two-dimensional flow! and Table 3~three-dimensional
flow!. Specially for the finest meshes, a high percentage of Rich-
ardson nodes are computed. The use of the SMART scheme gen-
erally increases the number of nodes that converge in an oscilla-
tory manner with the mesh, reducing the number of Richardson
nodes. As the flow is dominated by the inertial forces~convective
terms!, the observed order of accuracy tends to be the one corre-
sponding to the formal order of accuracy of the numerical scheme
used for the convective terms~1 in case of UDS, and approxi-
mately between 2 and 3 for SMART!. The eD* are pretty well

Table 5 Case C: Premixed methane Õair laminar flat flame on a perforated burner. Post-processing results. Numerical
scheme: UDS and SMART for convective terms and central differences for diffusive terms. „For table description see
Section 5.1. …
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estimated byGCI* . The biggest discrepancies are found for the
coarsest set of meshes when using the SMART scheme, coincid-
ing with the set of meshes with a lower number of Richardson
nodes.

More discrepancies are observed in the variants with Re5103

~see Table 2!. With the uniform meshes used, the low-accurate
UDS scheme is inappropriate for the case withu50. The observed
order of accuracies are significatively lower than the theoretical
value of 1 corresponding to this scheme, and they only take values
closer to 1 for the finest set of meshes. When using the SMART

Fig. 5 Case D: Heat transfer from an isothermal cylinder enclosed by a square duct. Post-processing
results. Local estimators of the solution with the grid nÄ32 „post-processing grid nÄ8… and the nu-
merical scheme UDS.

Table 6 Case D: Heat transfer from an isothermal cylinder enclosed by a square duct. Post-processing results. Numeri-
cal scheme: UDS and SMART for convective terms and central differences for diffusive terms. „For table description see
Section 5.1. …
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scheme, observed order of accuracy only differs from the theoret-
ical value for the coarsest set of meshes. The discrepancies be-
tween the observed and theoretical values ofp for the coarsest
meshes indicate that the corresponding estimators of the compu-
tational errors are not very reliable. In fact, when comparing the
‘‘exact’’ error to the estimated absolute computational error, dif-
ferences are observed for the coarsest meshes, which tend to van-
ish for the higher levels of refinement.

Case B, see Table 4, is a complex turbulent flow impinging a
wall with recirculation zones and zones with a high level of tur-
bulence. Therefore, the results with the coarsest meshes may not
be contained in the asymptotic range of convergence. In spite of
that, the observed order of accuracy has acceptable values even
for the coarse meshes. Furthermore, theeD* and theGCI* have
similar order of magnitude.

Case C involves, apart from the momentum, energy and conti-
nuity equations, the resolution of four additional convection dif-
fusion equations to account for the mass fraction of the products
and reactives of the combustion process. Therefore, the resulting
algebraic equation system to be solved is highly complicated with
a strong coupling between all the variables and with the algebraic
coefficients highly dependent on the dependent variables.

The corresponding global estimators are given in Table 5. For
all the situations, even for the most coarse set of solutions, the
observed order of accuracy approximates the expected theoretical
value. Most important discrepancies are found for the coarsest
meshes, and for the finest meshes using the SMART schemes
~where a degradation of the observed order of accuracy is de-
tected, tending to 1!. However, even in these cases, the observed
order of accuracy approaches the expectedp enough, so as to
make the estimatorGCI* reliable. In fact, differences betweeneD*
and theGCI* are quite acceptable for the coarse meshes and tend
to vanish for the finest meshes.

Case D is a two-dimensional heat transfer flow. The global
estimators obtained from the post-processing are given in Table 6.
Reasonable values of observed accuracy are obtained and good
accordance between the computational error estimator and the
‘‘exact’’ computational error is observed.

Global estimators like those presented in the previously refer-
enced tables, are quite promising in terms of reporting purposes
because they can be reproduced by different authors, and they can
be reported in a compact manner. When these estimators are ob-
tained from the procedure described in this paper, they arise from
a statistical treatment of local estimators. These estimators made
up a large amount of data which is difficult to be reported. How-
ever, this information is very useful for the user of the computa-
tional code, because it makes it possible to find out local source of
errors, such as zones with insufficient mesh concentration or prob-
lems with the boundary conditions.

As an example, the local estimators corresponding to the solu-
tion of case D with the gridn532, and the numerical scheme

UDS, are shown in Fig. 5. For each one of the dependent variables
of the case~x-velocity, y-velocity, and temperature!, the isolines,
the post-processing grid (n58), the Richardson nodes, the esti-
mated order of accuracyp(x), the estimated normalized local
computational errorGCI* ~x!, and the ‘‘exact’’ normalized local
computational erroreD* (x) are given. In the maps of localp and
local GCI* , the zones corresponding to non-Richardson nodes
~all of them oscillatory nodes! and where the post-processing pro-
cedure cannot be performed, have been blanked. As expected,
local observedp at a given point of the domain can have quite
different values from one dependent variable to another, depend-
ing on the local nature of the corresponding physical equation.
Furthermore, obviously one point in the domain may not fulfill the
conditions required for the Richardson nodes when analyzing one
of the variables, while being a Richardson node when analyzing
the other dependent variables. On the other hand, it can been
observed that the maps ofGCI* (x) predict the corresponding
maps of ‘‘exact’’ normalized absolute computational error quite
well. Therefore, these kind of maps are quite useful when analyz-
ing a new problem to be solved by means of computational tech-
niques, giving criteria to the code user about how and where the
grid has to be intensified so as to improve the quality of the
computational solution.

Fig. 6 Case with analytical solution: One dimensional steady
state convection-diffusion process without source term, with
constant transport properties and with Dirichlet boundary con-
ditions. Computational domain: square domain with an inclina-
tion of 45 deg and discretized by means of a uniform mesh of
n * n control volumes.

Table 7 Case with analytical solution: One-dimensional steady-state convection-
diffusion process without source term, with constant transport properties and with Di-
richlet boundary conditions, Pe Ä1 and PeÄ10. Post-processing results. „For table de-
scription see Section 5.1. …
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5.3 Further Discussion. Results discussed in the previous
section show that the estimated discretization error band obtained
from the post-processing procedure reproduces the ‘‘exact’’ abso-
lute computational error~obtained numerically as indicated in
Section 5.1! quite well in all the tested problems. All these results
give confidence about the certainty of the estimators. However,
the estimated discretization error is compared to a value~the ‘‘ex-
act’’ computational error! which may no be free from computa-
tional error. Therefore, some doubts about the certainty of the
estimators can still remain.

So as to go a step further towards assessing the credibility of
the estimator of the discretization error, in this subsection the
post-processed results of the numerical solution of a case with
analytical solution will be shown. These results will be compared
to the exact absolute computational error~take note that now the
word exact is not written within quotation marks because it is
obtained from the analytical solution!.

The evaluated case consists of the steady state convection-
diffusion process of a variablef(x,y) without source term and
constant transport properties within a domain with infinite height
~y dimension!, a width L ~x dimension!, and with the Dirichlet
boundary conditions in thex direction f(0,y)5f050 and
f(L,y)5fL51, see Fig. 6. In such conditions the convection-
diffusion equation yields to a one-dimensional equation~x depen-
dent! with the well known analytical solutionf(x)5(1
2ePex/L)/(12ePe), where Pe is the Peclet number~ratio between
the convective and diffusive coefficients!. For more details see
@9#.

The computational domain is a square domain inclined at an
angle of 45 deg with respect to thex direction, with one vertex at
x50 and the opposite vertex atx5L. Dirichlet boundary condi-
tions have been fixed according to the analytical solution. A uni-
form mesh ofn* n control volumes is used. Both calculations
using the UDS and SMART schemes for the convective terms
have been performed, while central differences have always been
used for the diffusive terms.

Six levels ofh-refinement have been solved~n510, 20, 40, 80,
160, and 320!. Results of the post-processing of these results are
given in Table 7 for two different Pe numbers and the two numeri-
cal schemes used for the convective terms. Other Pe numbers not
presented herewith have also been studied. The Grid Convergence
Index GCI and the exact absolute discretization erroreD have
been normalized using a reference value ofDf50.01(fL2f0).
As it is shown, theGCI has predicted the exact absolute discreti-
zation error for all the studied situations quite well.

6 Conclusions
This work addresses the verification process of finite volume

numerical solutions. Even when a code has been previously sub-
mitted to a credibility test by comparison with a set of either
previously accepted simulations or experimental data, the credibil-
ity of the results of new problems or situations is not assessed.
Therefore, specific credibility tests must be carried out before the
solution can be accepted. The credibility tests encompass the
study of the physical model used to represent the physical phe-
nomena, the verification of the numerical solution~accuracy of the
computational model! and the validation by comparison to experi-
mental results.

A post-processing tool for the study of the discretization errors
~verification process! based on the generalized Richardson ex-
trapolation and on the concept of grid convergence indexGCI has
been presented. This tool not only estimates an error band where
the grid-independent solution is expected to be contained, but also
the order of accuracy of the numerical solution~observedp!. Both
local and global estimators are computed. While local estimators
are a good tool for the code user in order to improve the quality of
the numerical solutions, global error estimators seem easier to be
used and reproduced for different authors in the final reporting of
the results.

The numerical results of different heat transfer and fluid flow
problems involving different phenomena~laminar flow, turbulent
flow and reactive flow!, adopting different meshes~Cartesian
grids in a staggered arrangement, axisymmetric grids in a stag-
gered arrangement, and body fitted coordinates in a nonstaggered
arrangement! and different numerical schemes have been post
processed. The obtained global error band estimators have been
given for all of them. Local absolute error estimators of one of the
post processed results have also been shown. The certainty of the
error band estimators has been checked comparing its value to the
‘‘exact’’ absolute error of the numerical solutions always obtain-
ing very reasonable values. The post-processing results have been
discussed in detail in order to give criteria about the credibility of
the numerical solutions. Although the error estimators obtained
with the post-processing procedure here described have been
shown to be quite reliable for all the studied cases, whether these
estimators are reliable or not in other kind of flows, will require
further research.
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@13# Pérez-Segarra, C. D., Cadafalch, J., Rigola, J., and Oliva, A., 1999, ‘‘Numeri-
cal Study of Turbulent Fluid Flow through Valves,’’ Proceedings of the Inter-
national Conference on Compressors and Their Systems, City University, Lon-
don, pp. 13–14 Sept.

@14# Sommers, L. M. T., 1994, PhD thesis, Technical University of Eindhoven.
@15# Soria, M., Cadafalch, J., Co`nsul, R., and Oliva, A., 2000, ‘‘A Parallel Algo-

rithm for the Detailed Numerical Simulation of Reactive Flows,’’ Proceedings
of the 1999 Parallel Computational Fluid Dynamics Conference, pp. 389–396,
Williamsburg, VA.

Journal of Fluids Engineering MARCH 2002, Vol. 124 Õ 21

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



C. Pozrikidis
Department of Mechanical

and Aerospace Engineering,
University of California, San Diego,

La Jolla, CA 92093-0411
e-mail: cpozrikidis@ucsd.edu

Boundary Element Grid
Optimization for Stokes Flow
With Corner Singularities
The accuracy of boundary-element methods for computing Stokes flow past boundaries
with sharp corners where singularities occur is discussed. To resolve the singular behav-
ior, a graded mesh of boundary elements whose length increases in a geometrical fashion
with respect to distance from the corners according to a prescribed stretch ratio is used.
Numerical results for two-dimensional Stokes flow past bodies with polygonal shapes
reveal the existence of an optimal value of the stretch ratio for best accuracy in the
computation of the force and torque. When the optimal value is used, fast convergence is
achieved with respect to the number of boundary elements.@DOI: 10.1115/1.1436091#

1 Introduction
The occurrence of singularities at boundary corners is a major

concern in the computation of internal and external viscous flow.
When computations are performed using the boundary-integral
equation method for Stokes flow, the problem formulation results
in an integral equation for the boundary traction, and the numeri-
cal method seeks to describe functions that diverge at sharp cor-
ners, a seemingly impossible endeavor. Fortunately, numerical re-
sults have shown that attempting to capture the singular behavior
does not have a catastrophic effect on the overall accuracy of the
method, although it diminishes the accuracy, slows down the rate
of convergence, and requires a large number of boundary elements
or high-order expansions.

The undesirable effect of corner singularities in Stokes flow
was first pointed out by Kelmanson, 1983 in the context of the
biharmonic equation@1,2#. Kelmanson accounted for the local sin-
gular behavior by ingeniously hard-coding it into the boundary-
element implementation via a series representation whose coeffi-
cients are computed as part of the solution. Hansen and
Kelmanson@3# improved the efficiency of the method by restrict-
ing the singularity subtraction only to those elements that are lo-
cated in the vicinity of the singular point. More recently, Kelman-
son and Longsdale@4# advocated eliminating the corner
singularities by use of a Green’s function appropriate for the do-
main of flow under consideration. This method circumvents the
need for custom-made implementation, but requires knowledge of
the Green’s function which is available only for a small number of
boundary geometries.

An alternative is to capture the singular behavior by enhancing
the spatial resolution via grid refinement or by increasing the or-
der of the boundary-element expansion near the singularity, using,
respectively,h- or p-adaptation. In practice, it is desirable to keep
the number of boundary elements constant and the order of the
expansion fixed, and perform optimization with respect to the lo-
cation of the element nodes in the spirit ofr-adaptation. A draw-
back of this method is that, when a small or moderate number of
elements is used, the optimal element distribution may be highly
skewed. Grid optimization for the boundary-element method was
pioneered by Ingber and Mitra@5#. The optimization process in-
volves introducing a norm for the numerical error, and then mini-
mizing the error with respect to the position of the boundary-
element end-nodes. Error estimation and adaptive boundary
element methods have been developed by numerous subsequent

authors, as reviewed by MacKerle@6#, Liapis @7#, and Abe and
Sakuraba@8#, and as discussed in a recent volume edited by Muci-
Küchler and Miranda-Valenzuela@9#.

In this work, we implement and investigate the performance of
a method of restrictedr-type grid optimization in which the
boundary element distribution is assigned a particular form deter-
mined by a scalar parameter, and the optimal value of this param-
eter is desired. We assume, in particular, that the size of the
boundary elements increases in a geometrical fashion with respect
to distance from a corner where a singularity occurs, according to
a specified stretch factor. The objective function for the optimiza-
tion is the force and torque exerted on a two-dimensional body
that is held stationary in an incident shear flow. The results will
show that the restricted optimization is successful in capturing the
nature of the corner singularities, and thereby allows for fast con-
vergence and significant improvement in accuracy.

2 Problem Statement and Formulation
We illustrate the numerical method with reference to two-

dimensional simple shear flow of a Newtonian fluid with densityr
and viscositym past a stationary body located above an infinite
plane wall, as depicted in Fig. 1.

Far from the body, thex andy components of the velocity tend
to the unperturbed distributions

ux
`5ky, uy

`50, (1)

where k is the shear rate. The Reynolds number Re5rka2/m,
wherea is the characteristic size of the body, is assumed to be so
small that the effect of fluid inertia is negligible, and the motion of
the fluid is governed by the linear equations of Stokes flow. Thus,
the velocityu and dynamic pressurep satisfy the continuity equa-
tion and the homogeneous Stokes equation

¹•u50, ¹p5m¹2u. (2)

The solution is subject to the no-penetration and no-slip boundary
conditions along the solid boundaries of the flow including the
body and the plane wall.

It should be noted that the presence of the infinite wall prevents
the perturbation velocity from diverging at infinity, although this
divergence would not present a paradox due to the linear growth
of the incident simple shear flow.

2.1 Corner Singularities. A local analysis of Stokes flow
near a corner reveals that the stream function, defined by the
equationsux5]c/]y and uy52]c/]x, admits solutions of the
form

c~r ,u!5Arl f ~u!1cc, (3)
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where (r ,u) are plane polar coordinates centered at the apex, as
illustrated in Fig. 1,A is a complex coefficient determined by the
nature of the far flow, and ‘‘cc’’ stands for the complex conjugate
of the right-hand side@10–12#. The complex exponentl and the
complex functionf (u) are to be computed as part of the solution.
The analysis shows thatl satisfies the nonlinear algebraic equa-
tion

sin@2a~l21!#56~12l!sin~2a!, (4)

wherea is the corner semi-aperture ranging between 0 andp. The
plus sign applies in the case of the antisymmetric flow illustrated
in Fig. 2~a!, and the minus sign applies in the case of the sym-
metric flow illustrated in Fig. 2~b!. In the case of antisymmetric
flow, Eq. ~4! has the obvious solutionl51, and in the second of
symmetric flow, it has the obvious solutionsl51 and 2. These
values, however, are inadmissible because of the inappropriate
functional forms forf (u) underlying Eq.~4! @11,12#.

Figure 2~c! illustrates the solution branch ofl with the smallest
real part for antisymmetric flow~thick lines! and symmetric flow
~thin lines!. The solid lines represent the real part.l r , and the

Fig. 1 Illustration of two-dimensional Stokes flow past a sta-
tionary body located above an infinite plane wall

Fig. 2 Streamline pattern of „a… antisymmetric and „b… symmetric flow around a corner with
aperture angle 2 aÄ3pÕ2. „c… Branches of the real and imaginary part of l for antisymmetric
flow „thick lines … and symmetric flow „thin lines …; the solid lines represent the real part, and
the dashed lines represent the imaginary part.
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dashed lines represent the imaginary part,l i . In both cases, when
the aperture semi-anglea is smaller than a certain threshold,l is
complex, and this suggests that an infinite sequence of eddies
develop inside the corner. The real partl r expresses the rate by
which the streamfunction decays with respect to distance from the
apex. Whenl r is less than 2, the wall shear stress diverges at an
algebraic rate, behaving liker lr22. For example, when 2a53p/2,
l r51.544484 in the case of antisymmetric flow, or 1.908529 in
the case of symmetric flow. In both cases, the shear stress exhibits
an integrable singularity at the apex.

An arbitrary flow around a corner may be expressed as a linear
combination of an antisymmetric flow and a symmetric flow
whose coefficients are determined by the structure of the flow far
from the corner. The results of the local analysis suggest that,
because of the lower value ofl r , the antisymmetric component is
expected to dominate near the apex. This will be confirmed by the
results of numerical computations presented in Sec. 3.

2.2 Integral Formulation. Considering flow past the body
depicted in Fig. 1, we use the boundary integral formulation of
Stokes flow and find that the velocity at the pointx05(x0 ,y0) that
is located in the flow or at the boundaries is given by the integral
representation

uj~x0!5uj
`~x0!2

1

4pm E
C

f i~x!Gi j
2DW~x,x0!dl~x!, (5)

whereC is the contour of the body in thexy plane,f[s•n is the
boundary traction,s is the Newtonian stress tensor,n is the unit
vector normal toC pointing into the fluid, andGi j

2DW(x,x0) is the
Green’s function of two-dimensional Stokes flow representing the
velocity field induced by a point force in a semi-infinite domain of
flow bounded by an infinite plane wall where the no-slip and
no-penetration boundary conditions are required@13#.

Placing the pointx05(x0 ,y0) on the body contourC, and re-
quiring the no-slip and no-penetration boundary conditionuj (x0)
50, we obtain a Fredholm integral equation of the first kind for
the boundary traction,

uj
`~x0!5

1

4pm E
C

f i~x!Gi j
2DW~x,x0!dl~x!. (6)

Now, because the Green’s function satisfies the integral con-
straint

E
C
ni~x!Gi j

2DW~x,x0!dl~x!50, (7)

as required by the continuity equation, the integral equation~7!
does not have a unique solution: any particular solution may be
enhanced with an arbitrary multiple of the normal vector. Since
the single-layer operator expressed by the right-hand side of~6! is
self-adjoint, the solvability condition requires

E
C
uj

`~x!nj~x!dl~x!50, (8)

which is satisfied by any solenoidal incident velocity field.

2.3 Boundary Element Method. To solve the integral
equation~6!, we use a standard boundary element method. The
numerical procedure involves dividing the contour of the body
into boundary elements that are straight segments or circular arcs,
and approximating the Cartesian components of the traction with
constant functions over the elements. Requiring the satisfaction of
the integral equation at the mid-points of the boundary elements,
we derive a system of linear equations for the element tractions
composing the vectorf,

M•f5b, (9)

where M is the influence matrix containing integrals of the
Green’s function over the boundary elements. In the numerical
method, the influence matrix is computed by numerical quadrature
after the logarithmic singularity of the Green’s function has been
subtracted out. The right-hand sideb contains the velocity com-
ponents of the incident flow evaluated at the collocation points.

The occurrence of the singular eigensolutionn, as shown in~7!,
suggests that the matrixM is nearly singular, and the condition
number increases as the numerical error due to discretization and
integration are made smaller. When the body contour is polygonal,
consisting of straight segments, the boundary elements have cor-
responding straight shapes, and the six-point quadrature is used to
carry out the numerical integration,M is singular virtually to ma-
chine precision, and any attempt to solve system~9! fails.

To circumvent this difficulty, we note that, in the discretized
version of the problem, the solvability condition~6! is expressed
by the inner product of the vectorb and a vectorw whose ele-
ments are defined in terms of integration weights that depend on
the particular method chosen to carry out the numerical integra-
tion. Because of discretization and integration error, the inner
productb•w will not be equal to zero to machine precision.

To ensure that the linear system shares the properties of the
integral equation regarding solvability, we perform singular pre-
conditioning. This is done by projecting both sides of~9! onto the
space that is orthogonal to the eigenvectorw, thereby replacing
the nearly-singular system~9! with the singular system

B•z5c, (10)

where B[P•M , c[P•b, and the matrixP[I2ww/uwu2 carries
out the projection@14,15#. Since the vectorw is an eigenvector of
the transpose ofB corresponding to the null eigenvalue, the solv-
ability conditionw•c50 is satisfied to machine precision, the co-
efficient matrix B is rank-one deficient, and system~10! has a
one-parameter family of solutions. One of the components of the
unknown traction vectorf may then be assigned an arbitrary
value, and one equation of the linear system may be dismissed
without prejudice. The solution of the rest of the equations is
guaranteed to satisfy the discarded equation to machine precision.
In the present implementation, the reduced non-singular system is
solved by Gauss elimination.

It should be emphasized that, for bodies with polygonal shapes,
the numerical eigenvectorw is exact, and singular preconditioning
is imperative. Without it, the linear system is singular even when
each side is discretized into one boundary element whose end-
nodes are located at the corners.

2.4 Boundary Element Distribution. To capture the singu-
lar behavior of the traction at the corners, we use a graded mesh of
boundary elements whose length increases in a geometrical fash-
ion with respect to distance from a corner. Specifically, ifD l i is
the size of theith boundary element on a segment of the body
contour, then

D l i 115bD l i , (11)

whereb>1 is the element stretch ratio, andD l 1 is the length of
the boundary element whose first node is a corner. In the numeri-
cal implementation, we specify the total number of elements and
the ratio between the largest and smallest element size along each
segment, denoted byg, and computeb to fit the specified number
of elements to the segment. An option is provided for the element
distribution to be symmetric or non-symmetric with respect to the
mid-point of each segment. In the first case,g is equal to the ratio
of the length of the mid-element~s! to the length of the corner
element; in the second case,g is equal to the ratio of the length of
the first element to the length of the last element.

When an integrable singularity occurs at a corner, the traction
behaves likel lr22, where l is the arc length with origin at the
corner, andl r.1 is the real exponent. The integrated traction
over theith element scales with
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Ji~b,l r ![ l i 11
lr21

2 l i
lr21

5
D l 1

lr21

~b21!lr21 @~b i 1121!lr212~b i21!lr21#.

(12)

Ideally, the boundary elements should be distributed so that the
right-hand side of~12! is constant, independent ofi. As l r tends
to 2 corresponding to the mildest singular behavior,Ji(b,l r)
.D l 1b i ; demanding that the boundary elements make compa-
rable contributions requires evenly-spaced elements correspond-
ing to b51. On the other hand, asl r tends to 1 corresponding to
the strongest singular behavior,Ji(b,l r).D l 1 ln@(bi1121)/(bi

21)#.Dl1 ln b. Consideration of these two asymptotic limits sug-
gests that the value ofb should be selected according to the value
of l r ; that is, according to the corner angle defined by the body
shape.

3 Results and Discussion
Consider shear flow past a square cylinder with side lengtha,

where the center of the cylinder is placed at a distancea above a
plane wall, and the two sides of the cylinder are parallel to the
wall, as illustrated in Fig. 4~a!. Figure 3 shows graphs of thex
component of the dimensionless force per unit length exerted on
the cylinder,Fx /(mka), and the correspondingz component of
the dimensionless torque with respect to the center of the cylinder,
Tz /(mka2), plotted against the boundary element stretch ratiob,
for Ns58, 16, 32 and 64 boundary elements along each side. The
highest curve in Fig. 3~a! and the lowest curve in Fig. 3~b! corre-
spond toNs564.

The results confirm that, given the number of boundary ele-
ments, there is an optimal value of the element stretch ratio for
best accuracy. Moreover, the optimal value converges rapidly to
the exact value with respect toNs . In contrast, when the boundary
elements are evenly spaced, corresponding tob51, the force and

Fig. 3 Force and torque exerted on a square cylinder with side
length a whose center is located at distance a above the plane
wall, plotted against the element stretch ratio b for NsÄ8, 16, 32,
and 64 boundary elements along each side. The highest curve in
„a… and the lowest curve in „b… correspond to NsÄ64.
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torque converge only slowly. The nearly optimal distribution of
the boundary-element nodes forNs516 is depicted in Fig. 4~a!.
The ratio between the length of the largest boundary elements
located in the middle of each side and the length of the smallest
boundary element located next to a corner isg5100.

To understand the effect of the element stretch ratio, it is help-
ful to consider the contribution of each element to the line integral
of the traction around the body defining the force. Figure 5 shows
a graph of the contributions of the boundary elements on the top
side of the cylinder to thex component of the force, forNs532.
The circles, squares, diamonds and crosses correspond tog51, 5,
500, and 1000, whereg5500 is nearly optimal. The best results
are obtained when the elements in the vicinity of the corners make
comparable contributions, and a local maximum does not arise.

Figure 6 shows the distribution of the shear stress along the
upper side of the square cylinder illustrated in Fig. 4~a!, plotted
against the arc length measured from the northwestern corner near
Alaska, computed withNs532. The circles, squares and dia-
monds correspond, respectively, to element ratiosg55, 50, and
500, and associated stretch factorsb51.113, 1.298, and 1.513.
The straight line represents the predictions of the local solution for
antisymmetric flow corresponding tol r51.544. The results illus-
trate that boundary-element distributions with large stretch factors

Fig. 4 Streamline pattern of shear flow past a square computed with the nearly optimal
element distribution of 16 elements along each side, for inclination angle „a… 0, „b… pÕ4, and
„c… pÕ2. „d… Flow past an inclined square whose center is located at a distance equal to five
times the side length above the wall. The dots mark the location of the boundary element
nodes.

Fig. 5 Contribution of the top elements to the line integral of
the traction defining the force corresponding to Fig. 4 „a…
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successfully probe the singular nature of the shear stress after the
second corner element.

Similar results are obtained when the body is inclined with
respect to the wall, as illustrated in Fig. 4~b,c!. To demonstrate the
effect of orientation, we consider shear flow past a square cylinder
whose center is located at a distance equal to five time the side
length above the plane wall, and the sides of the cylinder are
rotated byp/4 with respect to the horizontal, as illustrated in Fig.
4~d!. Figure 7 shows a graph of the shear stress plotted against the
arc length measured from the left and top corner on a log-log
scale, computed withNs564 elements along each side and
g51000. The local flow around the left corner is similar to the
symmetric flow illustrated in Fig. 2~b!, whereas the local flow
around the top corner is similar to the antisymmetric flow illus-
trated in Fig. 2~a!. Accordingly, the distribution of shear stress
around the left and top corner, corresponding to the circles and
squares, fall on straight lines with slopel r22, wherel r51.544
or 1.909, respectively, for antisymmetric or symmetric flow. The

singular behavior near the left corner is weaker than that near the
top corner. Because of the presence of the infinite wall, the flow
around the left corner is not perfectly symmetric, but contains a
small antisymmetric component whose strength is proportional to
the perturbation flow due to the wall. The results in Fig. 7 suggest
that the antisymmetric component becomes apparent at much
higher resolutions.

The numerical method, and variations of it, were applied to
investigate several other types of two-dimensional Stokes flow.
Figure 8~a! illustrates the streamline pattern of simple shear flow
past a surface-mounted square obstacle. The numerical results
show that, given the number of boundary elements along each
side, the force and torque exerted on the obstacle are computed
with best accuracy when the boundary elements over the three
sides are distributed with a stretch ratio that is comparable to that
for the square cylinder discussed earlier. As a second illustration,
Fig. 8~b! shows the streamline pattern of simple shear flow past a
truncated circular cylinder mounted on a plane wall. In this case,
the boundary elements have circular shapes over the cylinder and
flat shapes over the wall, and the elements are concentrated near
the points of contact.

Fig. 6 Distribution of the shear stress along the upper side of
the square illustrated in Fig. 4 „a…, plotted against the arc length
measured from the northwestern corner

Fig. 7 Distribution of shear stress with respect to arc length
measured from the left and top corners for the flow illustrated
in Fig. 4 „d…

Fig. 8 Streamline patterns of simple shear flow past a surface-
mounted square and section of a circular cylinder
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4 Concluding Remarks

We have discussed the implementation and optimization of the
boundary-element method for two-dimensional Stokes flow past
bodies with corner singularities. In the numerical method, the
boundary element distribution is determined by the scalar stretch
ratio b, and the objective functions are the force and torque ex-
erted on the body. The choice of these objective functions is dic-
tated by their relevance in studies of suspension dynamics and
micro-hydrodynamics with small-scale topography. Extensions of
the numerical method to three dimensions is straightforward in
principle but tedious in implementation. To compute a three-
dimensional Stokes flow past a body with corners and edges, we
use elements whose size increases by a certain factor with respect
to distance from the singular lines or points.

The boundary element procedure described in this paper may
be extended to the case of Stokes flow through narrow passages
where strong lubrication forces develop. In that case, the bound-
ary elements should be concentrated near regions of maximum
normal traction associated with high shear stress and lubrication
pressure. The method was tested for flow due to a circular cylin-
der translating parallel to, or rotating about its center, above a
plane wall. When the gap between the cylinder and the wall is 2
percent of the cylinder radius, and 64 circular elements are used,
the dimensionless force exerted on a cylinder translating with ve-
locity U along thex axis parallel to the wall is found to be
Fx /(mU)5259.42, 262.00, 262.08 and261.72, respectively,
for g51, 10, 100 and 1000; the exact value due to Wannier is
262.30@16#.

Overall, the r-adaptive boundary element method with re-
stricted optimization emerges as a desirable practical alternative to
its more rigorous but much more demanding unrestricted counter-
part.
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Uncertainty Quantification for
Multiscale Simulations1

A general discussion of the quantification of uncertainty in numerical simulations is
presented. A principal conclusion is that the distribution of solution errors is the leading
term in the assessment of the validity of a simulation and its associated uncertainty in the
Bayesian framework. Key issues that arise in uncertainty quantification are discussed for
two examples drawn from shock wave physics and modeling of petroleum reservoirs.
Solution error models, confidence intervals and Gaussian error statistics based on simu-
lation studies are presented.@DOI: 10.1115/1.1445139#

1 Introduction

Simulation based prediction will play an increasing role in sup-
port of global climate studies, assessment of the performance,
safety, and reliability of the nuclear stockpile, engineering design,
infrastructure modeling, environmental remediation projects, and
other critical problems. To be effective in this role, predictive
simulations must be accompanied by reliable and defensible esti-

mates of their level of accuracy, limits of applicability, and of the
level of confidence that can be placed in such estimates. In short,
simulation results must come with good error bars, just as is ex-
pected of experimental results. This condition is rarely met in
practice, and to do so requires the development of systematic
methods for uncertainty quantification in large scale simulations.

We refer to errors as a deterministic measure of the inaccuracy
in input parameters, physical models, or numerical solutions of
the governing equations in each realization of an ensemble of
problems. A probability model for errors refers to the distribution
of errors in any quantity, taken over the ensemble. Of course, the
ensemble of errors can be averaged to obtain a mean error, which
is again a deterministic quantity. Uncertainty refers to the variabil-
ity in any quantity over the ensemble. Thus a probability model
for errors and uncertainty of errors are basically identical con-
cepts, and both have a probabilistic and deterministic aspect. Nor-
mally we are interested in uncertainty in quantities which are not
errors ~such as uncertainty in mean annual sea surface tempera-
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ture!; such uncertainty is of course not an error nor is it a prob-
ability model of an error.

Potential sources of uncertainty in simulation based predictions
include poorly known input parameters, incomplete physical mod-
els, and limited accuracy of numerical solutions of the governing
equations. Incomplete knowledge of the properties of complex
systems frequently leads to the need for a probabilistic description
of each source of error. Thus error and uncertainty are both proba-
bilistic concepts, and differ, as used here, only in the scope of
variables to which they apply.

Especially for complex systems, the bedrock test of simulation
based prediction is comparison with experimental data. This com-
parison generally needs to go beyond a simple yes/no verdict as to
whether a prediction agrees with data, to include an inverse step
that uses data to constrain uncertainties in the choice of a model or
its parameters. This inverse step, which maps probabilities in ob-
servations or in solutions back to probabilities in the problem
inputs, i.e., to its formulation, is a stochastic version of the much
studied inverse problem, equivalently called the parameter deter-
mination problem or the history problem, depending on the
context.

The purpose of uncertainty quantification is to identify and
quantify each source of error, and to assess their net, or integrated,
effect on the simulation results. Assessment of experimental error
is of course an essential part of the overall procedure when com-
paring with data.

This brief description clearly shows that uncertainty quantifica-
tion is an inherently multidisciplinary undertaking, drawing on
physical modeling, stochastic modeling and statistics, and applied
mathematics.

In this paper, we briefly review some of the main components
of uncertainty quantification. The Bayesian framework for statis-
tical inference is discussed in Section 2. This is a convenient way
to formulate the probabilistic inverse procedure used to constrain
model uncertainties on the basis of experimental data, especially
when the data are obtained from diverse sources. Solution error is
the novel feature that arises in quantifying uncertainty in simula-
tions. Some of the principal issues that arise in constructing
probabilistic models for solution errors are discussed in Section 3.
Uncertainty quantification invariably requires evaluation of results
for a frequently large ensemble of runs. This can be very costly, so
methods for fast integration, both in forward simulations and for
evaluation of ensemble averages of various kinds in high dimen-
sional probability spaces are a high priority. A brief overview of
some of the available methods is given in Section 4.

In Section 5 we discuss two examples. The first concerns the
flow of oil in an ~idealized! petroleum reservoir. The purpose of
the example is to show how data on observed oil production could
be used to reduce uncertainty in the geological description of the
reservoir, and to improve predictions of future oil production. This
example illustrates the use of probability models for solution er-
rors in Bayesian statistical inference. The second example dis-
cusses the diagnosis and modeling of solution errors arising in
shock wave dynamics. These examples are simple enough that the
main ideas and results can be presented succinctly. They illustrate
some, though by no means all, parts of the uncertainty quantifica-
tion framework presented earlier in the paper.

2 The Bayesian Framework
The Bayesian framework@1# for statistical inference provides a

systematic procedure for updating our current knowledge of a
system on the basis of new information. In the engineering and
natural science applications that we shall consider, the system is
represented by a simulation modelm that is intended to be a
complete specification of all information needed to solve a given
problem. Thusm includes the governing evolution equations for
the physical model, initial and boundary conditions, and modeling
parameters;i.e., m contains sufficient information to make the
solutions(m) well posed in the sense of Hadamard@2,3#. Any or

all of the information inm can be either deterministic or uncertain
to some degree. To represent the uncertainty that may be present
in the specification of the system, we introduce an ensemble of
modelsM, with mPM, and define a probability distribution on
M, called the prior distribution, and denoted byp(m). We note
that determinism in the sense of Hadamard fors(m) can be lost
due to lack of detailed deterministic knowledge ofm.

If additional information about the system is supplied by an
observation,O, one can determine an updated estimate of the
probability form, called the posterior distribution and denoted by
p(muO), using Bayes’ formula

p~muO!5
p~Oum!p~m!

E
M

p~Oum!p~m!dm

. (1)

It is important to realize that the Bayesian procedure does not
determine the choice ofp(m). Thus to use Bayesian analysis, one
must supply the prior from an independent data source or a more
fundamental theory, or else use a noninformative ‘‘flat’’ prior.

The factorp(Oum) in ~1! is called the likelihood. The likeli-
hood is the unnormalized probability for the observationO, given
the modelm. In the cases of interest here, model predictions are
determined by solutions,s(m), of the governing equations, typi-
cally partial differential equations. The simulated observables are
functionalsO(s(m)). If both the experimentally measured ob-
servableO and the solutions(m), henceO(s(m)), are exact, the
likelihood p(Oum) is a delta function concentrated on the hyper-
surface inM defined by the equation

O5O~s~m!!.

In other words, the likelihood selects exactly those modelsm
which agree with the observationO and with no others.

Real world observations and simulations of course contain er-
rors and a discrepancy will invariably be observed betweenO and
O(s(m)). Because the likelihood is evaluated subject to the hy-
pothesis that the modelmPM is correct, any such discrepancy
can be attributed either to errors in the solution or in the measure-
ments. The likelihood is defined by assigning probabilities to so-
lution or measurement errors of different sizes. The required prob-
ability models for these errors must be supplied by an independent
analysis.

This discussion shows that the role of the likelihood in simula-
tion based prediction is to assign a weight to a modelm based on
a probabilistic measure of the quality of the fit of the model pre-
dictions to the data. Probability models for solution and measure-
ment errors play a similar role in determining the likelihood.

This point is so fundamental and sufficiently removed from
common approaches to error analysis that we repeat it for empha-
sis: Numerical and observation errors are the leading contribu-
tion to the determination of the Bayesian likelihood, needed for
uncertainty quantification. When quantifying uncertainty, one
cannot make errors small and then neglect them, as is the goal of
classical numerical analysis, rather we must of necessity study and
model these errors. They supply critical information needed for
uncertainty quantification.

Bayesian inference can be extended to include multiple sources
of information and multiple stages of inference, leading to hierar-
chical Bayesian models based on inference graphs. These capa-
bilities are very important; since data is often in short supply and
expensive to acquire, it is essential to make full use of all possible
sources of data.

Alternative approaches to inference include the use of interval
analysis, possibility theory, fuzzy sets, and theories of evidence.
We do not survey these alternatives here, but simply mention that
they are based on different assumptions about what is known and
what can be concluded. For example, interval analysis assumes
that unknown parameters vary within an interval~known exactly!,
but that the distribution of possible values of the parameter within
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the interval is not known even in a probabilistic sense. This
method yields error bars but not confidence intervals.

A primary focus of the present article is the determination of
probability models for solution errors, along with a sketch of how
they are used in uncertainty quantification within the Bayesian
framework. This work is an outgrowth of earlier studies on uncer-
tainty quantification for simulation based predictions@4–7#,
which the reader may wish to consult for further information.

3 Probability Models for Solution Errors
Several requirements must be kept in mind when formulating

models for solution errors for use in simulations of complex phe-
nomena.

First, use of moderate to coarse grids is a fact of life in simu-
lations of complex phenomena for the foreseeable future. In view
of the increasingly powerful computer hardware that is becoming
available, one might wonder why the use of relatively coarse grids
needs to continue. The answer is that the faster hardware must be
used for more demanding problems~e.g., three space dimensions,
more detailed models, ensembles of runs for statistical studies!
and cannot be used simply to run old problems at higher resolu-
tion. Thus many, or most, simulations of key problems will con-
tinue to be under resolved, and consequently useful models of
solution errors must be applicable in such circumstances.

Incomplete knowledge about important details of complex sys-
tems is another fact of life, and this leads to the need for a proba-
bilistic treatment of solution errors. This is a somewhat revolu-
tionary concept, so we explain the motivation. The operation of a
solution algorithm is, of course, basically deterministic: a given
input leads to a given output. However, theaccuracyof a solution
can depend on thevalueof an input parameter or other problem
feature, so an uncertain input parameter will lead not only to an
uncertain solution, but to an uncertain solutionerror as well. For
example, chance alignments of propagating or interacting waves
relative to a discrete mesh contribute a random,i.e., unpredictable,
component to numerical error. For equations with stiff parameters
or problems with sensitive dependence on initial conditions, errors
or uncertainty in these parameters or initial conditions can be
greatly amplified by the solution process, to the point that some
aspects of the solution, and hence of the error, become essentially
unpredictable. Fluid instabilities provide examples of this phe-
nomena. They depend sensitively on their initial conditions, which
are often given as perturbations of some unstable~equilibrium!
solution. Here we suppose that the perturbation is given by a finite
Fourier expansion. If the grid is sufficiently fine relative to the
amplitude and wavelength of a perturbation, an accurate solution
can be obtained for some time interval. If the wavelength or am-
plitude of the perturbation is unknown, their ratios to the grid size
are uncertain, and the accuracy will also be uncertain.

Like experimental errors, solution errors will generally have a
systematic and a random part. Systematic errors might reflect the
grid resolution, while the random errors would reflect aspects of
the solution for which insufficient detail is available for a deter-
ministic characterization of the error. In some cases, the error
model for a particular problem can be fine tuned so that it is
nearly deterministic. This advantage must usually be purchased at
the price of wider applicability of the error model, so that problem
dependent trade-offs are necessary.

In this paper, we begin the construction of solution error models
meeting the requirements outlined above. As examples, we con-
sider flow in porous media~Section 5.1! and shock wave dynam-
ics ~Section 5.2!. Our basic approach, similar in spirit to that of an
experimental scientist, is to study errors in an ensemble of solu-
tions, generated by variation of input parameters and other aspects
of the solution procedure~grid size, solution algorithm!. Errors
are evaluated by comparing the solution whose accuracy one
wishes to assess to something that is accepted as correct; either a
fine grid ‘‘fiducial’’ solution or, when possible, experimental data.

We compute and analyze the error statistics and discuss probabil-
ity models that describe the observed error statistics.

A fiducial solution can often~not always! be found for prob-
lems of small to moderate complexity. But how does one get a
solution error model for a truly complex problem, where it is most
needed, since for such problems a fine grid fiducial solution is
almost surely not feasible? This is a hard problem. To do this
requires an algorithm, or method, for composition of errors based
on three steps:~i! decomposition of a complex problem into el-
ementary pieces;~ii ! construction of error models for each of the
simple pieces, and~iii ! recombination of the error models for the
simple pieces to obtain an error model for the complete problem.

To elaborate this set of ideas, we imagine a full simulation
problem to consist of successive stages, each described by a lim-
ited range of physics models. In some cases the successive stages
couple only through a few macroscopic variables, and the compu-
tation of errors can be mediated through their influence on these
key variables. An example is given by the decomposition of a
global climate model into separate ocean and atmospheric models,
communicating through the ocean surface layer. In other cases,
the composition of errors is achieved through an approximate spa-
tial localization of errors. Thus for full field oil reservoir models,
the global error model can be decomposed into local error models
associated with the transport of oil in the vicinity of single wells.
For hyperbolic problems, solutions typically decompose into
wave-like structures, with distinct error models for each of these,
and for their interactions. Thus shock wave interaction problems
also allow localized treatment of errors arising from simpler
problems.

Established methods for the analysis of errors in the numerical
solution of partial differential equations include asymptotic analy-
sis of truncation errors anda posteriori error analysis@8–10#.
These methods surely have much to contribute to the overall prob-
lem. The questions motivating these approaches are, for the most
part, somewhat different from those of concern here, and the dif-
ferent approaches to error modeling are complementary rather
than competitive.

4 Fast Integration Methods
Uncertainty quantification requires the statistical study of mul-

tiple simulations, generated using data obtained by sampling prob-
ability distributions for the relevant physical variables. The overall
accuracy of an uncertainty study reflects not only the numerical
accuracy of each simulation, but the accuracy with which an en-
semble is sampled~sample size!. For complex problems, both the
forward simulation and integration over a probability measure are
computationally expensive, and efficient ways for performing
both steps are essential for the success of uncertainty quantifica-
tion at the practical level. In Section 4.1 we discuss methods for
speeding the convergence of ensemble integration, and in Section
4.2 we discuss the role of subgrid models and up scaling in
achieving rapid solution of the governing equations.

4.1 Posterior Integration. This discussion will touch on
the following points: methods to sample from the posterior distri-
bution, which is generally more complex than the prior; parallel-
ized random sampling; accelerated sampling from a simple distri-
bution, such as the prior; and methods for screening variables to
reduce the dimensionality of the integration.

The generic prediction problem can be formulated as the evalu-
ation of the integral

E
M

f ~s~m!!dPostm (2)

with the posterior measuredPostm defined by~1!. For example,~2!
gives the expected value, also denoted^ f &, of the function f.
Monte Carlo integration

^ f &5E
M

f ~s~m!!dPostm5 lim
N→`

1

N (
i 51

N

f ~s~mi !!, (3)
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with the modelsmi sampled from the posterior distribution, pro-
vides a general method for the evaluation of integrals such as~2!
relative to the posterior measure. The integrals~3! are basic to the
quantification of uncertainty. They provide mean values and
higher moments for outcomes, defined by a functionalf of the
solution s5s(m). The posterior measure allows calculation of
confidence intervals and other performance measures. Monte
Carlo integration converges at the rateO(N21/2).

Usually the likelihood in~1! does not have a simple structure,
and so the construction of the random samples$mi% from the
posterior distribution is not elementary. One approach to this
problem is given by Markov chain Monte Carlo methods@11#. In
a Markov chain, the choice of the new statemi is a random event
that only depends on the previous statemi 21 , with a transition
probability P(mi umi 21). In this algorithm, a move proposing
Markov chainq5q(•umi 21) defines the transition probability for
the selection of a candidate movemi . For exampleq could be
chosen to generate samples from the prior distribution. In this case
q(mi umi 21)5p(mi) is independent ofi. Let Post(mi) denote the
posterior probability ofmi . When a move is accepted,mi is de-
fined with probabilitya(mi ,mi 21), where

a~mi ,mi 21!5minS 1,
Post~mi !q~mi umi 21!

Post~mi 21!q~mi 21umi !
D . (4)

Otherwise, the move is rejected, andmi5mi 21 . A significant ad-
vantage of the Markov chain Monte Carlo method is the cancel-
lation of the denominator in~1!, so that only the likelihood
P(Oum) in ~1! has to be evaluated.

While the Markov chain Monte Carlo method provides a way to
sample from the posterior, as a method for evaluation of integrals
based on the posterior it will not converge more rapidly~in the
limit N→`! than typical Monte Carlo methods. It may actually be
slower, as the Markovian move to a new state will be rejected
with probability 12a if the new state results in an increase in the
ratio of Bayes likelihoods in the definition ofa. Thus we discuss
faster methods.

As one way to speed convergence of the Markov chain Monte
Carlo algorithm, we propose a parallelized version of the algo-
rithm, whereby independent Markov chains evolve in parallel,
with occasional Metropolis weighted sampling~as in the sampling
choice based ona in ~4!! of the chains with replacement to give
new starting points for the Markov chains. By this we mean that
the selection of states from the ensemble computed in parallel is
probabilistic, through a weighting function of the form exp(E/T)
for some choice of temperatureT. The idea is that the ensemble,
computed in parallel, achieves thermal equilibrium before the in-
dividual processes computed on separate processors, so that the
sample is from the parallel ensemble. This suggestion is motivated
by the success of a similar algorithm for parallel simulated anneal-
ing @12#.

An alternative to Markov chain Monte Carlo is to sample from
the prior directly and to multiply the integrand by the normalized
Bayesian likelihood. Often the prior has a relatively simple struc-
ture, allowing faster integration methods. In the case whereM is
a product of distinct factors andp(m)dm is a product measure,
Latin hypercube sampling can be used to improve the conver-
gence rate in comparison to Monte Carlo integration@13–17#. A
Latin hypercube is a stratified sample where each of the product
variables is divided intoN equiprobable pieces. The sample de-
sign assures that each variable occurs once in each of the equi-
probable pieces. Therefore, each one-dimensional projection of
the sample is uniform. Latin hypercube sampling converges at
least as fast as the Monte Carlo method,i.e., O(N21/2) @14#. In
practice, it often converges considerably faster through reduction
of the coefficient multiplying theO(N21/2) rate but without
change in the rate itself. Further improvement can be achieved
through Latin hypercubes that stratify on several variables simul-
taneously@15,16#, or that control the correlation among the vari-

ables @17,18#. We use Latin hypercubes for sampling from the
prior distribution for evaluation of ensemble averages.

The quasi Monte Carlo method@19# is another fast integration
method, valid for a bounded domain of integration. This method
uses a deterministic sequence that minimizes the Kolmogorov-
Smirnov distance between the empirical cumulative distribution
function and the uniform distribution. Therefore, the sample
spread is nearly uniformly over the domain of integration. Quasi
Monte Carlo sampling converges with orderO(N21 log(N)d21)
whered is the dimension of the space of integration, significantly
faster than Monte Carlo and Latin hypercube sampling. The gen-
eration of the sequence is quite involved and, because a determin-
istic sequence is used, there are no established error estimates.

Sensitivity analysis is used to identify significant variables
~possibly leading to a reduction in the dimension of the integration
space!, to construct a localized linear response surface approxi-
mating the graph ofs(m) near the evaluation point, and to propa-
gate linearized uncertainty from inputs to outputs. Sensitivity
studies, as usually formulated, depend on evaluation of the gradi-
entG5]s/]m. The gradient defines a linear response surface, or a
linear approximation as a tangent plane, valid in a neighborhood
of the sample point whereG is evaluated. For small variations in
m ~or variation ofm with a linear influence ons!, the covariance
of the solutionCs can be computed from the covariance of the
input, Cm , by the formula

Cs5GCmG* .

Experimental design is used to identify significant variables and
to construct a response surface model approximatings(m). Its
main virtues are robust and efficient predictions from limited data.
Assumptions typical in the practice of experimental design are;
~a! sparsity, in that only a limited number of variables will ulti-
mately be needed and~b! approximate linearity, in that the higher
order interactions among the variables are weak. Experimental
design methods are based on a finite step size rather than the
infinitesimal step size used in construction of the gradient. Poly-
nomial or other types of nonlinear response surfaces, as well as
nonparametric response surfaces, can also be constructed by these
methods.

The response surface is used for evaluation of integrals or
whenever repeated function evaluations are required. These evalu-
ations generally involve the solution of a partial differential equa-
tion and can be expensive. Instead, one calculates the function
value from its approximation by the response surface. In this
sense, the surface pre-evaluates the function, and stores enough
information to determine its value at an arbitrary point through
interpolation. This method works best if the function being evalu-
ated is not too complex and if many function evaluations are
required, so that the expense of constructing the response surface
is amortized over many response surface evaluations. The con-
struction of a response surface for systems of partial differential
equations is discussed in@17,20,21#. Tabulated functions are an
equivalent method that has been used for fluid dynamics problems
that require an equation of state for real materials.

4.2 Subgrid Models. Multiscale problems have a wealth of
fine scale detail, but it is often the macroscopic behavior that is of
primary interest. However, the fine scale structures cannot be ig-
nored, since they can have a significant influence on the macro-
scopic behavior. A number of related methods with a variety of
names including subgrid modeling, up scaling, averaged equa-
tions, effective equations, or parameterized equations each involve
some kind of averaging to suppress the irrelevant fine scale while
still capturing the influence of this detail on the macroscale vari-
ables.

Subgrid models are usually derived by a formal procedure of
averaging, introduction of moments, truncation of the hierarchy of
moment equations, and closure to complete the system of equa-
tions, which is otherwise under determined due to the truncation
of the moment hierarchy. Of these steps, all but the closure can be
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performed at a mathematical level and are formally exact. Closure
is a physics dependent modeling step. It introduces new relations,
independent of the primitive equations,i.e., those that result di-
rectly from the averaging process. Closure restricts the validity of
the equations to the regime where the closure itself is valid. Clo-
sure relations are to some extent constrained by general consider-
ations of covariance, symmetry, dimensionality,etc. They are sub-
ject to confirmation by experiment or direct numerical simulation,
but are normally beyond the scope of mathematical derivation.
Experimental validation of closure relations is common. An ex-
ample occurring within the authors’ program is given by the buoy-
ancy drag differential equations for the edge of a turbulent mixing
zone, given for example in@22#. In this example both the func-
tional form~known from general principles of fluid dynamics! and
the specific values of the drag coefficient~which depends on
shape and cannot be predicted from general principles! are vali-
dated by comparison to experiment.

Subgrid models reduce the number of degrees of freedom in a
model. For this reason they can lead to more rapid solution meth-
ods. Subgrid models are studied in a number of contexts: for
example in climate modeling subgrid models are used for precipi-
tation, cloud cover, and other meteorological phenomena. Turbu-
lence subgrid models aim to capture the effects of small scale
vortices on the macroscale flow. We will discuss subgrid models
for flow in porous media in Section 5.1.

It is useful to contrast subgrid models with response surface
methods, as these very different methods have the common pur-
pose of speeding solution evaluations, and thus the integration
over the ensemble of solutions. A response surface is constructed
by data fitting and interpolation, while the subgrid model leads to
a coherent, self contained description of the macroscopic physics.
In general, we expect response surfaces to be faster in execution
and easier to implement but to be less general and robust in their
application to modified problems, and to offer less insight into the
physical processes being studied.

5 Examples

5.1 Flow in Porous Media. Spatial variability is an inherent
property of petroleum reservoirs. The variability manifests itself
starting from properties on the scale of the rock pore size~mi-
crons! and extends to geologic properties at the field scale of
kilometers. Over the past two decades, it has become clear that
even relatively fine scale variability, on the order of a meter, can
have a significant impact on large scale flow and transport of oil,
gas, and other materials. In particular, predictions of oil produc-
tion depend on a knowledge of the reservoir geology, which is
generally uncertain and described by a geostatistical model. The
problem examined here is that of using observational data on past
oil production to constrain uncertainties in the geology and
thereby improve prediction of future oil production.

The reservoir geology is linked to oil production data by simu-
lations. This presents the following problem. Statically accurate
reservoir descriptions that incorporate fine scale heterogeneities
have been developed, but reservoir simulations that could resolve
this level of detail are generally too expensive for practical engi-
neering use. As an example, a statistically accurate description for
a typical formation may require a grid of ten to fifty million cells,
whereas routine simulations on modern reservoir simulators are
currently limited to about 100,000 to 250,000 cells. A version of
subgrid modeling known as scale up has been developed to bridge
this gap. The porous formation is characterized on a fine scale; the
scale up algorithm transforms the fine grid description into a
coarse grid description in a way that captures some, but of course
not all, of the crucial fine scale information; and the problem is
simulated on the coarse grid. In the work reviewed here, we use a
version of up scaling developed in@23–26#, with typical results as
shown in Fig. 1~left!, in which the fine grid solution is compared
with solutions obtained with several levels of coarsening. A dis-

cussion of the physical and mathematical motivation and the de-
tails of the formulation for the scale up algorithm are outside the
scope of this paper.

We focus on a different point here. Even good up scaling meth-
ods introduce solution errors; coarse grid solutions without the use
of up scaling introduce even more. Our objective is to examine the
effect of these solution errors on our ability to constrain uncertain-
ties in the geology using observational data, along the lines dis-
cussed in Section 2 and Section 3. For this purpose we conducted
a study@27–29# based on an ensemble of 500 reservoirs, with the
permeability functionK(x,y) ~to describe the geology! taken as a
random field. We consider two-dimensional flow in a unit square,
0<x, y<1. TheK’s were drawn from a log normal distribution
with a vertical~y direction! correlation length of 0.02 and a hori-
zontal correlation lengthL, whereL is one of 0.2, 0.4, 0.6, 0.8,
1.0 ~100 realizations each!.

The simplest reservoir equations were considered. Darcy’s law
and the condition for incompressible flow

v52lK¹p; ¹•v50,

where p is the pressure, define the total seepage velocityv
5v(x,y,t), while the saturation or local water fractions(x,y,t) is
a solution of the Buckley-Leverett equation

] ts1¹•vf ~s!50.

Boundary conditions arep51 for x50 andp50 for x51, while
the vertical component ofv is zero on the lower and upper bound-
aries y50 or y51, respectively. The functionsl and f are the
mobility and saturation flux, respectively, and, taken in their sim-
plest form, are defined by quadratic relative permeabilities. An oil
to water viscosity ratio of 5:1 was assumed.

The solutions were computed on a fine grid~1003100 cells!,
and this solution was regarded as exact. They were also computed
on coarse grids of size 20320, 10310 and 535 with up scaled
K’s, f’s, andl’s. The ratio of outflow~flux at x51! oil to water
~the oil cut! was recorded as a function of time, see Fig. 1. We
write the error as

e5sf2sc

wheresf andsc are the fine and coarse grid solutions state vectors.
We defineē5^e& as the ensemble average error. Sinceē is known
independently of the choice of the correct reservoir, denoted be-
low by j 0 , we can use it for history matching and prediction
purposes. Thus we regardsc1ē as the coarse grid solution and
de5e2ē5sf2sc2ē as the error. With this convention,^de&50,
and the ensemble mean value of the redefined error is zero. With
this data the error,i.e., the difference between the fine and the
coarse grid solutions, is a time series.

We next specify the data to be used in the analysis of predic-
tion. We seek to improve estimates of future oil production by
using observations of the oil produced~oil cut! up to a specified
time ~the present! and the statistics of solution errors. In the
present study we obtain this data as follows. We first identify a
specific reservoir with permeabilityK5K j 0

as ‘‘correct.’’ The oil
cut resulting from the fine grid solution with permeabilityK
5K j 0

is taken as a stand in for actual observational data. A time
T0 for which the oil cut had a given value,c0 , in realizationj 0 is
called the ‘‘present time.’’ All observed data,i.e., the exact oil cut
for times t<T0 are used in the analysis and errors for all times
0<t are used to calibrate the error model. Thus the solution error
model pertains to both the past and future solution behavior. We
emphasize that the solution error model is used twice. Errors for
timest,T0 ~the past! are used to obtain revised probabilities~the
posterior! for the model geology. Errors fort.T0 ~the future! are
used to assess the accuracy of forward simulations, used for
prediction.

We assume a Gaussian error model and use the observed error
statistics to define the mean and covariance that characterize this
Gaussian. Because the errors are observed in a finite sample, we
need to restrict the dimension of the error model~to avoid over
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fitting of the data!. This means that errors are projected onto a
finite dimensional space and the covariance is projected onto a
finite rank matrix. This finite matrix defines the Gaussian error
model.

In addition to errors,i.e., the difference between the fine and
coarse grid solutions, we need to consider discrepancies, which
are the difference between the fine grid solution for one geology
and the coarse grid solution for another. In our methodology, we
cannot know which of the geologies is ‘‘correct,’’ and we cannot
know which of the discrepancies is actually an error~through
choice of the correct geology for the coarse grid!. Fortunately, this
problem is avoided in the Bayesian approach, where the likeli-
hood is constructedassuming that the model m is correct. This
means that we can take a discrepancy, and assume it is an error
and evaluate its probability based on this assumption. Doing this
defines the posterior probability. The posterior probability and the
solution error model for forward simulations define all quantities
needed for the uncertainty quantification analysis, including mean
prediction values and confidence intervals.

In Fig. 1 ~right! we show typical discrepancies and errors. Evi-
dently the errors are often systematically smaller, so that the cor-
rect geology~and any others with similar solution properties,
hence with small discrepancies similar to errors! will show a
larger probability in the posterior distribution, and thus be favored
in the Bayesian predictions.

We illustrate the use of this construction of the posterior in two
ways. First we use the posterior to predict future oil production
rates~the oil cut as a function of time!. The prediction error re-
duction relative to the prior probability prediction is expressed in
percent in Table 1. This quantity is defined as 1
2PEposterior/PEprior wherePE is a prediction error for the poste-
rior or prior ensemble. The prediction error is defined as the ab-
solute value of the prediction error integrated over some future
time interval, and is the difference between the fine grid solution
for the chosen geology with indexj 0 and the prediction. Since the
ratio is a function of the indexj 0 of the chosen~‘‘correct’’ ! geol-
ogy, we average the ratio over all choices ofj 0 to obtain the

values reported in Table 1. In this table, we show results for three
levels of scale up, and also the predicted results for no scale up.
To define the posterior for the latter, we use a windowing method,
and select all geologies whose solution for 0<t<T0 lies in a
small window about the exact solution for geologyj 0 . See Fig. 2.

In Table 2 we show expected confidence intervals for the pre-
diction of future oil production, expressed as a percent of pre-
dicted future oil production. The confidence interval depends on
the choice of correct geologyj 0 , and so it is a random variable.
The mean value of this random variable, expressed as a percent
deviation from the predicted production, is presented in Table 2.
In Table 1, absolute values of error are integrated in time, so that
cancellation of errors between under and over prediction within a
given simulation does not occur. In Table 2, we are dealing with
total oil production and errors in this quantity. Thus cancellation
of errors occurring at different times within a given simulation can
occur. This appears to be the reason that the results on scale up in
Table 2 appear to be more favorable than those in Table 1.

Table 2 shows a generally very satisfactory accuracy for the
scaleup predictions, with possible difficulties only for the very
extreme 535 scaleup and the very early time scaleup,c050.8.
The authors believe that the results summarized in Table 1 and
Table 2 provide the first quantitative assessment of the statistics of
prediction errors associated with scaleup~i.e., uncertainty quanti-
fication! and could provide a model for future assessments of
scaleup.

5.2 Shock Wave Interactions. Compressible hydrodynam-
ics, in addition to its intrinsic importance in modeling physical
flows, is also the prototypical example of a hyperbolic system of
equations. Equations of this type occur in many types of prob-
lems, and the quantification of uncertainty in such problem is of
fundamental importance to applications.

We focus on the case of compressible gas dynamics where the
flow is described by the system of partial differential equations:

ut1¹•f5b (5)

whereu5(r,rv,rE), r is the mass density,v the fluid velocity,
E5v2/21e the specific total energy, ande the specific internal
energy. The flux tensorf is given by

f5S rv,rv^ v1P,rvS v2

2
1eD1PvD ,

where P is the pressure. The components ofb describe body
forces, viscous forces, and heat conduction. In this discussion we
assume inviscid flow, sob[0. The system is closed by a thermo-
dynamic equation of state that relates pressure, density, and inter-

Fig. 1 Left: Fine grid and several coarse grid solutions. Here fractional oil production rate „oil cut … is plotted vs. a dimen-
sionless time variable, the total pore volumes of fluid injected, or PVI. Right: Typical errors „lower curves … and discrepan-
cies „upper curves … plotted vs. PVI. The two families of curves on the right are clearly separable.

Table 1 Percent reduction in the oil cut prediction error rela-
tive to prediction based on the prior distribution. The fine grid
results and three levels of scale up are presented.

c0 1003100 20320 10310 535

0.8 42 21 19 14
0.6 51 39 32 20
0.4 57 55 45 34
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nal energy. For simplicity we assume a perfect gas equation of
state P5(g21)re. Furthermore, we will only consider one-
dimensional flows.

We are interested in solving the initial boundary value problem
for system~5!:

u~x,0!5u0~x!, a<x<b

with appropriate boundary conditions atx5a and x5b. Most
commonly three types of boundary conditions are considered, pe-
riodic, reflecting, or flow specified. A fourth type of boundary
condition is also often used and can be a significant source of
solution error. This is the so-called open boundary condition. The
intent is to model a one-way door that couples the computational
region to an external reservoir so as to allow waves to propagate
from inside the computational region into the external reservoir
but not produce reflected signals back into the computational re-
gion. This type of boundary condition is often used in situations
where the region of interest is relatively small, and the simulation
of the entire flow regime is prohibitively expensive. The open
boundary condition involves the loss of information of the flow
state outside the domain and is often implemented as an extrapo-
lation from the interior to the exterior.

In contrast to the porous media example of the previous sub-
section, where stochasticity in terms of the unknown geology is an
inherent part of the system, error mechanisms in hydrodynamics
tend to be either numerical, or due to a lack of knowledge con-
cerning the initial, boundary conditions, or the constitutive models
~e.g., g! describing the materials in the flow.

Relatively little is known about error propagation in nonlinear
hyperbolic systems. A formal prototype theory can be developed
using the notion of the modified equation for a numerical method,
~see for example@30# chapter 12, section 14!. It can be shown that
for a given finite difference numerical method, an approximate

solution u satisfies an alternate partial differential equation to
higher order than the original system. More specificallyu satisfies
a system of the form

ut1¹•f~u!5Qu, (6)

whereQ is a differential operator that depends on the numerical
method. If the numerical method has order of accuracya, then
Q5O(Dxa). For example, for a scalar conservation law in one
space dimension and the first order Lax-Friedrichs method:

u~x,t1Dt !5
u~x1Dx,t !1u~x2Dx,t !

2

2
Dt

Dx

f ~x1Dx,t !2 f ~x2Dx,t !

2
,

and for fixedl5Dt/Dx,

Qu5
Dx

2l
]x~~12~l f 8~u!!2!ux!1O~Dx2!.

If we assume thatw is the exact solution to~5! then the error
e5w2u satisfies the system

ut1¹•f~u!5Qu
(7)

et1¹•~ f~u1e!2f~u!!52Qu.

The combined system forms a diffusive hyperbolic system with
characteristic speeds given by the eigenvalues of the flux deriva-
tives f8~u! and f8~w!.

Our ultimate goal is to develop a tractable differential system
whose solution characterizes the distributions ofu and e. Since
this goal is almost certainly unattainable, a more reasonable ap-
proach is to develop models that quantitatively approximate the
distribution properties. More specifically, we seek parametric
models for the error distribution and equations that govern the
evolution of distribution parameters.

Generally pointwise estimates are less useful than averaged
measures of error. Indeed convergence under mesh refinement for
systems of nonlinear conservation laws does not occur inL` but
rather locally in L1. Furthermore, averaging can improve the
regularity of the error distribution, increasing the validity of para-
metric models~such as Gaussian!. With this in mind we introduce
an averaging kernelK(x,t) and convolve~7! with this kernel.
Since convolution commutes with differentiation, we have

~K* u! t1¹•~K* f~u!!5K* Qu

~K* e! t1¹•~K* f~u1e!2K* f~u!!52K* Qu.

Fig. 2 Illustration of the window method to construct the posterior ensemble. Left: full ensemble of oil cut curves. Right:
Posterior ensemble defined as those geologies whose oil cut curves agree with the solution for geology j 0 within the
window error, for the past times.

Table 2 Confidence intervals for future oil production, cen-
tered about the predicted value and expressed as a percent of
predicted production. Mean values for the upper and lower
endpoints of the confidence intervals are given here for three
choices of c 0 , with the fine grid results and three levels of
scale up presented.

c0 1003100 20320 10310 535

0.8 @215,22# @217,32# @220,30# @223,31#
0.6 @214,20# @216,23# @219,26# @222,30#
0.4 @214,17# @215,19# @219,22# @223,26#
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Nonlinearity leads to the introduction of new unknowns,K* f(u),
K* Qu, andK* f(u1e). For each such quantity it is possible to
derive a system similar to~7! which when convolved withK gives
an additional set of equations for the given quantity. Ultimately
the process leads to an infinite set of equations and closure models
are needed to terminate this process. For example, closure would
seek to express the new unknownK* f(u) as a function of the
primitive averaged unknowns, such asK* u. This process leads to
a Reynolds stress, approximate models for which define thek, e
and other well studied turbulent models. From the perspective of
the present article, we regard the approximate solutionu and its
regularizationK* u as known, and so the above is an equation for
e. Closure is also required for thise equation, so that the flux in
the error equation can be expressed in terms of the primitive
smoothed error variableK* e and the knownu.

Given a model for the convolved error, we can form equations
for the statistical moments of the error distribution. Nonlinearity
again introduces higher order terms that require closure models to
truncate the moment equations. Closed equations typically involve
first or second order moments. Our contribution to this topic at the
present time is simply to note that the computational studies re-
ported here suggest that the distribution ofe is approximately
Gaussian, a fact that simplifies the search for closures.

Obviously the procedure outlined above is deficient in a num-
ber of ways. For example the operatorQ depends on the numeri-
cal method used to solve the system. For simple finite difference
methods like the Lax-Friedrichs or Lax-Wendroff methods@30# it
is possible to use symbolic mathematics software such as Math-
ematica or Maple to derive explicit formulas forQ. However, for
more complex methods like the Godunov type schemes~see for
example the book of Godlewski and Raviat@31#!, an explicit de-
termination ofQ may be difficult. An alternate approach is to
realize that system~7! is only semi-coupled, and thatu does not
depend one. To formulate the error equation we regard the ap-
proximate solutionu as known and use~6! as the definition of the
operatorQ. In this case the equation fore can be rewritten as:

et1¹•~F~u,e!e!52~ut1¹•f~u!!, (8)

where

F~u,e!5E
0

1 df

du
~u1ae!da.

We see that the degree to whichu does not satisfy the original
partial differential equation is a source term for the error, and that
the flux in the error equation is the average action of the solution
flux derivative on the error.

It is important to note that the above discussion is formal and its
translation into a viable numerical method for the computation of
solution error is an open question. Since one numerically solves
for an ensemble ofu’s to approximate the distribution of the so-
lution, and each such simulation is performed at finite accuracy,
typically either first or second order in the mesh size, the source

term in ~8! is O(Dxa), wherea is the order of accuracy of the
numerical method. Furthermore, the fluxF~u,e! differs from the
flux derivativedf/du(u) by this same order of magnitude. Thus if
one naively attempts to solve~8! to this same order of accuracy,
you are effectively solving the linearized system:

et1¹•S df

du
~u!eD50.

Since the initial conditions aree~x,0!50, this system has the
trivial solution e[0, i.e., we obtain no additional information
about the error. This is hardly surprising since solving fore is
equivalent to finding the exact solutionw to the original system.
Methods analogous to the up scaling described in the previous
section might eventually provide a means to solve system~8! to
sufficient accuracy for error estimation, but for the present we
solve for the ‘‘exact’’ solutionw using extreme mesh refinement
and regard the above formal procedure as a theoretical guide to-
wards developing quantifiable approximation models for error sta-
tistics rather than as an explicit method for computing solution
error.

Our approach is to use the computer as a computational labo-
ratory to gain insight into the error distribution. We compute an
ensemble of solutions using extremely fine grids, as a stand-in for
the ‘‘exact’’ solution. We then compute the error explicitly using
the differences between the fine grid and various coarse grid so-
lutions. This approach requires ensembles of fine grid solutions
which would be prohibitively expensive even for relatively simple
two and three dimensional problems.

As mentioned in Section 3, our approach to extending our so-
lution error methodology to complex problems is based on the
idea of transferability of error models. As will be seen below, our
simulations confirm the known facts that errors in shock physics
simulations arise primarily within the interacting wave zone, and
propagate largely unchanged along solution waves or characteris-

Fig. 3 Test problem. A piston-driven shock moves to the right.
The shock is incident on a contact discontinuity, where it pro-
duces a reflected and a transmitted shock. A reflecting wall is
placed at the downstream end of the shock tube. All param-
eters of the problem are fixed „deterministic … except the shock
velocity and the contact position. Each of these are allowed a
uniform variation by Á10 percent about a base value.

Table 3 Mean initial conditions for the shock tube simulations

Incident shock
Mach number r0 P0 v̄0 r1 P1 v1 r2 P2 v2

Step Up
1 32.70 3.974 1.33725 1 1 0.001 0 10 0.001 0
2 18.65 3.951 434.787 18 1 1 0 10 1 0
3 32.70 3.974 1.33725 1 1 0.001 0 100 0.001 0
4 18.65 3.951 434.787 18 1 1 0 100 1 0

Step Down
1 103.3 39.84 13.3523 1 10 0.001 0 1 0.001 0
2 58.82 39.82 4327.65 18 10 1 0 1 1 0
3 326.7 398.5 133.502 1 100 0.001 0 1 0.001 0
4 186.0 398.5 43256.3 18 100 1 0 1 1 0
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Fig. 4 A space time plot of the logarithm of density for one of the step up cases, selecting the base case from
the ensemble. The finest grid result „1000 cells … is displayed.

Fig. 5 A space time plot of the mean error in the logarithm of density, integrated over the en-
semble, step up case, finest coarse grid errors

Fig. 7 Left: mean errors as a function of time for the contact location for three levels of grid
refinement. Right: histogram of errors in the shock arrival time at the wall, for DxÄ0.05.
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Fig. 6 Histograms of space-time averaged errors. Upper left: the specific internal energy error field. The boxes from left to right
show regions centered about the reflected shock, deflected contact, and transmitted shock respectively. HISTOGRAMS: Upper
right—reflected shock region. Lower left—contact region, Lower right—transmitted shock region. The solid and dashed curves
show the kernel density estimate and the best Gaussian fit to the distributions respectively.

Fig. 8 Time dependence of the localized specific internal energy error for DxÄ0.05
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tics until further interactions occur. These features lead naturally
to the point of view that errors are generated in the solutions of
Riemann problems@32–34# embedded within the simulation.
Moreover, the statistics of the errors likewise arise from statistics
of errors in the Riemann problem solution, i.e. the stochastic map
from an ensemble of Riemann problems to an ensemble of Rie-
mann problem solutions. In this sense, the stochastic Riemann
problem is a fundamental tool for the analysis of errors in simple
shock physics problems.

Errors in complex shock physics problems can be addressed by
composition of errors in simple problems. This step is not taken
here, but we note the analogous role of the Riemann problem
solution as the fundamental building block for the construction of
deterministic numerical methods for the solution of compressible
flows @33,35,36#.

In this paper we present an analysis of solution errors in the
simple Riemann problem. We find a number of solution observ-
ables for which the solution error has an approximately Gaussian
form. The Bayesian modeling step discussed in Section 2 is not
taken in this example. The Riemann problem we study is defined
by the refraction of a shock wave through a material interface in a
semi-closed shock tube. Figure 3 illustrates the basic configura-
tion. The flow is one dimensional and the shock tube is semi-
infinite on the left with a rigid wall on the right. The shock tube is
filled with two gases, initially at rest, separated by a contact
discontinuity/material interface near the middle of the tube. A
shock driven by a piston of specified velocity is initiated to the left
of the interface. For simplicity we take both gases to be perfect
gases withg55/3.

A total of eight configurations were computed, divided into two
classes depending on whether the density of the unshocked gas
increases~steps up! or decreases~steps down! when moving from
left to right across the interface. These two families are further
divided into strong or extremely strong incident shock cases. Sto-
chastic variations in the simulations are added by giving the
shocked gas velocity and the contact position 10 percent uniform
distributions about their means. Table 3 shows the initial values
for the mean shocked gas velocity used in the simulations. The
units are arbitrary, but the interpretation of pressure as bars, and
density as 0.1 grams/liter corresponds to a 2.5 centimeter long test
section and velocities measured in centimeters per 1025 seconds.

Solutions were computed on grids of 25, 50, 100, and 1000
equal sized mesh zones in the spatial direction. Several gas dy-

namics simulation codes were used including CLAWPACK@37#,
CHAD @38,39#, andFronTier @40,41#. In addition the simulations
were performed using a combination of various solution options
such as the choice of Riemann solver for computing the numerical
flux, and tracking or capturing of the main waves in the flow. An
ensemble of 200 realizations were performed for each of the eight
basic setups using Latin hypercube sampling from the piston ve-
locity and contact position distributions. Spatial averaging is used
to map the fine grid solution onto the coarse grids and the error is
computed as the difference between the coarse grid value and
averaged fine grid solution.

Space limitations prohibit a discussion of all of the cases de-
scribed above, so we will simply report on the first step up case
and simulations using interface tracking inFronTier. Figure 4
shows space time plots of the logarithm of density for this case.
The refraction produces reflected and transmitted shock waves
and deflects the material interface toward the wall. Subsequently,
the transmitted shock is reflected by the right hand wall and then
collides with the deflected contact interface, where it is refracted
into a reflected rarefaction wave and a transmitted shock. The
simulation is halted shortly after this second refraction.

Figure 5 shows a space-time plot of the mean error in the loga-
rithm of the density for the first step up case. As expected, the
errors are concentrated near the wave fronts where the solution
gradients are large. It is interesting to note that the error regions
for the transmitted shock and deflected contact overlap. Since the
velocities of these two waves are relatively close, some samples
from the solution ensemble actually have faster contact speeds
than the transmitted shock speed from other samples.

Not all functionals of the solution have useful statistical prop-
erties. A consequence of the lack of pointwise (L`) convergence
of the numerical solutions is generally uninformative statistical
properties of pointwise error values. One of our main conclusions
is that a very modest amount of spacetime averaging yields useful
statistics and approximately Gaussian behavior for the errors. A
similar statement applies to wave position and arrival time
statistics.

A variety of diagnostic tools were used to study the selected
observables. Using the MATLAB@42# package an interactive pro-
gram was developed that allows the user to plot histograms of the
error distribution at selected points in space and time. These his-
tograms are produced by averaging the error over user defined
regions. The histogram plot includes a graph of the probability
density for the best Gaussian fit as well as a kernel probability
density estimate@43# obtained by convolving the discrete sample
distribution with a Gaussian kernel. Figure 6 shows histograms of
the error distribution in three selected regions centered about the
principal waves produced by the shock refraction. The upper left
hand figure shows the specific internal energy error field. From
left to right the three boxes indicate averaging regions about the
reflected shock, deflected contact, and transmitted shock. It is sig-
nificant to note that the discrete distribution is well fit by a Gauss-
ian. The Kolmogorov-Smirnov statistic, which is theL` distance
between the N~0,1! cumulative distribution and the normalized

Table 4 Specific internal energy errors localized within major waves. Statistics taken at time Ä2.1.

Error statistics Reflected shock Contact Transmitted shock

100 mean 0.00459241 0.0921823 20.0185576
standard deviation 0.0474799 0.12871 0.0285532

50 mean 20.00427657 0.119411 20.0202767
standard deviation 0.0492499 0.14564 0.0284457

25 mean 20.0193008 0.142649 20.0472504
standard deviation 0.0499294 0.136949 0.0318628

Solution statistics Reflected shock Contact Transmitted shock

1000 mean 0.640088 0.368899 0.0652551
standard deviation 0.119341 0.109465 0.0553988

Table 5 Mean wave widths at time Ä1.26.

Mesh Reflected shock Contact Transmitted shock Dx

Mean Wave Widths
25 0.096738 0.096825 0.14615 0.1
50 0.047094 0.072744 0.065469 0.05

100 0.022 0.0058225 0.034831 0.025

Ensemble Wave Width
1000 0.25125 0.29125 0.26625 0.0025
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empirical distribution of the sample, shows that the probability
differences between the Gaussian fit and kernel density estimate
are less than 10 percent. Although the deviation from Gaussian is
statistically significant, the relatively small value for the
Kolmogorov-Smirnov statistic is encouraging for the development
of approximately Gaussian models for the space-time averaged
solution error.

Solution errors can be roughly divided into two classes, posi-
tion errors,i.e., errors in wave velocity, and local errors about the
waves. As we have seen, significant error is generally associated
with the presence of a wave, or equivalently a large flow gradient.
Consider a fixed location in space and time. We divide the simu-
lation ensemble into two populations depending on whether or not
the given location lies within a wave profile at the given time.
Only those elements of the ensemble with wave profiles crossing
this location will generate significant errors in that location. We
employ a filter to separate these two populations, and analyze the
wave localized errors,i.e., the errors conditioned on being located
within a wave. The filter is constructed as follows. Given a dis-
crete time leveli, a spatial mesh indexj, and a given realization,
let sj

i 5(r j
i ,v j

i ,ej
i ) denote the state in this mesh block. For a speci-

fied spatial offsetm ~herem53!, we solve the Riemann problem
with datasj 2m

i andsj 1m
i . The solution to this Riemann problem

yields a set of wave strengthsWj
i (k), wherek521,0,1 corre-

sponding to the backward, contact, or forward wave family, re-
spectively. A variety of measures of wave strength are possible,
here we use the quantity:

Wj
i ~k!5

uDPu
Pa

1
uDru
2r̄

,

where D denotes the jump across the wave,Pa is the pressure
ahead of the wave, andr̄ is the average of the density on either
side of the wave. We then compute normalized wave strengths:

wj
i ~k!5

Wj
i ~k!

Wj
i ~21!1Wj

i ~0!1Wj
i ~1!

,

and say that the mesh block (i , j ) lies inside a wave of familyk if
wj

i (k) is greater than twice the maximum of the other two wave
strengths. The width of a wave is defined as the width of the
region of cells inside that wave, and the wave position is the
midpoint of the width interval. The filter is defined relative to the
coarse grid wave width region,i.e., a realization from the en-
semble is taken to be within the wave localized population at the
given point if this location lies inside the coarse grid wave profile.

When conditioned upon being in a specific wave we find that
error magnitude is nearly independent of the mesh spacing and
comparable to the jump discontinuity in the solution. The errors
are also nearly constant in time, except during periods of wave
interactions. Table 4 shows conditional error statistics for the re-
flected shock, contact, and transmitted shock from the step up 1
simulation using tracking.

Table 5 shows the mean widths for the principal waves at time
1.26. Since all three waves were tracked for the simulations
shown, their widths are all approximately equal toDx. Results for
captured waves~not shown! would show an approximately time
constant shock width of a few mesh blocks and a contact width
that increases in time.

In Fig. 7 we plot mean errors in the contact position~left! and
the shock arrival time at the wall~right!. The contact location and
the shock arrival time are both potentially observable quantities.
Such observations lead to a Bayesian posterior. We note that the
simulation errors in these observables are more sharply localized
than is the spread in the observable quantities associated with the
variation within the ensemble, see Table 5. The fact that the en-
semble mean width is larger than a single realization wave width
means that a posterior distribution constructed on the basis of
observation of wave position or arrival time is more informative
than the prior. As a result, wave position and arrival time obser-

vations will result in a refinement of the ensemble. The posterior
would be strictly more informative than the prior, leading to a
prediction of improved precision.

Figure 8 plots localized error statistics for specific internal en-
ergy. Except during periods of wave interactions, such as the ini-
tial shock-contact collision or when the wall reflection collides
with the contact, the statistics are generally consistent with a
Gaussian approximation, skewness relatively small, and kurtosis
approximately equal to three.

6 Conclusions
We have presented a general framework for uncertainty quan-

tification applicable to multiscale simulations. The Bayesian like-
lihood is determined by a probability model for the solution and
measurement errors. In the case of numerical simulation errors,
which are the focus of attention here, the probability model is
constructed on the basis of numerical experiments.

Two examples were discussed. The first concerns flow in po-
rous media. The multiscale aspects of the simulation are addressed
through up scaling. Predictions with confidence intervals are con-
structed. This construction is formally exact within the mathemati-
cal framework employed, and is verified by observing that the true
solution lies within the confidence interval approximately the ex-
pected number of times. Some details and approximations in this
study are documented in the cited literature, but omitted here in
the interests of brevity.

The second example concerns shock wave physics. We identify
a fundamental paradigm for the analysis of solution errors in
shock physics simulations: the stochastic Riemann problem. We
have analyzed several versions of the stochastic Riemann prob-
lem, one of which is reported here. We have observed approxi-
mate Gaussian behavior for errors in wave location and arrival
times and for local space time averages of pointwise errors. The
Gaussian property holds up to about 1.5s ~data not shown here!,
and the occurrence of larger errors has a definitely sub Gaussian
character. We also observed that solution errors were significantly
smaller than the ensemble variability for the problem and en-
semble considered. This fact will support a nontrivial posterior,
with resulting improved prediction, uncertainty quantification and
confidence intervals.
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Probabilistic Modeling of Flow
Over Rough Terrain
This paper presents a method for the propagation of uncertainty, modeled in a probabi-
listic framework, through a model-based simulation of rainflow on a rough terrain. The
adopted model involves a system of conservation equations with associated nonlinear
state equations. The topography, surface runoff coefficient, and precipitation data are all
modeled as spatially varying random processes. The Karhunen-Loeve expansion is used
to represent these processes in terms of a denumerable set of random variables. The
predicted state variables in the model are identified with their coordinates with respect to
the basis formed by the Polynomial Chaos random variables. A system of linear algebraic
deterministic equations are derived for estimating these coordinates.
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1 Introduction
Overland flow has significant consequences on the fate of en-

vironmental pollutants as well as the performance of water supply
and drainage infrastructure. The ability to accurately predict the
dynamics of surface runoff can thus be critical to the design of
reliable watershed management and environmental monitoring
systems. A major obstacle to achieving a desirable level of accu-
racy derives from variabilities and heterogeneities observed over a
wide spectrum of space and time scales.

Formalisms are needed that facilitate the adaptive quantification
of uncertainty and of its effect on mechanics-based predictions. In
addition to the more traditional quest for estimating the probabil-
ity of extreme events such as failure, attention must begin to focus
on estimating the confidence in model predictions and to design-
ing adaptive schemes for improving this confidence through
model refinement as well as data refinement. The possibility of
performing such an adaptation can play a significant role in shap-
ing performance-based design practice in science and engineering
by quantifying the information, and its associated worth, required
to achieve a target confidence in the predicted behavior of some
contemplated design. The concept of combined stochastic-
deterministic error and its estimation must be introduced that will
permit the development of optimal numerical optimization strate-
gies such as adaptive mesh refinement that are consistent with the
level of accuracy justified by available data. Concepts must be
developed that will guide the simultaneous refinement of mesh
and data. Recent work in the above direction has capitalized on
the possibility of developing common mathematical representa-
tions for probabilistic and deterministic approximations@1#. This
has permitted the development of a framework that allows models
of data to be integrated into models of computational mechanics.

A critical component of the above development consists of the
ability to propagate uncertainty through model-based simulations.
This problem can be conceptually described in terms of events in
the set generated by the parameters of the system under investi-
gation, being mapped into events in the set generated by the state
of the system. Variability in the set of basic events induces vari-
ability in the set of predictions, with the correspondence specified
through a deterministic mapping, which is typically derived from
first principles by relying on a mechanistic representation of the
phenomena involved. Probabilistic statements about the param-
eters of the model are associated, through this mapping, with
probabilistic statements about the predictions of the model.

Hydrological systems involve a multitude of spatial scales, ex-

hibiting heterogeneity and variability at both the local and re-
gional levels. This complexity not-withstanding, hydrologic
analysis and design have primarily been based on a significant
level of empiricism combined with data assimilation and param-
eter calibration techniques@2–6# This empirical approach is often
reflected in a significant scatter in the parameters of the associated
predictive models. This scatter is in turn propagated into a signifi-
cant level of uncertainty in the predictions from these models. An
assessment of the manner in which uncertainty is propagated
through predictive models of hydrological systems is essential for
the ability to rely on them for risk and reliable resources manage-
ment. A probabilistic context for representing the uncertainty is
commonly used, placing at the disposal of the analyst a significant
machinery associated with the underlying mathematical theory.

A number of techniques are available for treating this uncer-
tainty propagation problem. While the Monte Carlo sampling and
analysis procedure is essentially valid for a wide range of prob-
lems, it is computer-intensive. While this constraint is becoming
increasingly insignificant, another more intrinsic drawback of the
Monte Carlo approach is the fact that it does not yield a manage-
able representation of the predicted processes. These can be very
useful for propagating the information from one computational
module through a complex network of interacting modules, rep-
resenting the multi-physics nature of the physical world. An alter-
native to the Monte Carlo procedure, and one which results in an
approximate representation of the solution, is the perturbation ap-
proach@7,8#. This approach represents the prediction as a pertur-
bation around its nominal value, usually associated with the mean
deterministic problem. Perturbation techniques are known to pro-
vide reliable results only when the associated perturbations are
small. Variations on the perturbation techniques have also been
developed@9#. An alternative procedure, and one which capital-
izes on the mathematical foundation of probability theory will be
implemented in the present analysis. It consists of representing the
random variables and processes associated with the problem
in terms of convergent expansions in a manner similar to the
representations common to deterministic approximation theory
@10–14#.

In the next section, the mechanics of overland flow and its finite
element implementation are presented. Following that, numeri-
cally efficient representations of stochastic processes are re-
viewed. Next, the spectral stochastic finite element expansion is
applied to the model. Finally, a numerical example demonstrating
the methodology described in the paper is presented.

2 The Overland Flow Problem
Overland flow modeling is important for a number of applica-

tions ranging from environmental watershed pollution manage-
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ment to urban storm routing and control. The problem also pre-
sents a challenging system of hyperbolic partial differential
equations that will be used as a vehicle to demonstrate the gener-
ality of the probabilistic methodology presented in the paper. The
governing equations are presented in the first part of this section
along with some simplifications that are consistent with the physi-
cal phenomenon being described.

2.1 The Governing Equations. The partial differential
equations governing the surface runoff problem consist of the fol-
lowing continuity equation,

]H

]t
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]qx

]x
1

]qy

]y
5r , (1)

and the following equilibrium equations,
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whereqx , qy are flow rates per unit width,Sf x , Sf y are friction
slopes in thex andy directions, respectively,H is the free water
surface elevation,h is the flow depth,p is the pressure,g is the
gravitational acceleration, andr is the precipitation rate@2,4,15#.
The above equations are based on the assumptions that the fluid is
incompressible and the bottom slopes are relatively uniform.
Grouping together the acceleration terms in Eqs.~2! and ~3! and
dividing throughout bygh the equations of motion can be rewrit-
ten as,

mz2
1

gh

]p

]z
1S Sf z1

]H

]z D50, z5x,y. (4)

In this last equation,mz refers to the combined inertial terms. The
kinematic wave assumption is next invoked to simplify the above
equations. This assumption states that the inertial and pressure
effects are insignificant and that the weight of the fluid is only
balanced by the resistive forces of the bed friction@3,16#. Equa-
tion ~4! is thus approximated by,

Sf z1
]H

]z
50, z5x,y, (5)

Assuming steady flow conditions, the friction slopeSf z is esti-
mated from the Manning’s equation for uniform flow,

qz5
b

n
h5/3Sf z

1/2, (6)

wheren represents the Manning resistance coefficient andb is an
empirically computed normalization factor equal to 1 or 1.486
depending on whether SI units or English units are used, respec-
tively. Substituting the value ofSf z from Eq. ~5! into Eq. ~6!
yields,
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Substituting Eq.~8! into Eq. ~1! results in the governing equation
of the model,
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subjected to the following initial and boundary conditions,

H~ t,x!5T0 xPG1 , 2K
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5qb xPG2 , (11)

whereH is the free water elevation,V represents the spatial extent
of the problem,G1 andG2 represent, respectively, portions on the
boundary where essential and natural boundary conditions are ap-
plied, andx, y are the spatial coordinates. In what follows, the
topographic elevation of the surface, the Manning coefficient, and
the rain intensity will all be modeled as stochastic processes with
spatially varying random fluctuations.

The numerical approximation of the solution to Eq.~9! is de-
veloped in accordance with the finite element method, and equal-
ity in Eq. ~9! is construed as equality in the weak sense. Multi-
plying this equation by a test functionw and invoking the
divergence theorem results in,
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whereKz is given by:
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where T is the topographic elevation of the ground surface to
which the model is being applied. By choosing the test functions
to be polynomials with local support, and projecting the solution
on the finite dimensional span of these polynomials, the above
integration is reduced to integration over subdomains,V (e), in V.

3 Representation of Stochastic Processes
The integration of stochastic processes into the numerical solu-

tion of differential equations, requires their representation in effi-
cient and computationally tractable schemes. When viewed as
measurable functions, elements of a Hilbert space, random vari-
ables can be approximated by their projections on subspaces
spanned by appropriate basis sets. In this section, two such ap-
proximation procedures are reviewed, consisting, respectively, of
the Karhunen-Loeve and the Polynomial Chaos representations
@11,13,14#.

3.1 The Karhunen-Loeve Expansion. When second-order
statistical information in the form of a correlation function, is
available regarding a stochastic process, the Karhunen-Loeve ex-
pansion can be used to optimally discretize it in terms of a denu-
merable set of uncorrelated random variables. The expansion
hinges on the spectral decomposition of the covariance function
which is, by definition, symmetrical and positive definite. Accord-
ingly, and using the argumentu to label probabilistic quantities, a
stochastic process,T(x,u) is represented as,

T~x,u!5T̄~x!1(
i 51

n

Al ij i~u!f i~x! (14)

whereT̄(x) denotes the mean value of the process at a pointx in
its spatial domain of definition,j i(u) denotes a set of uncorrelated
random variables andl i and f i(x) denote the eigenvalues and
eigenfunctions of the covariance kernel obtained as the solution to
the following integral eigenvalue problem,
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E
V

RTT~x1 ,x2!f i~x2!dx25l if i~x1!. (15)

In this last equation,V denotes the spatial extent of the problem.
Note that in the case of a Gaussian process, the random variables
$j i% form a set of independent normal random variables.

As an example of using the Karhunen-Loeve expansion, Fig. 1
shows the first four normalized eigenvectors corresponding to the
covariance function given by the equation

RTT5sT
2e2ux12x2u/b, (16)

wheresT
2 denotes the variance of the process andb its correlation

length, andux12x2u denotes the euclidian distance between the
two spatial locationsx1 and x2 . This model of the correlation
function clearly implies an assumed isotropy in the stochastic pro-
cess being represented. In this figure, the horizontal axes corre-
spond to the spatial extent being investigated and the vertical axis
corresponds to the normalized magnitude of the eigenfunctions.
These eigenfunctions can be thought of as the deterministic scales
of fluctuation contributing to the randomness of the stochastic
process. Figure 2 shows the corresponding eigenvalues for two
different correlation lengths. The monotonic decay of the eigen-
values is the result of the positive-definiteness of the covariance
kernel. It should noted that the rate of decay is related to the
correlation length of the process in question.

3.2 The Polynomial Chaos Decomposition. As clearly in-
dicated in the previous section, information regarding a stochastic
process, in the form of its covariance structure, permits the cus-
tomization of a representation that is optimal for that process. In
many situations, however, such information is not known a-priori,
such as in the case of the predictions from a model-based simu-
lation. In such cases, a generic basis in the vector space of random
variables can be identified and used for their representation. The
Polynomial Chaos@11# decomposition provides the basic con-
struction of such a basis. In essence, the Polynomial Chaos de-
composition states that the set of random variables consisting of
multi-dimensional Hermite polynomials in Gaussian variables
forms a basis in the vector space of second-order random vari-
ables. These are the random variables with finite variance. The
Polynomial Chaos representation is mean-square convergent. A
random variableH(u) can therefore be represented as,

Fig. 2 The eigenvalues associated with the shapes of Fig. 1

Fig. 3 The spatial domain of the problem

Table 1 Four-dimensional polynomial chaos

ith Polynomial chaos Order of polynomial chaos C i ^C i
2&

0 0 1 1
1 1 j1 1
2 j2 1
3 j3 1
4 j4 1
5 2 j1

221 2
6 j1j2 1
7 j1j3 1
8 j1j4 1
9 j2

221 2
10 j2j3 1
11 j2j4 1
12 j3

221 2
13 j3j4 1
14 j4

221 2

Fig. 1 Three first four normalized eigenvectors „bÄ25…
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where Gn@j i 1
(u), . . . ,j i n

(u)# represents the multi-dimensional
Hermite polynomial of ordern in the variables (j i 1

, . . . ,j i n
). If a

one-to-one mapping to a set ordered indices$C i% is introduced,
the polynomial chaos expansion can be rewritten as,

H~u!5(
i 51

M

HiC i~u! (18)

where the representation has been truncated after theMth term.
Table 1 shows few terms of the four-dimensional polynomial
chaos@11#.

The coefficientsHi ’s in the expansion are evaluated by means
of a weighted residual scheme presented in the following section.
Once these coefficients have been computed, a complete probabi-
listic characterization of the processH is obtained.

4 Implementation of the Spectral Expansion to the
Model

In this problem,T, n andr are modeled as independent random
processes and will be treated according to the presentation in Sec-
tion ~3.1!. Accordingly, these quantities are expanded as follows,

T~x,u!5T̄~x!1(
i 51

Nt

j i~u!Ti~x!5(
i 50

Nt

j i~u!Ti~x!,

n~x,u!5n̄~x!1(
i 51

Nn

j i~u!ni~x!5(
i 50

Nn

j i~u!ni~x!, (19)

r ~x,u!5 r̄ ~x!1(
i 51

Nr

j i~u!r i~x!5(
i 50

Nr

j i~u!r i~x!,

whereTi , ni , and r i are the product of theith eigenfunction by
the square root of the correspondingith eigenvalue of the corre-
sponding process. Note thatj051 and the random variablesj i
appearing in each of the above equations are independent from
those appearing in the others due to the assumption of indepen-
dence between the processesT, n andr. Moreover, upon defining
N5Nt1Nn1Nr , the above expansions can be rewritten as,

T~x,u!5(
i 50

N

j i~u!Ti~x!, Ti50, i .Nt ,

n~x,u!5(
i 50

N

j i~u!ni~x!, ni50, Nn, i<Nt , iÞ1,

(20)

Fig. 4 The elevation profile of the surface

Fig. 5 Mean of H; COV Ä0.1 for all parameters

Fig. 6 Standard Deviation of H; COV Ä0.1 for all parameters
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r ~x,u!5(
i 50

N

j i~u!r i~x!, r i50, i<Nn , iÞ1.

which will be substituted in the model equations~9!–~11!. In or-
der to yield a computationally tractable implementation,Kz ,
which is nonlinear function of the defining random process is
represented in an expansion similar to those in Eq.~20!. This is
achieved by first expandingKz(H,T,n) in a Taylor series around
the mean values ofH, T, andn, resulting in

Kz'Kz~H̄,T̄,n̄!1
]Kz

]H U
~H̄,T̄,n̄!

~H2H̄ !1
]Kz

]T U
~H̄,T̄,n̄!

~T2T̄!

1
]Kz

]n U
~H̄,T̄,n̄!

~n2n̄!1O~H,T,n!. (21)

After evaluating the partial derivatives,]Kz /]H, ]Kz /]T, and
]Kz /]n, at the mean values of the variablesH, T andn, respec-
tively, these variables are replaced by their corresponding expan-
sions from Eqs.~18! and ~20!. After substitution and simplifica-
tion, Kz is rewritten as follows,

Kz5(
i 50

M

K̄ziC i . (22)

Clearly, accuracy of this approximation can be improved by either
including a higher order Taylor expansion in the approximation,
or by computing the coefficients in Eq.~22! directly through a

spectral projection on the Polynomial Chaos basis@17#. Substitut-
ing the above expansion along with the expansion ofr from Eq.
~20! into Eq. ~12! yields,

E
V
Fw

]H

]t
1

]w

]x S (
i 50

M

KxiC i D ]H

]x
1

]w

]y S (
i 50

M

KyiC i D ]H

]y

2(
i 50

N

r ij i Gdxdy5qb . (23)

Choosing the test functionsw to be polynomials with bounded
support and projecting the above equation on the span of these
polynomials, results in the following finite element projection of
Eq. ~23!,

CḢ1(
i 50

M

C iK iH2(
i 50

N

j iFi5q (24)

whereC, K i , andFi are obtained from assembling their element-
level counterparts given by,

C~e!5E
V~e!

NNTdA

K i
~e!5E

V~e!
¹NTK i¹NdA (25)

Fig. 7 Coefficients from the expansion of H; COV Ä0.1 for all parameters; Correlation length bÄ500
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Fi
~e!5E

V~e!
NNTr iA

and the right-hand side vectorq is obtained by assembling the
element-level vectors,

q~e!5E
G~e!

NdG. (26)

In the above equations,N denotes a vector whose components
consist of the polynomial basis functions used in projecting the
partial differential equation, andVe denotes the bounded subset of
V over which the integration is nonzero. As described in Section
~3.2!, the solution process being the free surface elevationH, is
represented in its polynomial chaos decomposition as follows,

H5(
j 51

m

C jH j . (27)

Substituting this expansion into Eq.~24! yields,

(
j 50

M

C jCḢ j1(
j 50

M

(
i 50

M

C iC jK iH j2(
i 50

N

j iFi5q, (28)

multiplying this last equation byCk and taking the ensemble av-
erages, the following deterministic system of equations is ob-
tained,

(
j 50

M

^C jCk&CḢ j1(
j 50

M

(
i 50

M

^C iC jCk&K iH j2(
i 50

N

^j iCk&Fi

5^Ckq&, k50, . . . ,M . (29)

The above system of ordinary differential equations is solved for
the polynomial chaos coefficients,H i of the solution process. An
implicit time-stepping scheme is used along with an Euler itera-
tive scheme to resolve the nonlinear dependencies of the problem.
The mean value of the solution is given byH0 and its correspond-
ing covariance matrix can be computed as,

RHH5(
i 51

M

H iH i
T^C i

2&. (30)

The variance of the solution at the nodal points can then be ob-
tained from the diagonal entries ofRHH .

5 Numerical Example
The method presented in this paper has been applied to a two-

dimensional inclined surface. A plan view of the domain is shown
in Fig. 3 while the profile, indicating the random fluctuations
around the mean is shown in Fig. 4. The average value of the
Manning coefficient is chosen to be 0.016, and the average slope
of the terrain is 1 percent. The domain is subjected to a constant
head boundary conditionH5T along the boundaryG1 applied

Fig. 8 Coefficients from the expansion of H; COV topography Ä0.1; COV Manning coefficient Ä0.4; COV rain Ä0.1; Correlation
length bÄ500
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with a probability equal to one and a flux boundary conditionqb
5c along the boundaryG2 . The domain is discretized into a
uniform mesh of 250 elements.

The model parametersT, n andr are all assumed to be random
processes and their corresponding covariance functions are as-
sumed to have similar form to the function in Eq.~16!. For the
purpose of this example problem, these three processes are repre-
sented as follows,

T5T̄1T1j11T2j210j310j45(
i 50

4

T ij i

n5n̄10j110j21n3j310j45(
i 50

4

nij i (31)

r5 r̄10j110j210j31r4j45(
i 50

4

r ij i

A single term representation of the Manning coefficient and the
precipitation reflects their assumed uniformity over the spatial do-
main. They are being modeled as random variables. Two terms
representation of the topography process reflects a more rapid
spatial fluctuations. The above representations result in a four-
dimensional polynomial chaos representation of the solution pro-
cess, H. A second order four-dimensional representation is
adopted for this representation resulting in,

H5H̄1H1j11H2j21H3j31H4j41H5~j1
221!1H6j1j2

1H7j1j31H8j1j41H9~j2
221!1H10j2j31H11j2j4

1H12~j3
221!1H13j3j41H14~j4

221!

5(
i 50

14

H iC i . (32)

The significance of the higher order terms and their impact on the
estimation of the solution process is investigated throughout this
section. The results shown in the figures to follow are all plotted at
equidistantly selected nodes along the longitudinal direction of the
domain in Fig. 3 unless indicated otherwise. Also, the three pro-
cesses making up the properties of the model are assumed to be
Gaussian. Non-Gaussian processes could be integrated into the
model, however they are not investigated in this particular study
@14#.

The evolution with time of the mean solution is shown in Fig.
5. The physical event associated with this prediction corresponds
to a rainfall of constant magnitude and finite duration equal to 10
minutes as shown in the storm hyetograph included in the figure.
The time evolution of the standard deviation is shown in Fig. 6.
These results correspond to a coefficient of variation equal to 0.1
in all three random processes.

Figure 7 shows the results associated with all three processes,
T, n, andr, having a coefficient of variation equal to 0.1. The plots

Fig. 9 Coefficients from the expansion of H; COV topography Ä0.1; COV Manning coefficient Ä0.1; COV rain Ä0.4; Correlation
length bÄ500
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are labeled according to the indices associated with the coeffi-
cients of Hi in Eq. 32. Comparing the plots of the first order
terms,H1 , H2 , H3 , andH4 , it is clear that the solution is more
sensitive to the topography (H1 ,H2) and the rain (H4) than to the
Manning roughness coefficient (H3). However, after the rain
ceases,H4 drops very quickly to zero and the magnitude ofH3
then becomes comparable to that ofH2 . This observation is con-
sistent with the kinematic wave assumption used in the model
which states that the gravity forces are only balanced by the re-
sistive forces of friction along the bed. Note also that in this case,
the second order terms, theH5 and higher, are at least an order of
magnitude smaller than their corresponding first order terms and
their effect can be neglected in the second moment evaluations.
Figure 8 shows the results associated with an increased COV of
the Manning coefficient to 0.4. In this case, the Manning coeffi-
cient’s contribution to the first order terms ofH becomes quite
significant in contrary to the observation from the previous results.
Figure 9 shows the results of a reversed scenario where the COV
of Manning’s coefficient has been fixed at 0.1 and the COV for the
rain has been increased to 0.4. The plot shows that the rain in this
case dominates the higher order terms of the solution. However, in
both Figs. 8 and 9, the contributions of the second order terms,H5
and higher, are still an order of magnitude smaller than their coun-
terparts in the first order terms of the solution making their con-
tribution insignificant for the evaluation of the higher order mo-
ments of the solution. In Fig. 10, the COV for both the Manning
coefficient and the rain have been fixed at 0.4. At this high value
of COV for these two parameters, the contribution becomes com-

parable to that of the topographic data parameters. Such predic-
tions are expected since at this high level of rain intensity and
friction, higher water head is expected and the effect of the sur-
face fluctuation becomes less significant. These predictions also
allow us to study in more detail the limitation of the problem
under severe natural conditions and whether or not the model can
be accurately applied to these events.

6 Conclusion
An integration of the Karhunen-Loeve and Polynomial Chaos

decompositions was implemented for the problem of surface flow
over a rough terrain. The decomposition of the stochastic pro-
cesses making up topographic data, Manning coefficient and rain
intensity was achieved using the Karhunen-Loeve expansion. The
probabilistic information regarding the predicted values of the wa-
ter head over the spatial extent of the domain is computed in terms
of the Polynomial Chaos decomposition of the head. This meth-
odology for uncertainty propagation lays a mathematically sound
foundation for the uncertainty quantification in the predictions
from physics-based models. A sound quantification of the uncer-
tainty is essential for reliable decision making. Moreover the for-
mat of the predicted solution, through its Chaos decomposition,
lends itself easily to further manipulations required for risk and
resource management.
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Stochastic Modeling of
Flow-Structure Interactions Using
Generalized Polynomial Chaos
We present a generalized polynomial chaos algorithm to model the input uncertainty and
its propagation in flow-structure interactions. The stochastic input is represented spec-
trally by employing orthogonal polynomial functionals from the Askey scheme as the trial
basis in the random space. A standard Galerkin projection is applied in the random
dimension to obtain the equations in the weak form. The resulting system of deterministic
equations is then solved with standard methods to obtain the solution for each random
mode. This approach is a generalization of the original polynomial chaos expansion,
which was first introduced by N. Wiener (1938) and employs the Hermite polynomials (a
subset of the Askey scheme) as the basis in random space. The algorithm is first applied
to second-order oscillators to demonstrate convergence, and subsequently is coupled to
incompressible Navier-Stokes equations. Error bars are obtained, similar to laboratory
experiments, for the pressure distribution on the surface of a cylinder subject to vortex-
induced vibrations.@DOI: 10.1115/1.1436089#

1 Introduction
In the last decade there has been substantial progress in simu-

lations of flow-structure interactions involving the full Navier-
Stokes equations, e.g.@1,2#. While such simulations are useful in
complementing experimental studies in the low Reynolds number
range, they are based onideal boundary conditions andprecisely
defined properties of the structure. In practice, such flow condi-
tions and properties can only be defined approximately. As an
example, the internal structural damping for the structure is typi-
cally taken as 1–3 percent of the critical damping since it cannot
be quantified by direct measurements. It is, therefore, of great
interest to formally model such uncertainty of stochastic inputs,
and to formulate algorithms that reflect accurately the propagation
of this uncertainty@3#.

To this end, the Monte Carlo approach can be employed but it is
computationally expensive and is only used as the last resort. The
sensitivity method is a more economical approach, based on the
moments of samples, but it is less robust and depends strongly on
the modeling assumptions@4#. One popular technique is the per-
turbation method where all the stochastic quantities are expanded
around their mean via Taylor series. This approach, however, is
limited to small perturbations and does not readily provide infor-
mation on high-order statistics of the response. The resulting sys-
tem of equations becomes extremely complicated beyond second-
order expansion. Another approach is based on expanding the
inverse of the stochastic operator in a Neumann series, but this too
is limited to small fluctuations, and even combinations with the
Monte Carlo method seem to result in computationally prohibitive
algorithms for complex systems@5#.

A more effective approach pioneered by Ghanem and Spanos
@6# in the context of finite elements for solid mechanics is based
on a spectral representation of the uncertainty. This allows high-
order representation, not just first-order as in most perturbation-
based methods, at high computational efficiency. It is based on the
original theory of Wiener~1938! on homogeneous chaos@7,8#.
This approach was employed in turbulence in the 1960s@9–11#.
However, it was realized that the chaos expansion converges

slowly for turbulent fields@12–14#, so the polynomial chaos ap-
proach did not receive much attention for a long time.

In more recent work@15,16# the polynomial chaos concept was
extended to represent many different distribution functions. This
generalized polynomial chaos approach, also referred as the
Askey-chaos, employs the orthogonal polynomials from the
Askey scheme@17# as the trial basis in the random space. The
original polynomial chaos can be considered as a subset of the
generalized polynomial chaos, as it employs Hermite polynomi-
als, a subset of the Askey scheme, as the trial basis. In@15#, the
framework of Askey-chaos was proposed and convergence prop-
erties of different random bases were examined. In@16# the
Askey-chaos was applied to model uncertainty in incompressible
Navier-Stokes equations. Various tests were conducted to demon-
strate the convergence of the chaos expansion in prototype flows.

For flow-structure interactions the interest on stochastic model-
ing so far has primarily been on the dynamics of lumped systems,
i.e., single- or two-degree-of-freedom second-order oscillators
@18,19#. The effect of the flow has been modeled via an interaction
~source! term as either white noise or as a Gaussian distribution if
the loading is caused by wind@20–23#. However, non-Gaussian
distribution behavior for the response has been documented with
the excess indexwell above or below zero~sharp or flat intermit-
tency! @18#. For example, even for a velocity field following a
Gaussian distribution, which is a reasonable assumption for mari-
time winds @21#, the corresponding force given by the Morison
formula

FV~ t !5
1
2 rDCdV~ t !uV~ t !u

does not follow a Gaussian distribution. This is because the above
formula defines a nonlinear~memoryless! transformation@20#,
and its first-density function is given by

f 1~v !5
1

2sVA2puvu
expF2

1

2 S sign~v !Auvu2mV

sV
D 2G ,

wheremV and sV are the mean value and standard deviation of
the the Gaussian distribution for the velocityV(t).

In this paper we apply the chaos expansions to coupled Navier-
Stokes/structure equations. We first demonstrate the convergence
of chaos expansions by solving a second-order ordinary differen-
tial equation. We then present the stochastic modeling of the fully
coupled flow-structure interaction problem for vortex-induced vi-
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brations in flow past a cylinder. The algorithms developed here are
general and can be applied to any type of distributions although
our applications are concentrated on Gaussian type random inputs.

In the next section we review the theory of the generalized
polynomial chaos. In Section 3 we apply it to second-order oscil-
lators, and in Section 4 we present its application to Navier-Stokes
equations. In Section 5 we present the computational results of
stochastic flow-structure interactions, and we conclude with a
brief discussion in Section 6.

2 The Generalized Polynomial Chaos
In this section we introduce the generalized polynomial chaos

expansion along with the Karhunen-Loeve~KL ! expansion, an-
other classical technique for representing random processes. The
KL expansion can be used in some cases to represent efficiently
the known stochastic fields, i.e., the stochastic inputs.

2.1 The Askey Scheme. The Askey scheme, which is rep-
resented as a tree structure in Fig. 1~following @24#!, classifies the
hypergeometric orthogonal polynomials and indicates the limit re-
lations between them. The ‘‘tree’’ starts with the Wilson polyno-
mials and the Racah polynomials on the top. The Wilson polyno-
mials are continuous while the Racah polynomials are discrete.
The lines connecting different polynomials denote the limit tran-
sition relationships between them; this implies that the polynomi-
als at the lower end of the lines can be obtained by taking the limit
of one of the parameters from their counterparts on the upper end.
For example, the limit relation between Jacobi polynomials
Pn

(a,b)(x) and Hermite polynomialsHn(x) is

lim
a→`

a21/2nPn
~a,a!S x

Aa
D 5

Hn~x!

2nn!
,

and between Meixner polynomialsMn(x;b,c) and Charlier poly-
nomialsCn(x;a) is

lim
b→`

MnS x;b,
a

a1b D5Cn~x;a!.

For a detailed account of definitions and properties of hypergeo-
metric polynomials, see@17#; for the limit relations of Askey
scheme, see@25# and @24#.

The orthogonal polynomials associated with the generalized
polynomial chaos, include: Hermite, Laguerre, Jacobi, Charlier,
Meixner, Krawtchouk, and Hahn polynomials.

2.2 The Generalized Polynomial Chaos: Askey-Chaos.
The original polynomial chaos@7,8# employs the Hermite polyno-
mials in the random space as the trial basis to expand the stochas-
tic processes. Cameron and Martin proved that such expansion
converges to any second-order processes in theL2 sense@26#. It
can be seen from Fig. 1 that Hermite polynomial is a subset of the
Askey scheme. The generalized polynomial chaos, or the Askey-
Chaos, was proposed in@15,16# and employs more polynomials
from the Askey scheme. Convergence to second-order stochastic
processes can be readily obtained as a generalization of Cameron-
Martin theorem@26#.

A general second-order random processX(u), viewed as a
function of uP~0,1!, i.e., the random event, can be represented in
the form

X~u!5a0I 01 (
i 151

`

ci 1
I 1~j i 1

~u!!1 (
i 151

`

(
i 251

i 1

ci 1i 2
I 2~j i 1

~u!,j i 2
~u!!

1 (
i 151

`

(
i 251

i 1

(
i 351

i 2

ci 1i 2i 3
I 3~j i 1

~u!,j i 2
~u!,j i 3

~u!!1 . . . ,

(1)

where I n(j i 1
, . . . ,j i n

) denotes the Askey-chaos of ordern in
terms of the multi-dimensional random variablesj
5(j i 1

, . . . ,j i n
). In the original polynomial chaos,$I n% are Her-

mite polynomials andj are Gaussianrandom variables. In the
Askey-chaos expansion, the polynomialsI n are not restricted to
Hermite polynomials andj not Gaussian variables. The corre-
sponding type of polynomials and their associated random vari-
ables are listed in Table 1.

For notational convenience, we rewrite Eq.~1! as

X~u!5(
j 50

`

ĉ jF j~j!, (2)

where there is a one-to-one correspondence between the functions
I n(j i 1

, . . . ,j i n
) andF j (j), and their coefficientsĉ j andci 1 , . . . ,i r

.
Since each type of polynomials from the Askey scheme form a
complete basis in the Hilbert space determined by their corre-
sponding support, we can expect each type of Askey-chaos to
converge to anyL2 functional in theL2 sense in the corresponding
Hilbert functional space as a generalized result of Cameron-
Martin theorem~@26# and @27#!. The orthogonality relation of the
generalized polynomial chaos takes the form

^F iF j&5^F i
2&d i j , (3)

whered i j is the Kronecker delta and̂•,•& denotes the ensemble
average which is the inner product in the Hilbert space of the
random variablesj

^ f ~j!g~j!&5E f ~j!g~j!W~j!dj, (4)

orFig. 1 The Askey scheme of orthogonal polynomials

Table 1 Correspondence of the type polynomials and random
variables for different Askey-chaos „NÐ0 is a finite integer ….

Random variables
j

Orthogonal polynomials
$I n% Support

Continuous Gaussian Hermite ~2`,`!
Gamma Laguerre @0,̀ !

Beta Jacobi @a,b#
Uniform Legendre @a,b#

Discrete Poisson Charlier $0,1,2, . . . %
Binomial Krawtchouk $0,1, . . . ,N%

Negative Binomial Meixner $0,1,2, . . . %
Hypergeometric Hahn $0,1, . . . ,N%
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^ f ~j!g~j!&5(
j

f ~j!g~j!W~j! (5)

in the discrete case. HereW(j) is the weighting function corre-
sponding to the Askey polynomials chaos basis$F i%. Each type
of orthogonal polynomials from the Askey-chaos has weighting
functions of the same form as the probability function of its asso-
ciated random variablesj, as shown in Table 1.

For example, as a subset of the Askey-chaos, the original poly-
nomial chaos, also will be termed the Hermite-chaos, employs the
Hermite polynomials defined as

I n~j i 1
, . . . ,j i n

!5e1/2jTj~21!n
]n

]j i 1
. . . ]j i n

e21/2jTj, (6)

where j5(j i 1
, . . . ,j i n

) are multi-dimensional independent
Gaussian random variables with zero mean and unit variance. The
weight function in the orthogonality relation~4! is

W~j!5
1

A~2p!n
e21/2jTj, (7)

wheren is the dimension ofj. It can seen that this is the same as
the probability density function~PDF! of the n-dimensional
Gaussian random variables. For example, the one-dimensional
Hermite polynomials are:

C051, C15j, C25j221, C35j323j, . . . (8)

2.3 The Karhunen-Loeve Expansion. The Karhunen-
Loeve ~KL ! expansion@28# is another way of representing a ran-
dom process. It is a spectral expansion based on the decomposi-
tion of the covariance function of the process. Let us denote the
process byh(x,u) and its covariance function byRhh(x,y), where
x andy are the spatial or temporal coordinates. By definition, the
covariance function is real, symmetric, and positive definite. All
eigenfunctions are mutually orthogonal and form a complete set
spanning the function space to whichh(x,u) belongs. The KL
expansion then takes the following form:

h~x,u!5h̄~x!1(
i 51

`

Al if i~x!j i~u!, (9)

where h̄(x) denotes the mean of the random process, andj i(u)
forms a set of independent random variables. Also,f i(x) andl i
are the eigenfunctions and eigenvalues of the covariance function,
respectively, i.e.,

E Rhh~x,y!f i~y!dy5l if i~x!. (10)

Among many possible decompositions of a random process, the
KL expansion is optimal in the sense that the mean-square error of
the finite term representation of the process is minimized. Its use,
however, is limited as the covariance function of the solution pro-
cess is often not knowna priori. Nevertheless, the KL expansion
provides an effective means of representing the input random pro-
cesses when the covariance structure is known.

3 Second-order Random Oscillator

3.1 Governing Equations. We consider the second-order
linear ordinary differential equation~ODE! system with both ex-
ternal and parametric random excitations.

dx

dt
5y,

dy

dt
1c~u!y1k~u!x5 f ~ t,u!, (11)

where the parameters and forcing are functions of random eventu.
We assume

c5 c̄1scj1 , k5 k̄1skj2 ,

f ~ t !5F cos~vt !5~ f̄ 1s fj3!cos~vt !, (12)

where (c̄,sc), (k̄,sk) and (f̄ ,s f) are the mean and standard de-
viation of c, k andF, respectively. The random variablesj1 , j2 ,
andj3 are assumed to be independent standardGaussianrandom
variables.

3.2 Chaos Expansions. By applying the generalized poly-
nomial chaos expansion, we expand the solutions as

x~ t !5(
i 50

P

xi~ t !F i~j!, y~ t !5(
i 50

P

yi~ t !F i~j!, (13)

where we have replaced the infinite summation ofj in infinite
dimensions in Eq.~2! by a truncated finite-term summation ofj in
finite dimensional space. In this case,j5(j1 ,j2 ,j3) is a three-
dimensionalGaussianrandom vector according to the random
inputs. This results in a three-dimensionalHermite-chaos expan-
sion. The most important aspect of the above expansion is that the
random processes have been decomposed into a set of determin-
istic functions in the spatial-temporal variables multiplied by the
random basis polynomials which are independent of these vari-
ables:

(
k50

P
dxk

dt
Fk5(

k50

P

ykFk ,

(
k50

P
dyk

dt
Fk1(

i 50

P

(
j 50

P

ciyjF iF j

1(
i 50

P

(
j 50

P

kixjF iF j5(
k50

P

f k~ t !Fk , (14)

whereci , ki , and f i are the chaos expansion, similar to Eq.~13!,
of c, k, and f, respectively. A Galerkin projection of the above
equation onto each polynomial basis$F i% is then conducted in
order to ensure the error is orthogonal to the functional space
spanned by the finite-dimensional basis$F i%. By projecting with
Fk for eachk5$0, . . . ,P% and employing the orthogonality rela-
tion ~3!, we obtain for eachk50, . . . ,P,

dxk

dt
5yk ,

dyk

dt
1

1

^Fk
2& (i 50

P

(
j 50

P

~ciyj1kixj !ei jk5 f k~ t !, (15)

whereei jk5^F iF jFk&. Together witĥ F i
2&, the coefficientsei jk

can be evaluated analytically from the definition ofF i . Equation
~15! is a set of (P11) coupled ODEs. The total number of equa-
tion is determined by the dimensionality of the chaos expansion
~n!, in this case (n53), and the highest order~p! of the polyno-
mials $F% @6#:

P5(
s51

p
1

s! )r 50

s21

~n1r !. (16)

3.3 Numerical Results. The above set of equations can be
integrated by any conventional method, e.g., Runge-Kutta. Here
we employ the Newmark scheme which is second-order accurate
in time. We define two error measures for the mean and variance
of the solution
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«mean~T!5Ux̄~T!2 x̄exact~T!

x̄exact~T!
U, «var~T!5Us2~T!2sexact

2 ~T!

sexact
2 ~T!

U,
(17)

where x̄(t)5E@x(t)# is the mean value ofx(t) and s2(t)
5E@(x(t)2 x̄(t))2# is the variance. Integration is performed up to
T5100 ~nondimensional time units! when the solution reaches an
asymptotic periodic state. The computation parameters are set
as: (c̄,sc)5(0.1,0.01), (k̄,sk)5(1.05,0.105) and (f̄ ,s f)
5(0.1,0.01), with frequencyv51.05 and zero initial conditions.
Here the standard deviations are set to be reasonably small to
ensure the well-posedness of Eq.~11! in some stochastic sense.
The exact stochastic solution is obtained from the exact determin-
istic solution and the known probability distribution functions of
the random inputs. The exact mean and variance of the solution
are obtained by integrating the solution over the support defined
by the Gaussian distribution. These integrations are performed
numerically using a Gauss-Hermite quadrature; a quadrature with
30 points provides high accuracy.

In Fig. 2 ~left! we plot the development of the solution of the
mean~zero mode! as well as the first three random modes, i.e., the
modes contribution to a Gaussian distribution in this case. On the
right figure we plot the error in themeanand thevariance. We see
from the semi-log plot that as the order of Hermite-chaos expan-
sion increases, the error of mean and variance decreases exponen-
tially fast. This is due to the fact that the chaos expansion is a
spectral expansion in the random space. Similar exponential con-
vergence rate has been demonstrated for first-order ODE for vari-
ous Askey-chaos basis in@15#. It is worth noting that if the appro-
priate chaos basis, in this case the Hermite-chaos corresponding to
the Gaussian inputs, is not chosen, the exponential convergence
may not be maintained@15#.

4 Incompressible Navier-Stokes Equations
In this section we present the solution procedure for solving the

stochastic Navier-Stokes equations by generalized polynomial
chaos expansion. The randomness in the solution can be intro-
duced through boundary conditions, initial conditions, forcing,
etc.

4.1 Governing Equations. We employ the incompressible
Navier-Stokes equations

¹•u50, (18)

]u

]t
1~u•¹!u52¹P1Re21 ¹2u, (19)

whereP is the pressure and Re the Reynolds number. All flow
quantities, i.e., velocity and pressure are considered as stochastic
processes. A random dimension, denoted by the parameteru, is
introduced in addition to the spatial-temporal dimensions (x,t),
thus

u5u~x,t;u!; P5P~x,t;u!. (20)

4.2 Chaos Expansion. We apply the generalized polyno-
mial chaos expansion, or the Askey-chaos~2!, to these quantities
and obtain

u~x,t;u!5(
i 50

P

ui~x,t !F i~j~u!!;

P~x,t;u!5(
i 50

P

P i~x,t !F i~j~u!!. (21)

Substituting~21! into Navier-Stokes equations we obtain the fol-
lowing equations

(
i 50

P

¹•ui~x,t !F i50, (22)

(
i 50

P
]ui~x,t !

]t
F i1(

i 50

P

(
j 50

P

@~ui•¹!uj !]F iF j

52(
i 50

P

¹P i~x,t !F i1Re21 (
i 50

P

¹2uiF i . (23)

We then project the above equations onto the random space
spanned by the basis polynomials$F i% by taking the inner prod-
uct of above equation with each basis. By taking^•,Fk& and
utilizing the orthogonality condition~3!, we obtain the following
set of equations:

For eachk50, . . .P,

¹•uk50, (24)

]uk

]t
1

1

^Fk
2& (i 50

P

(
j 50

P

ei jk@~ui•¹!uj !] 52¹Pk1Re21 ¹2uk ,

(25)

whereei jk5^F iF jFk&. The set of equations consists of (P11)
system of deterministic ‘Navier-Stokes-like’ equations for each
random mode coupled through the convective terms.

4.3 Numerical Discretization. Discretization in space and
time can be carried out by any conventional method. Here we

Fig. 2 Solution with Gaussian random inputs by Hermite-chaos. Left: solution of the dominant random
modes, right: error convergence of the mean and the variance.
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employ the spectral/hp element method in space in order to have
better control of the numerical error@29#. The high-order splitting
scheme together with properly defined consistent pressure bound-
ary conditions are employed in time@30#. In particular, the spatial
discretization is based on Jacobi polynomials on triangles or quad-
rilaterals in two-dimensions, and tetrahedra, hexahedra or prisms
in three-dimensions.

4.4 Post-Processing. After solving thedeterministicexpan-
sion coefficients, we obtain the analytical form~in random space!
of the solution process. It is possible to perform a number of
analytical operations on the stochastic solution in order to carry
out other analysis such as the sensitivity analysis. Themeanso-
lution is contained in the expansion term with index of zero. The
second-moment, i.e., thecovariance functionis given by

Ruu~x1 ,t1 ;x2 ,t2!5^u~x1 ,t1!2u~x1 ,t1!,u~x2 ,t2!2u~x2 ,t2!&

5(
i 51

P

@ui~x1 ,t1!ui~x2 ,t2!^F i
2&#. (26)

Note that the summation starts from index (i 51) instead of 0 to
exclude the mean, and that the orthogonality of the Askey-chaos
basis$F i% has been used in deriving the above equation. Similar
expressions can be obtained for the pressure field.

Implementation details and verifications of the stochastic
Navier-Stokes solver can be found in@16#.

5 Flow-Structure Interactions
In this section we consider two-dimensional vortex-induced vi-

brations of an elastically-mounted circular cylinder subject to sto-
chastic inputs. The computational domain is shown in Fig. 3
where the circular cylinder with unit diameter (D51) is located
at the origin. The size of the domain is@215,25#3@29,9#. There
are 412 triangular elements and sixth-order Jacobi polynomials in
each element are found to be sufficient to resolve the flow in the
physical space in the range of Re,200. The Reynolds number is
defined as Re5U`D/n, whereU` is the inflow andn the kine-
matic viscosity.

5.1 Structure Problem. In this paper we will focus on the
cross-flow displacement of the cylinder, i.e., the cylinder is free to
move in they-direction but not in thex-direction. For a linear
structure, the governing equation is the second-order ordinary dif-
ferential equation

r
d2h

dt2
1b

dh

dt
1Kh5F~ t !, (27)

where r, b and K are the mass, damping and stiffness of the
cylinder, and the natural frequency of this system isvn5AK/r.
For clarity, we rewrite Eq.~27! in the same form as in~11!:

d2h

dt2
1c

dh

dt
1kh5 f ~ t !, (28)

wherec5b/r, k5K/r and f (t)5F(t)/r. The external forcef (t)
comes from the flow and we incorporate uncertain components in
c andk in the following simulations.

5.2 Transformed Navier-Stokes Equations. To couple the
flow with moving boundaries of the structure, one can employ
Arbitrary Lagrangian-Eulerian~ALE! method. Although general,
this approach is computationally expensive so we consider a
boundary-fitted coordinate approach for the specific problem we
solve here. By attaching the coordinate system to the cylinder, the
cylinder appears stationary in time~with respect to that coordinate
system!. Following @31#, we define two coordinate systems:
(x8,y8,t8) and (x,y,t), where (x8,y8,t8) is the original coordinate
system and (x,y,t) is the transformed one. The mapping between
the two systems is

x5x8,

y5y82h~ t8!,

t5t8.

In two-dimensional flow, this simply reduces to thev velocities
being shifted by the reference frame velocity,

u5u8,

v5v82
dh

dt8
,

p5p8.

It is worth noting that this mapping is stochastic when the cylinder
motion is random and needs to be represented by the chaos ex-
pansion as well.

The incompressible Navier-Stokes equations are transformed
into:

¹•u50, (29)

]u

]t
1~u•¹!u52¹P1Re21 ¹2u1A~ t !, (30)

whereAx50 andAy52d2h/dt2.
In the following simulations, we assume the dampingc and

stiffnessk in Eq. ~28! to be random variables. Then the structure
response becomes a random process, so does the psuedoforcing
A~t! in the transformed Navier-Stokes equations. This, in turn,
makes the flow field random, which exerts a stochastic dynamic
forcing f (t) back onto the cylinder. The entire coupled system

Fig. 3 Schematic of the domain for flow past an elastically mounted circular
cylinder
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then becomes stochastic. The same expansion procedure as in
Section 4 is employed, with the psuedo-forcingA(t) and the map-
ping expanded appropriately, too.

5.3 Numerical Results. We assume that the Reynolds num-
ber is fixed at Re5100, and we also assume that the input param-
eters of the cylinder are uncertain, i.e.,c5 c̄1scj1 and k5 k̄
1skj2 , wherej1 andj2 are two independent standard Gaussian
random variables with zero mean and unit variance. The mean and
standard deviation ofc and k are set as (c̄,sc)5(0.1,0.01) and
( k̄,sk)5(1.0,0.2), respectively. We choosek̄51.0 such that the
natural frequency of the oscillator is close to the frequency of the
vortex shedding of the fixed cylinder at Re5100, and the cylinder
response is maximized. According to the uncertain inputs, we em-
ploy the two-dimensional (n52) Hermite-chaos, the correspond-
ing Askey-chaos for Gaussian inputs as shown in Table 1, as the
trial basis in random space. A third-order Hermite-chaos (p53) is
employed which results in a 10-term chaos expansion~P59 ac-
cording to Eq.~16!!. Therefore, the computational cost~serial! of
this run is about 10 times more than the cost of the corresponding
deterministic simulation. In particular, the cost of the structure
solver, even if it is nonlinear, is negligible compared to the flow
solver. The fluid forces on the cylinder are computed using

F5 R @2nP1Re21~¹u1¹uT!•n#ds,

wheren is the outward normal on the cylinder andds is the arc
length on the surface of the cylinder. The corresponding force
coefficients are computed by nondimensionalizing the forces with
the fluid densityr f , free-stream velocityU` and the cylinder
diameterD:

CD5
FD

1
2r fDU`

2
, CL5

FL

1
2 r fDU`

2
.

In Fig. 4 we plot the time evolution of the first few coefficients
of the dominant random modes of the nondimensional cross-flow
displacement (y/D) and the lift coefficient (CL), together with
the deterministic solution. We see that due to the effective diffu-
sion of the randomness, the mean response ofy/D has smaller
amplitude compared to its deterministic counterpart. The first and
second random modes, as shown in the figure, correspond to the
Gaussian part of the response.

In Fig. 5 we show the time evolution of the variances of the
cross-flow displacementy/D and lift coefficientCL . We see that
the variance peaks at the early transition stage before it settles to
the asymptotic periodic state. The peak value is 2–3 times larger
than that of the final periodic state. This suggests that the system
responses to the uncertain inputs are important in the early tran-
sition stage and also non-negligible in the final asymptotic state.

Figure 6 shows the instantaneous contours of the rms of the
vorticity field at t5600 ~nondimensional time units! correspond-
ing to more than 100 shedding cycles. The center location of the
cylinder is not at the origin as shown in the figure. It is interesting
that the regions with the largest uncertainty are regions of the
most importance from the fluid dynamical point of view, i.e., the
shear layer and near-wake but not the far-field.

In Fig. 7 the instantaneous pressure distribution along the sur-
face of the cylinder att5600 is shown. Hereu is the angle of the
location on the surface withu50 the rear stagnation point and
u5p the front stagnation point. The error-bar curve is centered at
the mean of the stochastic pressure solution and the length of the

Fig. 4 Dominant random modes of the cylinder motion. Upper: modes of the cross-flow displacement y ÕD;
lower: modes of the lift coefficient CL .
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bars indicates two standard deviations around the mean~i.e., one
above and one below the mean!. For comparison, the determinis-
tic pressure distribution at the same instance is shown as well. The
difference compared with stochastic mean solution is noticeable;
for the chosen magnitudes of variance of the stochastic inputs, the
deterministic signal remains inside the ‘‘envelope’’ of the stochas-
tic solution at this instance.

6 Summary and Discussion
We have developed a stochastic spectral method to model un-

certainty and its propagation in flow simulations. More specifi-

cally, we have generalized the original polynomial chaos idea of
Wiener and proposed a broader framework, i.e., the Askey-chaos,
which includes Wiener’s Hermite-chaos as a subset. Numerical
examples were presented for relatively simple systems, such as a
second-order ordinary differential equation and a more compli-
cated flow-structure interaction problem at relatively low Rey-
nolds number. We do not yet have experience with such stochastic
simulations at high Reynolds number.

The method we developed here is general and can also be ap-
plied to model uncertainty in the boundary domain, e.g., a rough

Fig. 6 Regions of uncertainty: instantaneous rms of vorticity

Fig. 5 Variance of the cylinder motion. Upper: variance of the cross-flow displacement y ÕD, lower, variance of
the lift coefficient CL .
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surface, in the transport coefficients, e.g., the eddy viscosity in
large eddy simulations, and other problems. It provides a formal
procedure for constructing acomposite error barfor CFD appli-
cations, as proposed in@32#, that includes, in addition to the dis-
cretization errors, contributions due to imprecise physical inputs
to the simulations.

As regards efficiency, a single Askey-chaos based simulation,
albeit computationally more expensive than the corresponding de-
terministic solver, is able to generate the solution statistics in a
single run. In contrast, for the Monte Carlo simulation, tens of
thousands of realizations are required for converged statistics,
which is prohibitively expensive for most CFD problems in prac-
tice. Further work will include simulations with different distribu-
tion functions and their corresponding Askey-chaos expansion as
presented here.
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Approach for Input Uncertainty
Propagation and Robust Design
in CFD Using Sensitivity
Derivatives1

An implementation of the approximate statistical moment method for uncertainty propa-
gation and robust optimization for quasi 1-D Euler CFD code is presented. Given uncer-
tainties in statistically independent, random, normally distributed input variables, first-
and second-order statistical moment procedures are performed to approximate the
uncertainty in the CFD output. Efficient calculation of both first- and second-order sen-
sitivity derivatives is required. In order to assess the validity of the approximations, these
moments are compared with statistical moments generated through Monte Carlo simula-
tions. The uncertainties in the CFD input variables are also incorporated into a robust
optimization procedure. For this optimization, statistical moments involving first-order
sensitivity derivatives appear in the objective function and system constraints. Second-
order sensitivity derivatives are used in a gradient-based search to successfully execute a
robust optimization. The approximate methods used throughout the analyses are found to
be valid when considering robustness about input parameter mean values.
@DOI: 10.1115/1.1446068#

1 Introduction
Gradient-based optimization of complex aerodynamic configu-

rations and their components, utilizing high-fidelity Computa-
tional Fluid Dynamics~CFD! tools, continues as a very active
area of research~see, for example,@1–3#!. In most of the CFD-
based aerodynamic optimization and design studies to date, the
input data and parameters have been assumed precisely known;
we refer to this as deterministic or conventional optimization.
When statistical uncertainties exist in the input data or parameters,
however, these uncertainties affect the design and therefore must
be accounted for in the optimization. Such optimizations under
uncertainty have been studied and used in structural design disci-
plines~see, for example@4–8#!; we refer to these as nondetermin-
istic or robust design optimization procedures.

Derivatives of code output with respect to code input and pa-
rameters are called sensitivity derivatives and they contain infor-
mation which can be used to direct an optimization search. In a
fluid flow optimization problem, the objective and constraint gra-
dients are functions of the CFD sensitivity derivatives. Such de-
rivatives can also be used to accurately approximate the CFD
output in a small region, such as that near the mean value of a
random variable. In@9#, it is shown that a statistical First Order
Second Moment~FOSM! method and automatic differentiation
can be used to efficiently propagate input uncertainties through
finite element analyses to approximate output uncertainty. This
uncertainty propagation method is demonstrated herein for CFD
code.

An integrated strategy for mitigating the effect of uncertainty in
simulation-based design is presented in@10#; this strategy consists
of uncertainty quantification, uncertainty propagation, and robust
design tasks or modules. Two approaches are discussed there for
propagating uncertainty through sequential analysis codes: an ex-
treme condition approach and a statistical approach. Both ap-

proaches can be efficiently implemented using sensitivity deriva-
tives. For CFD code, the former approach is demonstrated in@11#,
whereas the latter approach is demonstrated herein using second
moment approximations. These uncertainty propagation methods
have been developed and are being investigated as an alternative
to propagation by direct Monte Carlo simulation for potentially
expensive CFD analyses.

The present paper shows how the approximate statistical second
moment methods, FOSM and the Second Order Second Moment
~SOSM! counterpart, can be used in conjunction with sensitivity
derivatives to propagate input data uncertainties through CFD
code to estimate output uncertainties. The FOSM approximation is
then used to perform sample robust optimizations. For demonstra-
tion purposes, the method is illustrated on a simple design ex-
ample which contains the important elements of more complex
design problems. We assume that the input uncertainty quantifica-
tion is given by independent normally-distributed random vari-
ables, and we demonstrate the strategy of@10# as applied to a CFD
code module. This strategy is also applicable to correlated and/or
non-normally distributed variables; however, the analysis and re-
sulting equations become much more complex.

The gradient-based robust optimization demonstrated herein re-
quires second-order sensitivity derivatives from the CFD code. In
@12#, we present, discuss, and demonstrate the efficient calculation
of second-order derivatives from CFD code using a method pro-
posed, but not demonstrated, in@13#. This method, used herein,
incorporates first-order derivatives obtained by both forward-
mode and reverse-mode differentiation in a noniterative scheme to
obtain second-order sensitivity derivatives.

To date, the only other demonstration or application of
gradient-based, robust optimization involving advanced or high-
fidelity ~nonlinear! CFD code that we have found was just re-
cently presented in@14–15#. The analytical statistical approxima-
tion of their objective function for robust optimization also
required second-order sensitivity derivatives. However, these
studies employed a direct numerical random sampling technique
to compute expected values at each optimization step in order to
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avoid the second derivatives. An example of linear aerodynamics
involved in multidisciplinary performance optimization subject to
uncertainty is found in@16#.

Two other aspects need to be pointed out in regard to the robust
optimization demonstrations for CFD code modules presented
herein and also in@14,15#. First, the sources of uncertainty con-
sidered were only those due to code input parameters involving
geometry and/or flow conditions; i.e., due to sources external to
the CFD code simulation. Other computational simulation uncer-
tainties, such as those due to physical, mathematical, and numeri-
cal modeling approximations@17,18#—essentially internal model
error and uncertainty sources, were not considered. That is, the
discrete CFD code analysis results were taken to be deterministi-
cally ‘‘certain’’ herein. Ultimately, all of these modeling sources
of error and uncertainty must be assessed and considered. Sensi-
tivity derivatives can also aid in this assessment@19# since the
adequacy of an internal model’s~i.e., algorithm, turbulence, etc.!
prediction capability generally depends, to some extent, on the
modeling parameter values specified as input.

Second, as discussed in@15#, uncertainty classification with re-
spect to an event’s impact~from performance loss to catastrophic!
and frequency~from everyday fluctuation to extremely rare! sets
the problem formulation and solution procedure. Structural reli-
ability techniques typically deal with risk assessment of infrequent
but catastrophic failure modes, identifying the most probable
point of failure and its safety index. Here, we are addressing the
assessment of everyday operational fluctuations on performance
loss, not catastrophe. Consequently, we are most concerned with
aero performance behavior due to probable fluctuations, i.e., near
the mean of probability density functions~pdf!. Structural reliabil-
ity assessment is most concerned with improbable catastrophic
events, i.e., probability in the tails of the pdf. Simultaneous con-
sideration of both types of uncertainty is discussed in@16#.

2 Integrated Statistical Approach
In @10# an integrated methodology for dealing with uncertainty

in a simulation-based design is proposed and demonstrated for a
linkage mechanism design. The integrated strategy of@10# for
mitigating the effect of uncertainty includes~a! uncertainty quan-
tification, ~b! uncertainty propagation, and~c! robust design. The
present study utilizes the strategy proposed in@10#, but differs in
regard to uncertainty propagation and application. Here, we are
considering the influence of uncertainty in CFD code input; that
is, the effect of uncertainty in input geometry on aerodynamic
shape-design optimization and the effect of uncertainty in flow
conditions on design for flow control.

2.1 Uncertainty Quantification. In this study, we consider
the influence of uncertainty in CFD input parameterization vari-
ables. We have assumed that these input variables are statistically
independent, random, and normally distributed about a mean
value. This assumption not only simplifies the resulting algebra
and equations, but also serves to quantify input uncertainties. Fur-
thermore, it is not an unreasonable assumption for input geometric
variables subject to random manufacturing errors nor for input
flow conditions subject to random fluctuations.

2.2 Uncertainty Propagation. Uncertainty propagation is
accomplished by approximate statistical second moment methods
@9# and @20# where the required sensitivity derivatives are ob-
tained by hand or by automatic differentiation. The first step in
second moment analyses is to approximate the CFD system output
solutions of interest in Taylor series form, truncated to the desired
order. These approximations are formed to estimate the output
value for small deviations of the input.

Given input random variablesb5$b1 , . . . ,bn% with mean
values, b̄5$b̄1 , . . . ,b̄n%, and standard deviations,
sb5$sb1

, . . . ,sbn
%, first- and second-order Taylor series ap-

proximations of the CFD output function,F, are given by
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respectively. Both first and second derivatives are evaluated at the
mean values,b̄.

One then obtains expected values for the mean~first moment!
and variance~second moment! of the output function,F, which
depend on the sensitivity derivatives and input variances,sb

2. The
mean of the output function,F̄, and standard deviationsF , are
approximated as
First Order:
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where both first and second derivatives are evaluated at the mean
values,b̄. Note in Eq.~4! that the second-order mean output,F̄, is
not at the mean values of inputb̄, i.e., F̄ÞF(b̄).

Equations~3! and ~4! are the FOSM and SOSM approxima-
tions, respectively, for the uncertainty propagation. The methods
are straightforward with the difficulty largely lying in computation
of the sensitivity derivatives. The very efficient and effective
method used here to obtain such derivatives is presented in@12#.

2.3 Robust Design. Conventional optimization for an ob-
jective function, Obj, that is a function of the CFD output,F, state
variables,Q, and input variables,b, is expressed in Eq.~5!.
Herein, the CFD state equation residuals,R, are represented as an
equality constraint, and other system constraints,g, are repre-
sented as inequality constraints. The input variables,b, are pre-
cisely known, and all functions ofb are therefore deterministic.
min Obj,

Obj5Obj~F,Q,b!

subject to

R~Q,b!50

g~F,Q,b!<0 (5)

For robust design, the conventional optimization, Eq.~5!, must
be treated in a probabilistic manner. Given uncertainty in the
input variables,b, all functions in Eq.~5! are no longer deter-
ministic. The design variables are now the mean values,
b̄5$b̄1 , . . . ,b̄n%, where all elements ofb̄ are assumed statisti-
cally independent and normally distributed with standard devia-
tions sb . The objective function is cast in terms of expected val-
ues and becomes a function ofF̄ and sF . The state equation
residual equality constraint,R, is deemed to be satisfied at the
expected values ofQ andb, that is the mean valuesQ̄ and b̄ for
the FO approximation. The other constraints are cast into a proba-
bilistic statement: the probability that the constraints are satisfied
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is greater than or equal to a desired or specified probability,Pk .
This probability statement is transformed@10# into a constraint
involving mean values and standard deviations under the assump-
tion that variables involved are normally distributed. The robust
optimization can be expressed as
min Obj,

Obj5Obj~ F̄,sF ,Q̄,b̄!

subject to

R~Q̄,b̄!50

g~ F̄,Q̄,b̄!1ksg<0, (6)

wherek is the number of standard deviations,sg , that the con-
straint g must be displaced in order to achieve the desired or
specified probability,Pk . For the FOSM approximation, standard
deviationssF and sg are of the form given in Eq.~3! involving
first-order sensitivity derivatives. Therefore, a gradient-based op-
timization will then require second-order sensitivity derivatives to
compute the objective and constraint gradients. Note that for the
SOSM approximation, third-order sensitivity derivatives would be
required for these gradients.

The calculation of second-order sensitivity derivatives for CFD
code, such as those required for SOSM and robust optimization
with FOSM, was demonstrated in@13#; the efficient calculation
method used herein is demonstrated and discussed in@12#. Both
hand differentiation and automatic differentiation via the ADIFOR
tool @21–23# were used in@12# and @13#. Both conventional and
robust optimizations were performed using the Sequential Qua-
dratic Programming method option in the Design Optimization
Tools, DOT@24#.

3 Application to Quasi 1-D Euler CFD
A very simple example has been chosen to demonstrate the

propagation of input uncertainty through CFD code and its effect
on optimization. The quasi one-dimensional Euler equations and
approximate boundary conditions are solved in a discretized CFD
form ~see Appendix!. Of course, modern CFD methods are not
required to solve the quasi 1-D Euler equations; exact analytical
solutions are available in any basic textbook on gas dynamics.
However, these quasi 1-D equations are commonly and effectively
used as the initial test platform in the development of CFD algo-
rithms and methods.

Two separate applications are presented; the first involving
propagation of geometric uncertainties, the second involving
propagation of flow parameter uncertainties. Both uncertainty
analyses are performed with quasi one-dimensional CFD Euler
equations and boundary conditions describing subsonic flow
through a variable area nozzle. The nozzle inlet is located at
x50 with areaA(x50)51; the nozzle outlet is atx51. The area
distribution is given by

A~x!512ax1bx2.

The volume,V, occupied by the nozzle, is the integration ofA(x)
over the lengthx50 to x51

V512
a

2
1

b

3
,

where a and b are the input geometric parameters. Three flow
parameters are specified as input boundary conditions: the stagna-
tion enthalpy, inlet entropy, and outlet static~back! pressure. The
discretized quasi 1-D Euler equation set is symbolically written as
the state equation in Eq.~5!; its residual,R is driven to~machine!
zero for a solution~see Appendix!.

For supersonic flow through a variable area nozzle, shock
waves generally appear and the flow solution~objective, con-
straint, etc.! becomes noisy or non-smooth~see@25# and the ref-
erences cited therein!. Care must be exercised with respect to

obtaining and using the sensitivity derivatives needed for
gradient-based optimization@25,26#. Therefore, we chose to by-
pass issues related to this supersonic flow non-smoothness in
these initial demonstrations of the present approach for uncer-
tainty propagation and robust design for CFD code modules.

3.1 Geometric Uncertainty Propagation. For the discus-
sion of geometric uncertainty propagation, geometric shape pa-
rametersa and b will represent the statistically independent ran-
dom input variables,b. The Mach number distribution through the
nozzle,M , is viewed here as a component of the state variable,Q;
its value at the inlet,M , is the CFD output,F. Applying the
approach previously outlined~recall Eqs.~3! and ~4!! yields the
following first-and second-order approximations of the output
function, M.
Input random variables: b5$a,b%
CFD output function: F5$M%
First-order Taylor series:

M~a,b!5M~ ā,b̄!1
]M

]a
~a2ā!1

]M

]b
~b2b̄! (7)

Second-order Taylor series:

M~a,b!5M ~ ā,b̄!1
]M

]a
~a2ā!1

]M

]b
~b2b̄!1

]2M

]a]b
~a2ā!

3~b2b̄!10.5S ]2M

]a2 ~a2ā!2D10.5S ]2M

]b2 ~b2b̄!2D
(8)

The mean, M̄, and standard deviationsM of the output function
are expressed as
FOSM:

M̄5M~ ā,b̄!
(9)

sM
2 5S ]M

]a
saD 2

1S ]M

]b
sbD 2

SOSM:

M̄5M~ ā,b̄!10.5S ]2M

]a2 Dsa
210.5S ]2M

]b2 Dsb
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saD 2
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sbD 2

10.5S ]2M

]a2 sa
2D 2

10.5S ]2M

]b2 sb
2D 2

1S ]2M

]a]b
sasbD 2

. (10)

Predictions of M(a,b), M̄ andsM for FOSM ~Eqs.~7! and~9!!
and SOSM~Eqs.~8! and ~10!! are compared with CFD solutions
and Monte Carlo analyses based on CFD solutions, as given and
discussed in the results section.

3.2 Robust Shape Optimization. Applying the conven-
tional optimization previously described yields
min Obj,

Obj5Obj~M,a,b!

subject to

R~M ,a,b!50
(11)

V~a,b!<0,

where the system constraint,V, is a constraint on the nozzle vol-
ume and depends only ona andb; our objective does not explic-
itly depend onM .

Applying the robust optimization previously described yields
min Obj, Obj5Obj(M̄,sM ,ā,b̄)

subject to
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R~M̄ ,ā,b̄!50
(12)

V~ ā,b̄!1ksV<0,

where

sV
25S ]V

]a
saD 2

1S ]V

]b
sbD 2

. (13)

With a andb subject to statistical uncertainties~which may be
due to measurement, manufacturing, etc.!, V becomes uncertain.
Since V is linearly dependent ona and b, it is also normally
distributed. Therefore, its standard deviation,sV , is given exactly
by Eq. ~13!.

To demonstrate the optimizations, a simple target-matching
problem is selected; a unique answer is obtained when an equality
volume constraint is enforced. The CFD code is run for givena
andb; the resulting M(a,b) and correspondingV(a,b) are taken
as the target values Mt and Vt, respectively. For this conventional
optimization, the objective function and constraint function forV
of Eq. ~11! become

Obj~M,a,b!5@M~a,b!2Mt#2

V~a,b!2Vt50

enforced as

V~a,b!2Vt<0 and Vt2V~a,b!<0 (14)

for the convenience of the optimizer.
For robust optimization using the FOSM approximation, the

corresponding objective and constraint onV of Eq. ~12! become

Obj~M̄,sM ,ā,b̄!5@M̄~ ā,b̄!2Mt#21sM
2

V~ ā,b̄!2Vt1ksV50

similarly enforced as

V~ ā,b̄!2Vt1ksV<0 and Vt2V~ ā,b̄!2ksV<0. (15)

Note that forsa5sb50 in Eq. ~15!, the conventional optimiza-
tion is obtained. Also, in the probabilistic statement of the con-
straint onV, it is assumed that the desired volume is less than or
equal to Vt.

3.3 Flow Parameter Uncertainty Propagation. A second
example of uncertainty in CFD involves fluctuations in input flow
parameters. For the discussion of flow parameter uncertainty
propagation, the free-stream Mach number, Minf, and the nozzle
static back pressure, Pb, will be taken as statistically independent
random variables. Specifying the free-stream Mach number sets
the stagnation enthalpy. The Mach number distribution through
the nozzle,M , is again viewed as a component of the state vari-
able,Q; its value at the inlet, M, is the CFD output,F. Applying
the approach previously outlined yields equations which are simi-
lar to Eq.~7! through~10! but with

Input random variables: b5$Minf,Pb%
CFD output function: F5$M%

Again, predictions of M, M̄, andsM for the FOSM and SOSM
approximations are compared with CFD solutions and Monte
Carlo analyses based on CFD solutions, as given and discussed in
the next section.

3.4 Robust Design for Flow Control. The conventional
optimization is expressed as

min Obj Obj5Obj(M,Minf,Pb)
subject to

R~M ,Minf,Pb!50
(16)

q~Minf,Pb!<0,

whereq is a constraint on the mass flux through the nozzle.

The robust optimization is expressed as

min Obj, Obj5Obj(M̄,sM ,M̄inf,P̄b)
subject to

R~M̄,M̄inf,P̄b!50
(17)

q~M̄inf,P̄b!1ksq<0.

For the free-stream Mach number, Minf, and the nozzle back
pressure, Pb, subject to statistical uncertainties, the mass flux,q,
becomes uncertain. Sinceq is dependent on Minf and Pb, its stan-
dard deviation,sq , may be approximated by

sq
25S ]q

]Minf
sMinf D 2

1S ]q

]Pb
sPbD 2

. (18)

Sinceq is not a linear function of Minf and Pb, Eq.~18! is not
exact.

To demonstrate the optimizations, a simple target-matching
problem is again chosen. The CFD code is run for given Minf and
Pb, the resulting M and correspondingq are taken as the target
values Mt andqt, respectively. For this conventional optimization,
the objective function and constraint functions of Eq.~16! are

Obj~M,Minf,Pb)5@M~Minf,Pb!2Mt#2

q~Minf,Pb!2qt50

enforced as

q~Minf,Pb!2qt<0 and qt2q~Minf,Pb!<0. (19)

For robust optimization using the FOSM approximation, the cor-
responding objective and constraint onq of Eq. ~17! can be shown
as

Obj5Obj~M̄,sM ,M̄inf,P̄b!5@M̄~M̄inf,P̄b!2Mt#21sM
2

q~M̄inf,P̄b!2qt1ksq50

enforced as

q~M̄inf,P̄b!2qt1ksq<0 and qt2q~M̄inf,P̄b!2ksq<0.
(20)

Again note that forsMinf5sPb50 in Eq. ~20!, the conventional
optimization is obtained. Also, in the probabilistic statement of the
constraint onq, it is assumed that the desired mass flux is less than
or equal toqt.

4 Sample Results and Discussion
Presentation and discussion of results for the sample quasi 1-D

Euler CFD problems are divided into four topics: function ap-
proximations, uncertainty propagation, pdf approximations, and
robust optimization. For the first three topics, the FOSM and
SOSM approximations are assessed by comparison with direct
CFD simulations. Note that the CFD code and its corresponding
derivative codes are executed at the mean values of the random
input variables to obtain the functions and sensitivity derivatives
needed for construction of the statistical approximations.

4.1 Function Approximations. It is important to assess the
Taylor series output function approximations with direct nonlinear
CFD code simulations prior to presenting uncertainty propagation.
If the CFD output function, M, is quasi-linear with respect to the
input variables of interest, one can expect first-order approxima-
tions to be reasonably good; that is, the first-order moments given
by Eq. ~3! should match well with the moments produced by a
Monte Carlo simulation. For a more nonlinear system, one natu-
rally expects better accuracy with second-order approximations;
that is, uncertainty analyses which include second-order terms
should yield results which better predict the statistical moments
produced by the Monte Carlo simulation.
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Figures 1–4 show that forF5M(a,b), M behaves as a quasi-
linear function in the neighborhood of (ā,b̄), whereas forF
5M(Minf,Pb), M is more nonlinear in the neighborhood of
(M̄inf,P̄b). In these figures, approximations of the CFD output
functions, M(a,b) and M(Minf,Pb), using the first-~FO! and
second-order~SO! Taylor series~as given in Eqs.~7! and ~8! for
M(a,b)!, are compared to direct solution of the Euler CFD. In
each example, two traces were considered through the design
space. Trace 1 varied the first input variable, while the second
remained fixed at its mean value, and vice versa for trace 2. The
required first- and second-order sensitivity derivatives needed for
construction of the first-and second-order approximations were
obtained by hand differentiation and automatic differentiation as
discussed and presented in@12#.

Nonlinear behavior of the CFD result is reasonably well ap-
proximated by the SO result in all plots; however, there does
appear to be an inflection point in the CFD results given in Fig. 3.
Note that the linear FO result is a good approximation in the

geometric example; the flow parameter example is more nonlin-
ear. At larger deviations from the mean, a linear approximation for
M(Minf,Pb) loses accuracy.

4.2 Uncertainty Propagation. Approximation of the statis-
tical first and second moments is done using equations Eq.~9! and
~10! ~geometric example!, and corresponding equations for the
flow parameter example. Again, both first- and second-order sen-
sitivity derivatives are required and the prediction is straightfor-
ward, given these derivatives. An independent verification of these
approximate mean and standard deviation values is obtained here
using direct Monte Carlo~MC! simulation with the quasi 1-D
Euler CFD code and standard statistical analyses of these Monte
Carlo results. The standard statistical analyses used were from
MicroSoft ® Excel 2000 and the random number generator
MZRAN used was from@27#. Tables 1 and 2 give results for the
mean~first moment! and Tables 3 and 4 give results for the stan-

Fig. 1 Comparison of function approximations versus CFD
solution, input variable bÄb̄

Fig. 2 Comparison of function approximations versus CFD
solution, input variable aÄā

Fig. 3 Comparison of function approximations versus CFD
solution, input variable Pb ÄP̄b

Fig. 4 Comparison of function approximations versus CFD
solution, input variable Minf ÄM̄inf
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dard deviation~second moment! value comparisons. The input
deviations~sa andsb! or ~sMinf andsPb!, are taken to be equal
and given in the second column of each table. The third column in
each table gives the result from the MC simulation, where the
sample size~N! used was 3000. The MC error in its predicted
mean issM /AN, which is given in the fourth column of Tables 1
and 2. The first-order~FO! and second-order~SO! approximate
predictions are given in the last two columns of each table as
percent difference from the MC results.

Results from the last two columns of Tables 1–4 are plotted in
Figs. 5 and 6. Note that mean and standard deviation approxima-
tions for output M agree well with the MC results for small stan-
dard deviations in input variables, (sa ,sb) or (sMinf ,sPb), for
both the FO and SO predictions. At higher standard deviations, the
SO results tend to agree better with the MC results, especially in
the flow parameter example.

As expected, the SO approximations are generally better than
those for FO and an increase in the standard deviation of input
parameters monotonically increases the error associated with both
predictions. Both FO and SO approximations predict the mean
more accurately than the standard derivation. Also note that the
MC simulation with a sample size of 3000 limits accuracy of the
MC results. This is apparent in the raggedness of the pdfs shown
in the following section.

4.3 Probability Density Function Approximations. Given
a mean and standard deviation of the CFD output function~from
either an MC simulation or an FO or SO prediction! and assuming
a normal distribution, one may then construct a pdf to approxi-
mate the behavior of the nondeterministic output function. This
approximation is compared to pdf histograms generated from MC
simulations in Figs. 7, 8, and 9. The bars depict the MC histo-
gram, and the solid curve is a normal distribution at the MC mean
value and MC standard deviation as given in the previous tables.
The MC simulation size of 3000 is certainly not sufficient to ob-
tain a smooth pdf. We note that both the first-order and second-
order normal distributions are indistinguishable from this normal
MC curve at this scale so neither is shown in the figure. It is
apparent that for either the quasi-linear functional dependence on
a andb ~Fig. 7!, or for small input standard deviations of the flow
parameters~Fig. 8!, the statistical approximations are good for a
significant region about the mean but tend to break down in pre-
dicting the tails of the distribution. This is significant, for if one is
primarily interested in reliable failure predictions, as for structural
design, this prediction may not be good enough. It is felt, how-

Fig. 5 Comparison of statistical moment approximations with Monte Carlo
simulation results, geometric examples

Table 1 Percent difference from MC for FO and SO predictions
of M̄ „ā ,b̄…

Case
Input s
sa5sb

M̄
MC

% Error
MC

% diff w/MC
FO Predict

% diff w/MC
SO Predict

1 0.01 0.4041 0.0187 20.0105 0.0656
2 0.02 0.4040 0.0379 0.0716 0.1531
3 0.04 0.4054 0.0756 20.2867 0.0383
4 0.06 0.4055 0.1142 20.3012 0.4301
5 0.08 0.4096 0.1557 21.3078 20.0209

Table 2 Percent difference from MC for FO and SO predictions
of M̄ „M̄inf,P̄ b…

Case
Input s

sMinf5sPb

M̄
MC

% Error
MC

% diff w/MC
FO Predict

% diff w/MC
SO Predict

1 0.01 0.3933 0.0056 0.0037 20.0269
2 0.02 0.3932 0.0114 0.0187 20.1034
3 0.04 0.3898 0.0229 0.8917 0.3991
4 0.06 0.3889 0.0364 1.1251 0.0141

Table 3 Percent difference from MC for FO and SO predictions
of sM , geometric example

Case
Input s
sa5sb

sM
MC

% diff w/MC
FO Predict

% diff w/MC
SO Predict

1 0.01 0.0102 20.5773 20.5708
2 0.02 0.0207 21.7026 21.6769
3 0.04 0.0414 21.5794 21.4766
4 0.06 0.0625 22.2590 22.0296
5 0.08 0.0853 24.3987 24.0001

Table 4 Percent difference from MC for FO and SO predictions
of sM , flow parameter example

Case
Input s

sMinf5sPb

sM
MC

% diff w/MC
FO Predict

% diff w/MC
SO Predict

1 0.01 0.0030 1.1815 1.2473
2 0.02 0.0062 21.5093 21.2533
3 0.04 0.0125 24.1604 23.1680
4 0.06 0.0199 24.4070 22.1938
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ever, that in aerodynamic performance optimization using CFD,
where robustness about the mean is desired, these approximations
may be good enough.

It is not surprising that a nonlinear CFD output function be-
haves differently for randomness in different input variables. For
M(Minf,Pb) at higher input standard deviations (sMinf5sPb

50.06), the pdf of the output function is no longer normal. In Fig.
9 one can see the non-normal behavior of CFD output given nor-
mally distributed input variables Minf and Pb.

4.4 Robust Optimizations. Optimization results were gen-
erated using the quasi 1-D Euler CFD code and the procedure
given by Eqs.~5! and ~6!. As noted earlier, conventional optimi-
zation is obtained forsa5sb50 or for sMinf5sPb50. For the
FOSM approximation, first-order sensitivity derivatives are re-
quired to obtainsM andsV ~Eqs.~9! and~13!! or sq ~Eqs.~9! and
~18!!; therefore, second-order sensitivity derivatives will be re-
quired for their gradients, which are used in the optimization. The
second-order derivatives were obtained by the manner presented
in @12#, except for those associated with Eq.~18! where the first-
order derivatives were finite differenced simply for convenience.

It is seen from Eqs.~12! and ~17! that the robust optimization
results should depend on the probabilistic parameters (sa ,sb) or
(sMinf ,sPb), and k. The desired probability,Pk , is that from the
normal cumulative distribution function sincesV andsq here are
assumed to be normally distributed. For each robust optimization
example, two cases are presented. For case 1,Pk is fixed at
k51, i.e., P1584.13%, and the effect of increasing the in-
put variable standard deviations is addressed. For case 2, the stan-
dard deviations of the input variables are fixed at 0.01 andPk
increases.

Fig. 6 Comparison of statistical moment approximations with Monte
Carlo simulation results, flow parameter examples

Fig. 7 Probability density function for M „a,b … for saÄsb
Ä0.08

Fig. 8 Probability density function for M „Minf,Pb … for sMinf
ÄsPbÄ0.02

Fig. 9 Probability density function for M „Minf,Pb … for sMinf
ÄsPbÄ0.06
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4.4.1 Robust Shape Optimization Results.In Table 5, results
for case 1 of the robust shape optimization are displayed. For
sa5sb ranging from 0 to 0.08, optimal values for the input vari-
ables (ā,b̄) are listed. Assa5sb increases, so doessV . Accord-
ingly, the mean values, (ā,b̄), which minimize the objective func-
tion and satisfy the probabilistic constraint, become increasingly
displaced from the target volume,Vt. This is shown in Fig. 10.
Mean values (ā,b̄) change, keeping the mean value, M(̄ā,b̄), of
the probabilistic output near the target value, Mt. The robust de-
sign points track the dashed curve for M¯5Mt with some displace-
ment due to thesM

2 term of the objective, Eq.~15!. The volume,
V(ā,b̄), is displaced from the solid curveV5Vt by ksV , as
required by the probabilistic constraint. This displacement can be
viewed as the solution dependent or ‘‘effective’’ safety factor.

In Fig. 11 the changing area distribution of the robust optimi-

zation is illustrated. As the standard deviations of design variables
(ā,b̄) increase, the optimal nondeterministic volume,V(ā,b̄), sig-
nificantly decreases.

The results for case 2 of the robust shape optimization, where
aa5sb is fixed at 0.01, andPk increases from 50 percent to 99.99
percent~k50 to 4! are given in Table 6. Again mean values (ā,b̄)
change, keeping the mean value, M(̄ā,b̄), of the probabilistic out-
put near the target value, Mt. Sincesa5sb remains small, thesM

2

term of the objective remains small, and the displacement of M¯

from the dashed line depicting Mt due to thesM
2 term remains

small as shown in Fig. 12. With an increase inPk , V(ā,b̄) is
displaced from the solid curveV5Vt by ksV , as required by the
probabilistic constraint. Accordingly, the mean values, (ā,b̄),
which minimize the objective function and satisfy the constraint,
again become increasingly displaced from those at the target vol-
ume, Vt. Note the significant displacement of the solution from
the target volume whenPk is large, i.e., when one is attempting to
incorporate the tails of the pdf. In order to increase the probability
of constraint satisfaction from 97.77 percent to 99.99 percent, one
sees a significant change in (ā,b̄) for a mere gain of 2 percent in
constraint satisfaction.

4.4.2 Robust Design for Flow Control Results.Similar re-
sults are seen in the flow parameter example. In Table 7, the

Fig. 10 Optimization results in design space „a,b…, Pk fixed at
P1

Fig. 11 Nozzle area distributions, Pk fixed at P1

Fig. 12 Optimization results in design space „a,b…, s fixed at
0.01

Table 5 Robust shape optimization results with increasing in-
put parameter s for k Ä1

sa5sb ā b̄ Obj M̄ sM sV

0.00 0.6001 0.3001 0.0000 0.4043 0.0000 0.0000
0.02 0.6685 0.3667 0.0004 0.4036 0.0203 0.0120
0.04 0.7338 0.4286 0.0016 0.4018 0.0406 0.0240
0.06 0.7948 0.4841 0.0037 0.3984 0.0607 0.0360
0.08 0.8534 0.5358 0.0065 0.3941 0.0804 0.0480

Table 6 Robust shape optimization results with increasing Pk
for sÄ0.01

K Pk ā b̄ Obj M̄ sM sV

0 0.5000 0.5996 0.2995 0.000104 0.4041 0.0101 0.006
1 0.8413 0.6246 0.3189 0.000118 0.4004 0.0101 0.006
2 0.9772 0.6698 0.3687 0.000104 0.4041 0.0101 0.006
3 0.9986 0.7052 0.4037 0.000104 0.4042 0.0102 0.006
4 0.9999 0.7406 0.4388 0.000104 0.4043 0.0102 0.006

Table 7 Robust design for flow control results with increasing
input parameter s for k Ä1

sMin5sPb M̄inf Pb Obj M̄ sM sq

0 0.3000 0.8000 0.0000 0.3933 0.0000 0.0000
0.02 0.2861 0.7883 0.0001 0.3974 0.0116 0.0058
0.04 0.2655 0.7801 0.0005 0.3985 0.0231 0.0112
0.06 0.2555 0.7653 0.0012 0.4050 0.0327 0.0163
0.08 0.2468 0.7498 0.0020 0.4118 0.0407 0.0209
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results for case 1 are displayed. ForsMinf5sPb ranging from 0 to
0.08, optimal values for the input variables (Mīnf,P̄b) are listed.
As sMinf5sPb increases, so doessq . Accordingly, the mean val-
ues, (M̄inf,P̄b), which minimize the objective function and satisfy
the constraint, become increasingly displaced from the target mass
flux, qt. This is shown in Fig. 13. Mean values (Mīnf,P̄b) change,
keeping the mean value, M(̄M̄inf,P̄b), of the probabilistic output
near the target value, Mt. The robust design points track the

dashed curve for M̄5Mt with displacement due to thesM
2 term of

the objective, Eq.~17!. The optimized mass flux,q(M̄inf,P̄b), is
displaced from the solid curveq5qt by ksq as required by the
probabilistic constraint.

The results for case 2 of the robust design for flow control,
wheresMinf5sPb is fixed at 0.01, andPk increases from 50 per-
cent to 99.99 percent,~k50 to 4! are given in Table 8. Again,
mean values (M̄inf,P̄b) change, keeping the mean value,
M̄(M̄inf,P̄b), of the probabilistic output near the target value, Mt.
As in the preceding example, sincesMinf5sPb remains small, the
sM

2 term of the objective remains small and the displacement due
to the sM

2 term remains small, as shown in Fig. 14. With an
increase inPk , q(M̄inf,P̄b) is displaced from the solid curveq
5qt by ksq , as required by the probabilistic constraint. Accord-
ingly, the mean values, (Mīnf,P̄b), which minimize the objective
function and satisfy the constraint again become increasingly dis-
placed from the target mass flux,qt. Again, note the significant
displacement from the target mass flux incurred in the higher
probability optimizations, i.e., when one is attempting to incorpo-
rate the tails of the pdf.

5 Concluding Remarks and Challenges
The present results represent an implementation of the approxi-

mate statistical moment method for uncertainty propagation and
robust optimization for a quasi 1-D Euler CFD code. Assuming
statistically independent, random, normally distributed input vari-
ables, first- and second-order statistical moment procedures were
performed to approximate the uncertainty in the CFD output. Ef-
ficient calculation of both first- and second-order sensitivity de-
rivatives was employed and the validity of the approximations
was assessed by comparison with statistical moments generated
through Monte Carlo simulations. The uncertainties in the CFD
input variables were incorporated into a robust optimization pro-
cedure where statistical moments involving first-order sensitivity
derivatives appeared in the objective function and system con-
straints. Second-order sensitivity derivatives were used in a
gradient-based robust optimization. The approximate methods
used throughout the analyses were found to be valid when con-
sidering robustness about input parameter mean values.

Collectively, these results demonstrate the possibility for an ap-
proach to treat input parameter uncertainty and its propagation in
gradient-based design optimization that is governed by complex
CFD analysis solutions. It has been demonstrated on a very simple
CFD code and problem; there are computational resource issues to
be addressed in application to significant 2-D and 3-D CFD codes
and problems. Conventional optimization in 2-D and 3-D already
requires significantly more resources than in 1-D and obtaining
second-order sensitivity derivatives for more design variables will
add even more work. Some of these are addressed in@12# and
work is presently in progress regarding application and demon-
stration using 2-D and 3-D Euler CFD code.
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Nomenclature

A 5 nozzle area
a 5 geometric shape parameter
b 5 geometric shape parameter
b 5 vector of independent input variables

Fig. 13 Optimization results in design space „Minf,Pb …, Pk
fixed at P1

Fig. 14 Optimization results in design space „Minf,Pb …, s
fixed at 0.01

Table 8 Robust design for flow control results with increasing
Pk for sÄ0.01

K Pk M̄inf P̄b Obj M̄ sM sq

0 0.5000 0.3000 0.8000 0.00003 0.3933 0.0060 0.0030
1 0.8413 0.2919 0.7953 0.00003 0.3945 0.0059 0.0029
2 0.9772 0.2825 0.7916 0.00003 0.3949 0.0059 0.0029
3 0.9986 0.2688 0.7896 0.00003 0.3936 0.0060 0.0028
4 0.9999 0.2598 0.7867 0.00003 0.3938 0.0060 0.0028
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F 5 vector of CFD output functions
g 5 vector of conventional optimization constraints
k 5 number of standard deviations

M 5 Mach number at nozzle inlet
M 5 vector of Mach number at each grid point

Minf 5 free-stream Mach number
Mt 5 target inlet Mach number
N 5 Monte Carlo sample size

Pb 5 normalized nozzle static back~outlet! pressure
Q 5 vector of flow-field variables~state variables!
q 5 mass flux through nozzle
qt 5 target mass flux through nozzle
R 5 vector of state equation residuals
V 5 nozzle volume

Vt 5 target nozzle volume used for optimization
x 5 normalized axial position within nozzle
s 5 standard deviation

s2 5 variance

Superscript

- 5 mean value

Appendix-Quasi One-Dimensional Euler CFD
The steady-state, quasi 1-D Euler equations are

]E~Q!

]x
1S~Q!50

where

Q5@r,ru,re0#T,

E~Q!5@ru,ru21P,~re01P!u#T,

S~Q!52
dA

dx

1

A
@ru,ru2,~re01P!u#T.

In these equations,r is density,u is flow speed,P is pressure,e0

is the specific total energy~i.e., e05e1u2/2, wheree is the spe-
cific internal energy!, andA(x) is the local cross-sectional area.
The ideal gas law with a constant ratio of specific heatsg ~taken
to be 1.4! is used for closure, which impliesP5(g21)(re0

2ru2/2). The governing equations are discretized and solved nu-
merically with the upwind flux-vector-splitting method of Van
Leer @28#, which includes the use of higher order accuracy to
approximate the flux terms. A more complete discussion of these
numerical procedures is presented in@29#. The flow field was
discretized with 100 grid points. This discretiztion of the govern-
ing equations, together with the numerical treatment of the bound-
ary conditions, results in a large set of coupled nonlinear algebraic
equations with the form of Eq.~5!. In this study, the procedure for
solving the discrete nonlinear flow equations is Newton’s method.
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Reliable Real-Time Solution of
Parametrized Partial Differential
Equations: Reduced-Basis Output
Bound Methods
We present a technique for the rapid and reliable prediction of linear-functional outputs of
elliptic (and parabolic) partial differential equations with affine parameter dependence.
The essential components are (i) (provably) rapidly convergent global reduced-basis
approximations—Galerkin projection onto a space WN spanned by solutions of the gov-
erning partial differential equation at N selected points in parameter space; (ii) a poste-
riori error estimation—relaxations of the error-residual equation that provide inexpensive
yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/
on-line computational procedures methods which decouple the generation and projection
stages of the approximation process. The operation count for the on-line stage in which,
given a new parameter value, we calculate the output of interest and associated error
bound, depends only on N (typically very small) and the parametric complexity of the
problem; the method is thus ideally suited for the repeated and rapid evaluations required
in the context of parameter estimation, design, optimization, and real-time control.
@DOI: 10.1115/1.1448332#

1 Introduction
The optimization, control, and characterization of an engineer-

ing component or system requires the prediction of certain ‘‘quan-
tities of interest,’’ or performance metrics, which we shall denote
outputs—for example deflections, maximum stresses, maximum
temperatures, heat transfer rates, flowrates, or lift and drags. These
outputs are typically expressed as functionals of field variables
associated with a parametrized partial differential equation which
describes the physical behavior of the component or system. The
parameters, which we shall denoteinputs, serve to identify a par-
ticular ‘‘configuration’’of the component: these inputs may repre-
sent design or decision variables, such as geometry—for example,
in optimization studies; control variables, such as actuator
power—for example in real-time applications; or characterization
variables, such as physical properties—for example in inverse
problems. We thus arrive at an implicitinput-outputrelationship,
evaluation of which demands solution of the underlying partial
differential equation.

Our goal is the development of computational methods that
permit rapid and reliable evaluation of this partial-differential-
equation-induced input-output relationshipin the limit of many
queries—that is, in the design, optimization, control, and charac-
terization contexts. The ‘‘many queries’’ limit has certainly re-
ceived considerable attention: from ‘‘fast loads’’ or multiple right-
hand side notions~e.g., Chan and Wan@1#, Farhat et al.@2#! to
matrix perturbation theories~e.g., Akgun et al.@3#, Yip @4#! to
continuation methods~e.g., Allgower and Georg@5#, Rheinboldt
@6#!. Our particular approach is based on the reduced-basis
method, first introduced in the late 1970s for nonlinear structural

analysis ~Almroth et al. @7#, Noor and Peters@8#!, and subse-
quently developed more broadly in the 1980s and 1990s~Balmes
@9#, Barrett and Reddien@10#, Fink and Rheinboldt@11#, Peterson
@12#, Porsching@13#, Rheinboldt@14#!. The reduced-basis method
recognizes that the field variable is not, in fact, some arbitrary
member of the infinite-dimensional solution space associated with
the partial differential equation; rather, it resides, or ‘‘evolves,’’ on
a much lower-dimensional manifold induced by the parametric
dependence.

The reduced-basis approach as earlier articulated is local in
parameter space in both practice and theory. To wit, Lagrangian or
Taylor approximation spaces for the low-dimensional manifold
are typically defined relative to a particular parameter point; and
the associateda priori convergence theory relies on asymptotic
arguments in sufficiently small neighborhoods~Fink and Rhein-
boldt @11#!. As a result, the computational improvements—relative
to conventional~say! finite element approximation—are often
quite modest~Porsching@13#!. Our work differs from these earlier
efforts in several important ways: first, we develop~in some cases,
provably! global approximation spaces; second, we introduce rig-
orousa posteriori error estimators; and third, we exploitoff-line/
on-linecomputational decompositions~see Balmes@9# for an ear-
lier application of this strategy within the reduced-basis context!.
These three ingredients allow us, for the restricted but important
class of ‘‘parameter-affine’’ problems, to reliably decouple the
generation and projection stages of reduced-basis approximation,
thereby effecting computational economies of several orders of
magnitude.

In this expository review paper we focus on these new ingredi-
ents. In Section 2 we introduce an abstract problem formulation
and several illustrative instantiations. In Section 3 we describe, for
coercive symmetric problems and ‘‘compliant’’ outputs, the
reduced-basis approximation; and in Section 4 we present the as-
sociateda posteriorierror estimation procedures. In Section 5 we
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consider the extension of our approach to noncompliant outputs
and nonsymmetric operators; eigenvalue problems; and, more
briefly, noncoercive operators, parabolic equations, and nonaffine
problems. A description of the system architecture in which these
numerical objects reside may be found in Veroy et al.@15#.

2 Problem Statement

2.1 Abstract Formulation. We consider a suitably regular
domain V,Rd, d51, 2, or 3, and associated function space
X,H1(V), where H1(V)5$vPL2(V), ¹vP(L2(V))d%, and
L2(V) is the space of square-X integrable functions overV. The
inner product and norm associated withX are given by (•,•)X and
i•iX5(•,•)X

1/2, respectively. We also define a parameter setD
PRP, a particular point in which will be denotedm. Note thatV
doesnot depend on the parameter.

We then introduce a bilinear forma: X3X3D→R, and linear
forms f: X→R, l : X→R. We shall assume thata is continuous,
a(w,v;m)<g(m)iwiXiviX<g0iwiX iviX , ;mPD; further-
more, in Sections 3 and 4, we assume thata is coercive,

0,a0<a~m!5 inf
wPX

a~w,w;m!

iwiX
2 , ;mPD, (1)

and symmetric,a(w,v;m)5a(v,w;m); ;w,vPX, ;mPD. We
also require that our linear formsf andl be bounded; in Sections
3 and 4 we additionally assume a ‘‘compliant’’ output,f (v)
5l (v), ;vPX.

We shall also make certain assumptions on the parametric de-
pendence ofa, f, and l . In particular, we shall suppose that, for
some finite~preferably small! integerQ, a may be expressed as

a~w,v;m!5(
q51

Q

sq~m!aq~w,v !, ;w,vPX,;mPD, (2)

for somesq: D→R andaq: X3X→R, q51, . . . ,Q. This ‘‘sepa-
rability,’’ or ‘‘affine,’’ assumption on the parameter dependence is
crucial to computational efficiency; however, certain relaxations
are possible—see Section 5.3.3. For simplicity of exposition, we
assume thatf andl do not depend onm; in actual practice, affine
dependence is readily admitted.

Our abstract problem statement is then: for anymPD, find
s(m)PR given by

s~m!5l ~u~m!!, (3)

whereu(m)PX is the solution of

a~u~m!,v;m!5 f ~v !, ;vPX. (4)

In the language of the Introduction,a is our partial differential
equation~in weak form!, m is our parameter,u(m) is our field
variable, ands(m) is our output. For simplicity of exposition, we
may on occasion suppress the explicit dependence onm.

2.2 Particular Instantiations. We indicate here a few in-
stantiations of the abstract formulation; these will serve to illus-
trate the methods~for coercive, symmetric problems! of Sections
3 and 4.

2.2.1 A Thermal Fin. In this example, we consider the two-
and three-dimensional thermal fins shown in Fig. 1; these ex-
amples may be~interactively! accessed on our web site.1 The fins
consist of a vertical central ‘‘post’’ of conductivityk̃0 and four
horizontal ‘‘subfins’’ of conductivityk̃i , i 51, . . . ,4. The finscon-
duct heat from a prescribed uniform flux sourceq̃9 at the root
G̃ root through the post and large-surface-area subfins to the sur-
rounding flowing air; the latter is characterized by a sink tempera-
ture ũ0 and prescribed heat transfer coefficienth̃. The physical
model is simple conduction: the temperature field in the fin,ũ,
satisfies

(
i 50

4 E
Ṽ i

k̃i¹̃ũ•¹̃ ṽ1E
]Ṽ\G̃root

h̃~ ũ2ũ0!ṽ5E
G̃root

q̃9ṽ,

; ṽPX̃[H1~Ṽ !, (5)

whereṼi is that part of the domain with conductivityk̃i , and]Ṽ
denotes the boundary ofṼ.

We now~i! nondimensionalize the weak equations~5!, and~ii !
apply a continuous piecewise-affine transformation fromṼ to a
fixed ~m-independent! reference domainV ~Maday et al.@16#!.
The abstract problem statement~4! is then recovered for
m5$k1,k2,k3,k4,Bi,L,t%, D5@0.1,10.0#43@0.01,1.0#3@2.0,3.0#
3@0.1,0.5#, andP57; herek1, . . . ,k4 are the thermal conductivi-
ties of the ‘‘subfins’’~see Fig. 1! relative to the thermal conduc-
tivity of the fin base; Bi is a nondimensional form of the heat
transfer coefficient; and,L, t are the length and thickness of each
of the ‘‘subfins’’ relative to the length of the fin rootG̃ root . It is
readily verified thata is continuous, coercive, and symmetric; and
that the ‘‘affine’’ assumption ~2! obtains for Q516 ~two-

1FIN2D: http://augustine.mit.edu/fin2d/fin2d.pdf and FIN3D: http://
augustine.mit.edu/fin3d–1/fin3d–1.pdf

Fig. 1 Two- and three-dimensional thermal fins
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dimensional case! andQ525 ~three-dimensional case!. Note that
the geometric variations are reflected, via the mapping, in the
sq(m).

For our output of interest,s(m), we consider the average tem-
perature of the root of the fin nondimensionalized relative toq̃9,
k̃0, and the length of the fin root. This output may be expressed as
s(m)5l (u(m)), where l (v)5*Groot

v. It is readily shown that
this output functional is bounded and also ‘‘compliant’’:l (v)
5 f (v), ;vPX.

2.2.2 A Truss Structure.We consider a prismatic microtruss
structure~Evans et al.@17#, Wicks and Hutchinson@18#! shown in
Fig. 2; this example may be~interactively! accessed on our web
site.2 The truss consists of a frame~upper and lower faces, in dark
gray! and a core~trusses and middle sheet, in light gray!. The
structure transmits a force per unit depthF̃ uniformly distributed

over the tip of the middle sheetG̃3 through the truss system to the

fixed left wall G̃0 . The physical model is simple plane-strain~two-
dimensional! linear elasticity: the displacement fieldui , i 51,2,
satisfies

E
Ṽ

] ṽ i

] x̃ j
Ẽi jkl

]ũk

] x̃l
52S F̃

t̃ c
D E

G̃3

ṽ2 , ;vPX̃, (6)

whereṼ is the truss domain,Ẽi jkl is the elasticity tensor, andX̃
refers to the set of functions inH1(Ṽ) which vanish onG̃0 . We
assume summation over repeated indices.

We now~i! nondimensionalize the weak equations~6!, and~ii !
apply a continuous piecewise-affine transformation fromṼ to a
fixed ~m-independent! reference domainV. The abstract problem
statement~4! is then recovered form5$t f ,t t ,H,u%, D5@0.08,1.0#
3@0.2,2.0#3@4.0,10.0#3@30.0°,60.0°#, and P54. Here t f and t t
are the thicknesses of the frame and trusses~normalized relative to
t̃ c!, respectively;H is the total height of the microtruss~normal-
ized relative tot̃ c!; andu is the angle between the trusses and the
faces. The Poisson’s ratio,n50.3, and the frame and core Young’s
moduli, Ef575 GPa andEc5200 GPa, respectively, are held
fixed. It is readily verified thata is continuous, coercive, and
symmetric; and that the ‘‘affine’’ assumption~2! obtains forQ
544.

Our outputs of interest are~i! the average downward deflection
~compliance! at the core tip,G3 , nondimensionalized byF̃/Ẽf ;
and~ii ! the average normal stress across the critical~yield! section
denotedG1

s in Fig. 2. These compliance and noncompliance out-
puts can be expressed ass1(m)5l 1(u(m)) and s2(m)
5l 2(u(m)), respectively, wherel 1(v)52*G3

v2 , and

l 2~v !5
1

t f
E

Vs

]x i

]xj
Ei jkl

]uk

]xl

are bounded linear functionals; herex i is any suitably smooth
function in H1(Vs) such thatx i n̂i51 on G1

s andx i n̂i50 on G2
s ,

wheren̂ is the unit normal. Note thats1(m) is a compliant output,
whereass2(m) is ‘‘noncompliant.’’

3 Reduced-Basis Approach
We recall that in this section, as well as in Section 4, we assume

that a is continuous, coercive, symmetric, and affine inm—see
~2!; and thatl (v)5 f (v), which we denote ‘‘compliance.’’

3.1 Reduced-Basis Approximation. We first introduce a
sample in parameter space,SN5$m1 , . . . ,mN%, wherem iPD, i
51, . . . , N; see Section 3.2.2 for a brief discussion of point dis-
tribution. We then define our Lagrangian~Porsching @13#!
reduced-basis approximation space asWN5span $zn[u(mn),n
51, . . . ,N%, whereu(mn)PX is the solution to~4! for m5mn .
In actual practice,u(mn) is replaced by an appropriate finite ele-
ment approximation on a suitably fine truth mesh; we shall discuss
the associated computational implications in Section 3.3. Our
reduced-basis approximation is then: for anymPD, find sN(m)
5l (uN(m)), whereuN(m)PWN is the solution of

a~uN~m!,v;m!5l ~v !, ;vPWN . (7)

Non-Galerkin projections are briefly described in Section 5.3.1.

3.2 A Priori Convergence Theory.

3.2.1 Optimality. We consider here the convergence rate of
uN(m)→u(m) andsN(m)→s(m) asN→`. To begin, it is stan-
dard to demonstrate optimality ofuN(m) in the sense that

iu~m!2uN~m!iX<Ag~m!

a~m!
inf

wNPWN

iu~m!2wNiX . (8)

~We note that, in the coercive case, stability of our~‘‘conform-
ing’’ ! discrete approximation is not an issue; the noncoercive case
is decidedly more delicate~see Section 5.3.1!.! Furthermore, for
our compliance output,

s~m!5sN~m!1l ~u2uN!5sN~m!1a~u,u2uN ;m!

5sN~m!1a~u2uN ,u2uN ;m! (9)

from symmetry and Galerkin orthogonality. It follows thats(m)
2sN(m) converges as the square of the error in the best approxi-
mation and, from coercivity, thatsN(m) is a lower bound for
s(m).

3.2.2 Best Approximation.It now remains to bound the de-
pendence of the error in the best approximation as a function ofN.
At present, the theory is restricted to the case in whichP51, D
5@0,mmax#, and

a~w,v;m!5a0~w,v !1ma1~w,v !, (10)

wherea0 is continuous, coercive, and symmetric, anda1 is con-
tinuous, positive semi-definite (a1(w,w)>0, ;wPX), and sym-
metric. This model problem~10! is rather broadly relevant, for2TRUSS: http://augustine.mit.edu/simple–truss/simple–truss.pdf

Fig. 2 A truss structure
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example to variable orthotropic conductivity, variable rectilinear
geometry, variable piecewise-constant conductivity, and variable
Robin boundary conditions.

We now suppose that themn , n51, . . . , N, are logarithmically
distributed in the sense that

ln~ l̄mn11!5
n21

N21
ln~ l̄mmax11!, n51, . . . ,N, (11)

where l̄ is an upper bound for the maximum eigenvalue ofa1

relative toa0 . ~Note l̄ is perforce bounded thanks to our assump-
tion of continuity and coercivity; the possibility of a continuous
spectrum does not, in practice, pose any problems.! We can then
prove ~Maday et al.@19#! that, forN.Ncrit[e ln(l̄mmax11),

inf
wNPWN

iu~m!2wNiX<~11mmaxl̄ !iu~0!iX

3expH 2~N21!

~Ncrit21!J , ;mPD. (12)

We observe exponential convergence, uniformly~globally! for all
m in D, with only very weak~logarithmic! dependence on the
range of the parameter (mmax). ~Note the constants in~12! are for
the particular case in which (•,•)X5a0(•,•).!

The proof exploits a parameter-space~nonpolynomial! interpo-
lant as a surrogate for the Galerkin approximation. As a result, the
bound is not always ‘‘sharp:’’ we observe many cases in which the
Galerkin projection is considerably better than the associated in-
terpolant; optimality ~8! chooses to ‘‘illuminate’’ only certain
points mn , automatically selecting a best ‘‘subapproximation’’
among all~combinatorially many! possibilities. We thus see why
reduced-basisstate-spaceapproximation ofs(m) via u(m) is pre-
ferred to simpleparameter-spaceinterpolation of s(m) ~‘‘con-
necting the dots’’! via (mn ,s(mn)) pairs. We note, however, that
the logarithmic point distribution ~11! implicated by our
interpolant-based arguments isnot simply an artifact of the proof:
in numerous numerical tests, the logarithmic distribution performs
considerably~and in many cases, provably! better than other more
obvious candidates, in particular for large ranges of the parameter.
Fortunately, the convergence rate is nottoo sensitive to point se-
lection: the theory only requires a log ‘‘on the average’’ distribu-
tion ~Maday et al.@19#!; and, in practice,l̄ need not be a sharp
upper bound.

The result~12! is certainly tied to the particular form~10! and
associated regularity ofu(m). However, we do observe similar
exponential behavior for more general operators; and, most im-
portantly, the exponential convergence rate degrades only very
slowly with increasing parameter dimension,P. We present in
Table 1 the errorus(m)2sN(m)u/s(m) as a function ofN, at a
particular representative pointm in D, for the two-dimensional
thermal fin problem of Section 2.2.1; we present similar data in
Table 2 for the truss problem of Section 2.2.2. In both cases, since
tensor-product grids are prohibitively profligate asP increases, the
mn are chosen ‘‘log-randomly’’ overD: we sample from a multi-

variate uniform probability density on log(m). We observe that, for
both the thermal fin (P57) and truss (P54) problems, the error
is remarkably small even for very smallN; and that, in both cases,
very rapid convergence obtains asN→`. We do not yet have any
theory for P.1. But certainly the Galerkin optimality plays a
central role, automatically selecting ‘‘appropriate’’ scattered-data
subsets ofSN and associated ‘‘good’’ weights so as to mitigate the
curse of dimensionality asP increases; and the log-random point
distribution is also important—for example, for the truss problem
of Table 2, anon-logarithmicuniform random point distribution
for SN yields errors which are larger by factors of 20 and 10 for
N530 and 80, respectively.

3.3 Computational Procedure. The theoretical and empiri-
cal results of Sections 3.1 and 3.2 suggest thatN may, indeed, be
chosen very small. We now develop off-line/on-line computa-
tional procedures that exploit this dimension reduction.

We first expressuN(m) as

uN~m!5(
j 51

N

uN j~m!z j5~uI N~m!!TzI , (13)

where uI N(m)PRN; we then choose for test functionsv5z i , i
51, . . . , N. Inserting these representations into~7! yields the de-
sired algebraic equations foruI N(m)PRN,

AI N~m!uI N~m!5FI N , (14)

in terms of which the output can then be evaluated assN(m)
5FI N

TuI N(m). HereAI N(m)PRN3N is the SPD matrix with entries
AN i, j (m)[a(z j ,z i ;m), 1< i , j <N, and FI NPRN is the ‘‘load’’
~and ‘‘output’’! vector with entriesFN i[ f (z i), i 51, . . . , N.

We now invoke~2! to write

AN i, j~m!5a~z j ,z i ;m!5(
q51

Q

sq~m!aq~z j ,z i !, (15)

or

AI N~m!5(
q51

Q

sq~m!AI N
q ,

where the AI N
q PRN3N are given by AN i, j

q 5aq(z j ,z i), i< i , j
<N, 1<q<Q. The off-line/on-line decomposition is now clear.
In the off-line stage, we compute theu(mn) and form theAI N

q and
FI N : this requiresN ~expensive! ‘‘ a’’ finite element solutions and
O(QN2) finite-element-vector inner products. In theon-linestage,
for any given newm, we first formAI N from ~15!, then solve~14!
for uI N(m), and finally evaluatesN(m)5FI N

TuI N(m): this requires
O(QN2)1O(2/3 N3) operations andO(QN2) storage.

Thus, as required, the incremental, or marginal, cost to evaluate
sN(m) for any given newm—as proposed in a design, optimiza-
tion, or inverse-problem context—is very small: first, becauseN is
very small, typically O(10)—thanks to the good convergence
properties ofWN ; and second, because~14! can be very rapidly

Table 1 Error, error bound „Method I …, and effectivity as a
function of N, at a particular representative point m«D, for the
two-dimensional thermal fin problem „compliant output …

N us(m)2sN(m)u/s(m) DN(m)/s(m) hN(m)

10 1.2931022 8.6031022 2.85
20 1.2931023 9.3631023 2.76
30 5.3731024 4.2531023 2.68
40 8.0031025 5.3031024 2.86
50 3.9731025 2.9731024 2.72
60 1.3431025 1.2731024 2.54
70 8.1031026 7.7231025 2.53
80 2.5631026 2.2431025 2.59

Table 2 Error, error bound „Method II …, and effectivity as a
function of N, at a particular representative point m«D, for the
truss problem „compliant output …

N us(m)2sN(m)u/s(m) DN(m)/s(m) hN(m)

10 3.2631022 6.4731022 1.98
20 2.5631024 4.7431024 1.85
30 7.3131025 1.3831024 1.89
40 1.9131025 3.5931025 1.88
50 1.0931025 2.0831025 1.90
60 4.1031026 8.1931026 2.00
70 2.6131026 5.2231026 2.00
80 1.1931026 2.3931026 2.00
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assembled and inverted—thanks to the off-line/on-line decompo-
sition ~see Balmes@9# for an earlier application of this strategy
within the reduced-basis context!. For the problems discussed in
this paper, the resulting computational savings relative to standard
~well-designed! finite-element approaches are significant, at least
O(10), typicallyO(100), and oftenO(1000) or more.

4 A Posteriori Error Estimation: Output Bounds
From Section 3 we know that, in theory, we can obtainsN(m)

very inexpensively: the on-line computational effort scales as
O(2/3 N3)1O(QN2); and N can, in theory, be chosen quite
small. However,in practice, we do not knowhowsmallN can be
chosen: this will depend on the desired accuracy, the selected
output~s! of interest, and the particular problem in question; in
some casesN55 may suffice, while in other cases,N5100 may
still be insufficient. In the face of this uncertainty, either too many
or too few basis functions will be retained: the former results in
computational inefficiency; the latter in unacceptable
uncertainty---particularly egregious in the decision contexts in
which reduced-basis methods typically serve. We thus needa pos-
teriori error estimators forsN . Surprisingly, a posteriori error
estimation has received relatively little attention within the
reduced-basis frame-work~Noor and Peters@8#!, even though
reduced-basis methods are particularly in need of accuracy assess-
ment: the spaces aread hocand pre-asymptotic, thus admitting
relatively little intuition, ‘‘rules of thumb,’’ or standard approxi-
mation notions.

Recall that, in this section, we continue to assume thata is
coercive and symmetric, and thatl is ‘‘compliant.’’

4.1 Method I. The approach described in this section is a
particular instance of a general ‘‘variational’’ framework fora
posteriori error estimation of outputs of interest. However, the
reduced-basis instantiation described here differs significantly
from earlier applications to finite element discretization error~Ma-
day et al.@20#, Machiels et al.@21#! and iterative solution error
~Patera and Rønquist@22#! both in the choice of~energy! relax-
ation and in the associated computational artifice.

4.1.1 Formulation. We assume that we are given a positive
function g(m):D→R1 , and a continuous, coercive, symmetric
~m-independent! bilinear from â:X3X→R, such that

aI 0iviX
2<g~m!â~v,v !<a~v,v;m!, ;vPX,;mPD (16)

for some positive real constantaI 0 . We then findê(m)PX such
that

g~m!â~ ê~m!,v !5R~v;uN~m!;m!, ;vPX, (17)

where for a givenwPX, R(v;w;m)5l (v)2a(w,v;m) is the
weak form of the residual. Our lower and upper output estimators
are then evaluated as

sN
2~m![sN~m!, and sN

1~m![sN~m!1DN~m!, (18)

respectively, where

DN~m![g~m!â~ ê~m!,ê~m!! (19)

is the estimator gap.

4.1.2 Properties. We shall prove in this section thatsN
2(m)

<s(m)<sN
1(m), and hence thatus(m)2sN(m)u5s(m)2sN(m)

<DN(m). Our lower and upper output estimators are thus lower
and upper outputbounds; and our output estimator gap is thus an
outputboundgap—a rigorous bound for the error in the output of
interest. It is also critical thatDN(m) be a relativelysharpbound
for the true error: a poor~overly large! bound will encourage us to
refine an approximation which is, in fact, already adequate—with
a corresponding~unnecessary! increase in off-line and on-line
computational effort. We shall prove in this section thatDN(m)
<(g0 /aI 0)(s(m)2sN(m)), where g0 and aI 0 are the

N-independent a-continuity andg(m)â-coercivity constants de-
fined earlier. Our two results of this section can thus be summa-
rized as

1<hN~m!<Const, ;N, (20)

where

hN~m!5
DN~m!

s~m!2sN~m!
(21)

is the effectivity, and Const is a constant independent ofN. We
shall denote the left~bounding property! and right ~sharpness
property! inequalities of~20! as the lower effectivity and upper
effectivity inequalities, respectively.

We first prove the lower effectivity inequality~bounding prop-
erty!: sN

2(m)<s(m)<sN
1(m), ;mPD, for sN

2(m) andsN
1(m) de-

fined in ~18!. The lower bound property follows directly from
Section 3.2.1. To prove the upper bound property, we first observe
that R(v;uN ;m)5a(u(m)2uN(m),v;m)5a(e(m),v;m), where
e(m)[u(m)2uN(m); we may thus rewrite ~17! as
g(m)â(ê(m),v)5a(e(m),v;m),;vPX. We thus obtain

g~m!â~ ê,ê!5g~m!â~ ê2e,ê2e!12g~m!â~ ê,e!2g~m!â~e,e!

5g~m!â~ ê2e,ê2e!1~a~e,e;m!2g~m!â~e,e!!

1a~e,e;m!

>a~e,e;m! (22)

since g(m)â(ê(m)2e(m),ê(m)2e(m))>0 and a(e(m),e(m);
m)2g(m)â(em),e(m))>0 from ~16!. Invoking ~9! and ~22!,
we then obtains(m)2sN(m)5a(e(m),e(m);m)<g(m)â(ê(m),
ê(m)); and thuss(m)<sN(m)1g(m)â(ê(m),ê(m))[sN

1(m), as
desired.

We next prove the upper effectivity inequality~sharpness
property!:

hN~m!5
DN~m!

s~m!2sN~m!
<

g0

aI 0
, ;N.

To begin, we appeal toa-continuity and g(m)â-coercivity to
obtain

a~ ê~m!,ê~m!;m!<
g0g~m!

aI 0
â~ ê~m!,ê~m!!. (23)

But from the modified error equation~17! we know that
g(m)â(ê(m),ê(m))5a(e(m),ê(m);m). Invoking the Cauchy-
Schwartz inequality, we obtain

g~m!â~ ê,ê!5a~e,ê;m!

<~a~ ê,ê;m!!1/2~a~e,e;m!!1/2

<S g0

aI 0
D 1/2

~g~m!â~ ê,ê!!1/2~a~e,e;m!!1/2;

the desired result then directly follows from~19! and ~9!.
We now provide empirical evidence for~20!. In particular, we

present in Table 1 the bound gap and effectivities for the thermal
fin example. Clearly,hN(m) is always greater than unity for any
N, and bounded---indeed, quite close to unity---asN→`.

4.1.3. Computational Procedure.Finally, we turn to the com-
putational artifice by which we can efficiently computeDN(m) in
the on-line stage of our procedure. We again exploit the affine
parameter dependence, but now in a less transparent fashion. To
begin, we rewrite the ‘‘modified’’ error equation,~17!, as

â~ ê~m!,v !5
1

g~m! S l ~v !2(
q51

Q

(
j 51

N

sq~m!uN j~m!aq~z j ,v !D ,

;vPX,
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where we have appealed to our reduced-basis approximation~13!
and the affine decomposition~2!. It is immediately clear from
linear superposition that we can expressê(m) as

ê~m!5
1

g~m! S ẑ01(
q51

Q

(
j 51

N

sq~m!uN j~m!ẑj
qD , (24)

where ẑ0PX satisfies â( ẑ0 ,v)5l (v), ;vPX, and ẑj
qPX, j

51, . . . ,N, q51, . . . ,Q, satisfies â( ẑj
q ,v)52aq(z j ,v), ;v

PX. Inserting ~24! into our expression for the upper bound,
sN

1(m)5sN(m)1g(m)â(ê(m),ê(m)), we obtain

sN
1~m!

5sN~m!1
1

g~m! S c012(
q51

Q

(
j 51

N

sq~m!uN j~m!L j
q

1(
q51

Q

(
q851

Q

(
j 51

N

(
j 851

N

sq~m!sq8~m!uN j~m!uN j8~m!G j j 8
qq8D

(25)

wherec05â( ẑ0 ,ẑ0), L j
q5â( ẑ0 ,ẑj

q), andG j j 8
qq85â( ẑj

q ,ẑj 8
q8).

The off-line/on-line decomposition should now be clear. In the
off-line stage we computeẑ0 and ẑj

q , j 51, . . . ,N, q51, . . . ,Q,

and then formc0 , L j
q , andG j j 8

qq8 : this requiresQN11 ~expen-
sive! ‘‘ â’’ finite element solutions, andO(Q2N2) finite-element-
vector inner products. In theon-line stage, for any given newm,
we evaluatesN

1 as expressed in~25!: this requiresO(Q2N2) op-

erations andO(Q2N2) storage~for c0 , L j
q , andG j j 8

qq8!. As for the
computation ofsN(m), the marginal cost for the computation of
sN

6(m) for any given newm is quite small—in particular, it is
independentof the dimension of the truth finite element approxi-
mation spaceX.

There are a variety of ways in which the off-line/on-line de-
composition and output error bounds can be exploited. A particu-
larly attractive mode incorporates the error bounds into an on-line
adaptive process, in which we successively approximatesN(m) on
a sequence of approximation spacesWN

j8
,WN , Nj85N02 j ---for

example,WN
j8

may contain theNj8 samples points ofSN closest to

the newm of interest---untilDN
j8

is less than a specified error

tolerance. This procedure both minimizes the on-line computa-
tional effort and reduces conditioning problems—while simulta-
neously ensuring accuracy and certainty.

The essential advantage of the approach described in this sec-
tion is the guarantee of rigorous bounds. There are, however, cer-
tain disadvantages. The first set of disadvantages relates to the
choice ofg(m) and â. In many cases, simple inspection suffices:
for example, in our thermal fin problem of Section 2.2.1,g(m)
5minq51, . . . ,Q sq(m) andâ(w,v)5(q51

Q aq(w,v) yields the very
good effectivities summarized in Table 1. In other cases, however,
there is no self-evident~or readily computed, Maday et al.@23#!
good choice: for example, for the truss problem of Section 2.2.2,
the existence of almost-pure rotations rendersg(m) very small
relative tog~m!, with corresponding detriment tohN(m). The sec-
ond set of disadvantages relates to the computational expense—
theO(Q) off-line and theO(Q2) on-line scaling induced by~24!
and~25!, respectively. Both of these disadvantages are eliminated
in the ‘‘Method II’’ to be discussed in the next section; however
‘‘Method II’’ only provides asymptoticbounds asN→`. The
choice thus depends on the relative importance of absolute cer-
tainty and computational efficiency.

4.2. Method II. As already indicated, Method I has certain
limitations; we discuss here a Method II which addresses these
limitations, albeit at the loss of complete certainty.

4.2.1. Formulation. To begin, we setM.N, and introduce a
parameter sampleSM5$m1 , . . . ,mM% and associated reduced-
basis approximation space WM5span$zm[u(mm),m
51, . . . ,M %; for both theoretical and practical reasons we require
SN,SM and thereforeWN,WM . The procedure is very simple:
we first find uM(m)PWM such thata(uM(m),v;m)5 f (v), ;v
PWM ; we then evaluatesM(m)5l (uM(m)); and, finally, we
compute our upper and lower output estimators as

sN,M
2 ~m!5sN~m!, sN,M

1 ~m!5sN~m!1DN,M~m!, (26)

whereDN,M(m), the estimator bound gap, is given by

DN,M~m!5
1

t
~sM~m!2sN~m!! (27)

for sometP(0,1). The effectivity of the approximation is defined
as

hN,M~m!5
DN,M~m!

s~m!2sN~m!
. (28)

For our purposes here, we shall considerM52N.

4.2.2. Properties. As for Method I, we would like to prove the
effectivity inequality 1<hN,2N(m)<Const, ;N. However, we
will only be able to demonstrate an asymptotic form of this in-
equality. Furthermore, the latter shall require, and we shall make,
the hypothesis that

«N,2N~m![
s~m!2s2N~m!

s~m!2sN~m!
→0, as N→`. (29)

We note that the assumption~29! is certainly plausible: if oura
priori bound of ~12! in fact reflects asymptotic behavior, then
s(m)2sN(m);c1e2c2N, s(m)2s2N(m);c1e22c2N, and hence
«N,2N(m);e2c2N, as desired.

We first prove the lower effectivity inequality~bounding prop-
erty!: sN,2N

2 (m)<s(m)<sN,2N
1 (m), asN→`. To demonstrate the

lower bound we again appeal to~9! and the coercivity ofa; in-
deed, this result~still! obtains forall N. To demonstrate the upper
bound, we write

sN,2N
1 ~m!5s~m!1S 1

t
21D ~s~m!2sN~m!!2

1

t
~s~m!2s2N~m!!

(30)

5s~m!1S 1

t
@12«N,2N~m!#21D ~s~m!2sN~m!!.

(31)

We now recall thats(m)2sN(m)>0, and that 0,t,1—that is,
1/t.1; it then follows from ~31! and our hypothesis~29! that
there exists a finiteN* such that

sN,2N
1 ~m!2s~m!>0, ;N.N* . (32)

This concludes the proof: we obtainasymptoticbounds.
We now prove the upper effectivity inequality~sharpness prop-

erty!. From the definitions ofhN,2N(m), DN,2N(m) and«N,2N(m),
we directly obtain

hN,2N~m!5
1

t

s2N~m!2sN~m!

s~m!2sN~m!

5
1

t

~s2N~m!2s~m!!2~sN~m!2s~m!!

~s~m!2sN~m!!
(33)

5
1

t
~12«N,2N~m!!. (34)

It is readily shown thathN,2N(m) is bounded from above by 1/t
for all N: we know from~9! that«N,2N(m) is strictly non-negative.
It can also readily be shown thathN,2N(m) is non-negative: since
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WN,W2N , it follows from ~8! ~for (•,•)X5a(•,•;m)! and ~9!
that s(m)>s2N(m)>sN(m), and hence«N,2N(m)<1. We thus
conclude that 0<hN,2N(m)<1/t for all N. Furthermore, from our
hypothesis on«N,2N(m), ~29!, we know thathN,2N(m) will tendto
1/t asN increases.

The essential approximation enabler is exponential conver-
gence: we obtain bounds even for rather smallN and relatively
larget. We thus achieve both ‘‘near’’ certaintyandgood effectivi-
ties. We demonstrate this claim in Table 2, in which we present
the bound gap and effectivity for our truss example of Section
2.2.2; the results tabulated correspond to the choicet51/2. We
clearly obtain bounds for allN; and we observe thathN,2N(m)
does, indeed, rather quickly approach 1/t.

4.2.3. Computational Procedure.Since the error bounds are
based entirely on evaluation of the output,we can directly adapt
the off-line/on-line procedure of Section 3.3. Note that the calcu-
lation of the output approximationsN(m) and the output bounds
are now integrated:AI N(m) and FI N(m) ~yielding sN(m)! are a
sub-matrix and sub-vector ofAI 2N(m) and FI 2N(m) ~yielding
s2N(m), DN,2N(m), and sN,2N

6 (m)!, respectively. In theoff-line
stage, we compute theu(mn) and form theAI 2N

q and FI 2N : this
requires 2N ~expensive! ‘‘ a’’ finite element solutions, and
O(4QN2) finite-element-vector inner products. In theon-line
stage, for any given newm, we first formAI N(m), FI N andAI 2N(m),
FI 2N , then solve foruI N(m) and uI 2N(m), and finally evaluate
sN,2N

6 (m): this requiresO(4QN2)1O(16/3 N3) operations and
O(4QN2) storage. The on-line effort for this Method II predictor/
error estimator procedure~based onsN(m) ands2N(m)! will thus
require eightfold more operations than the ‘‘predictor-only’’ pro-
cedure of Section 3.

Method II is in some sense very naı¨ve: we simply replace the
true outputs(m) with a finer-approximation surrogates2N(m).
~There are more obscure ways to describe the method—in terms
of a reduced-basis approximation for the error—however, there is
little to be gained from these alternative interpretations.! The es-
sential computation enabler is again exponential convergence,
which permits us to chooseM52N—hence controlling the addi-
tional computational effort attributable to error estimation—while
simultaneously ensuring that«N,2N(m) tends rapidly to zero. Ex-
ponential convergence also ensures that the cost to compute both
sN(m) and s2N(m) is ‘‘negligible.’’ In actual practice, since
s2N(m) is available, we can of course takes2N(m), rather than
sN(m), as our output prediction; this greatly improves not only
accuracy, but also certainty—DN,2N(m) is almost surely a bound
for s(m)—s2N(m), albeit an exponentially conservative bound as
N tends to infinity.

5. Extensions

5.1. Noncompliant Outputs and Nonsymmetric Operators.
In Sections 3 and 4 we formulate the reduced-basis method and
associated error estimation procedure for the case of compliant
outputs,l (v)5 f (v), ;vPX. We briefly summarize here the for-
mulation and theory for more general linear bounded output func-
tionals; moreover, the assumption of symmetry~but not yet coer-
civity! is relaxed, permitting treatment of a wider class of
problems---a representative example is the convection-diffusion
equation, in which the presence of the convective term renders the
operator nonsymmetric. We first present the reduced-basis ap-
proximation, now involving a dual or adjoint problem; we then
formulate the associateda posteriorierror estimators; and we con-
clude with a few illustrative results.

As a preliminary, we first generalize the abstract formulation of
Section 2.1. As before, we define the ‘‘primal’’ problem as in~4!,
however we of course no longer require symmetry. But we also
introduce an associated adjoint or ‘‘dual’’ problem: for anym
PX, find c(m)PX such that

a~v,c~m!;m!52l ~v !, ;vPX; (35)

recall thatl (v) is our output functional.

5.1.1. Reduced-Basis Approximation.To develop the reduced-
basis space, we first choose, randomly or log-randomly as de-
scribed in Section 3.2, a sample set in parameter space,SN/2
5$m1 , . . . ,mN/2%, where m iPD, i 51, . . . ,N/2 ~N even!. We
next define an ‘‘integrated’’ Lagrangian reduced-basis approxima-
tion space,WN5span$(u(mn),c(mn)),n51, . . . ,N/2%.

For any mPD, our reduced basis approximation is then ob-
tained by standard Galerkin projection ontoWN ~though for highly
nonsymmetric operators minimum residual and Petrov-Galerkin
projections are attractive—stabler—alternatives!. To wit, for the
primal problem, we finduN(m)PWN such thata(uN(m),v;m)
5 f (v), ;vPWN ; and for the adjoint problem, we define
~though, unless otherwise indicated, donot compute! cN(m)
PWN such that a(v,cN(m);m)52l (v), ;vPWN . The
reduced-basis output approximation is then calculated from
sN(m)5l (uN(m)).

Turning now to thea priori theory, it follows from standard
arguments thatuN(m) andcN(m) are ‘‘optimal’’ in the sense that

iu~m!2uN~m!iX<S 11
g~m!

a~m! D inf
wNPWN

iu~m!2wNiX ,

ic~m!2cN~m!iX<S 11
g~m!

a~m! D inf
wNPWN

ic~m!2wNiX .

The best approximation analysis is then similar to that presented
in Section 3.2. As regards our output, we now have

us~m!2sN~m!u5ul ~u~m!!2l ~uN~m!!u

5ua~u2uN ,c;m!u

5ua~u2uN ,c2cN ;m!u<g0iu2uNiXic2cNiX

(36)

from Galerkin orthogonality, the definition of the primal and the
adjoint problems, and the Cauchy-Schwartz inequality. We now
understand why we include thec(mn) in WN : to ensure that
ic(m)2cN(m)iX is small. We thus recover the ‘‘square’’ effect in
the convergence rate of the output, albeit~and unlike the symmet-
ric case! at the expense of some additional computational effort—
the inclusion of thec(mn) in WN ; typically, even for the very
rapidly convergent reduced-basis approximation, the ‘‘fixed error-
minimum cost’’ criterion favors the adjoint enrichment.

For simplicity of exposition~and to a certain extent, implemen-
tation!,we present here the ‘‘integrated’’ primal-dual approxima-
tion space. However, there are significant computational and con-
ditioning advantages associated with a ‘‘nonintegrated’’ approach,
in which we introduceseparateprimal (u(mn)) and dual (c(mn))
approximation spaces foru(m) and c~m!, respectively. Note in
the ‘‘nonintegrated’’ case we are obliged to computecN(m), since
to preserve the output error ‘‘square effect’’ we must
modify our predictor with a residual correction,f (cN(m))
2a(uN(m),cN(m);m) ~Maday et al.@23#!. Both the ‘‘integrated’’
and ‘‘nonintegrated’’ approaches admit an off-line/on-line decom-
position similar to that described in Section 3.3 for the compliant,
symmetric problem; as before, the on-line complexity and storage
are independent of the dimension of the very fine~‘‘truth’’ ! finite
element approximation.

5.1.2. Method I A Posteriori Error Estimators.We extend
here the method developed in Section 4.1.2 to the more general
case of noncompliant and nonsymmetric problems. We begin with
the formulation.

We first find êpr(m)PX such that

g~m!â~ êpr~m!,v !5Rpr~v;uN~m!;m!, ;vPX,

where Rpr(v;w;m)[ f (v)2a(w,v;m), ;vPX; and êdu(m)PX
such that
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g~m!â~ êdu~m!,v !5Rdu~v;cN~m!;m!, ;vPX,

where Rdu(v;w;m)[2l (v)2a(v,w;m), ;vPX. We then
define

s̄N~m!5sN~m!2
g~m!

2
â~ êpr~m!,êdu~m!!, and (37)

DN~m!5
g~m!

2
@ â~ êpr~m!,êpr~m!!#1/2@ â~ êdu~m!,êdu~m!!#1/2.

(38)

Finally, we evaluate our lower and upper estimators assN
6(m)

5 s̄N(m)6DN(m). Note that, as before,g(m) and â still satisfy
~16!; and that, furthermore,~16! will only involve the symmetric
part of a. We define the effectivity as

hN~m!5
DN~m!

us~m!2sN~m!u
; (39)

note thats(m)2sN(m) now has no definite sign.
We now prove that our error estimators are bounds~the lower

effectivity inequality!: sN
2(m)<s(m)<sN

1(m), ;N. To begin, we
defineê6(m)5êpr(m)71/k êdu(m), and note that, from the co-
ercivity of â,

kg~m!âS epr2
1

2
ê6,epr2

1

2
ê6D

5kg~m!â~epr,epr!

1
kg~m!

4
â~ ê6,ê6!2kg~m!â~ ê6,epr!>0, (40)

whereepr(m)5u(m)2uN(m), edu(m)5c(m)2cN(m), andk is
a positive real number. From the definition ofê6(m) andêpr(m),
êdu(m), we can express the ‘‘cross-term’’ as

g~m!â~ ê6,epr!5Rpr~epr;uN ;m!7
1

k
Rdu~epr;cN ;m!

5a~epr,epr;m!7
1

k
a~epr,edu;m!

5a~epr,epr;m!6
1

k
~s~m!2sN~m!!, (41)

since Rpr(epr;uN;m)5a(u,epr;m)2a(uN ,epr;m)5a(epr,epr;m),
Rdu(epr;cN;m)5a(epr,c;m)2a(epr,cN ;m)5a(epr,edu;m), and
l (u)2l (uN)52a(u2uN ,c;m)52a(u2uN ,c2cN ;m) ~by
Galerkin orthogonality!52a(epr,edu;m). We then substitute~41!
into ~40! to obtain

6~s~m!2sN~m!!<2k~a~epr,epr;m!2g~m!â~epr,epr!!

1
kg~m!

4
â~ ê6,ê6!<

kg~m!

4
â~ ê6,ê6!,

since k.0 and a(epr(m),epr(m);m)2g(m)â(epr(m),epr(m))>0
from ~16!.

Expandingê6(m)5êpr(m)71/k êdu(m) then gives

6~s~m!2sN~m!!

<
g~m!

4 Fkâ~ êpr,êpr!1
1

k
â~ êdu,êdu!72â~ êpr,êdu!G ,

or

6S s~m!2S sN~m!2
g~m!

2
â~ êpr,êdu! D D

<
kg~m!

4
â~ êpr,êpr!1

g~m!

4k
â~ êdu,êdu!. (42)

We now choosek~m! as

k~m!5S â~ êdu~m!,êdu~m!!

â~ êpr~m!,êpr~m!! D
1/2

so as to minimize the right-hand side~42!; we then obtain

us~m!2 s̄N~m!u<DN~m!, (43)

and hencesN
2(m)<s(m)<sN

1(m).
We now turn to the upper effectivity inequality~sharpness

property!. If the primal and dual errors area-orthogonal, or
become increasingly orthogonal asN increases, then the effectiv-
ity will not, in fact, be bounded asN→`. However, if we
make the ~plausible! hypothesis that us(m)2sN(m)u
>CI iepr(m)iXiedu(m)iX, then it is simple to demonstrate that

hN~m!<
g0

2

2CI aI 0
. (44)

In particular, it is an easy matter to demonstrate thatg1/2(m)
3(â(êpr(m),êpr(m)))1/2<g0 /aI 0

1/2iepr(m)iX ~note we lose a factor
of g0

1/2 relative to the symmetric case!; similarly, g1/2(m)
3(â(êdu(m),êdu(m)))1/2<g0 /aI 0

1/2iedu(m)iX. The desired result
then directly follows from the definition ofDN(m) and our hy-
pothesis onus(m)2sN(m)u.

Finally, turning to computational issues, we note that the off-
line/on-line decomposition described in Section 4.1 for compliant
symmetric problems directly extends to the noncompliant, non-
symmetric case—except that we must compute the norm of both
the primal and dual ‘‘modified errors,’’ with a concomitant dou-
bling of computational effort.

5.1.3 Method II A Posteriori Error Estimators.We discuss
here the extension of Method II of Section 4.2 to noncompliant
outputs and nonsymmetric operators.

To begin, we setM.N, M even, and introduce a parameter
sample SM /25$m1 , . . . ,mM /2% and associated ‘‘integrated’’
reduced-basis approximation spaceWM5span$u(mm),c(mm),m
51, . . . ,M /2%. We first find uM(m)PWM such that
a(uM(m),v;m)5 f (v), ;vPWM ; we then evaluatesM(m)
5l (uM(m)); and finally, we compute our upper and lower output
estimators as

sN,M
6 ~m!5sN~m!1

1

2t
~sM~m!2sN~m!!6

1

2
DN,M~m!, (45)

DN,M~m!5
1

t
usM~m!2sN~m!u, (46)

for tP(0,1). The effectivity of the approximation is defined as

hN,M~m!5
DN,M~m!

us~m!2sN~m!u
. (47)

We shall again only considerM52N.
As in Section 4.2, we would like to prove that 1<hN,2N(m)

<Const for sufficiently largeN; and, as in Section 4.2, we must
again make the hypothesis~29!. We first consider the lower effec-
tivity inequality ~bounding property!, and prove that

sN,2N
2 ~m!<s~m!<sN,2N

1 ~m!, as N→`. (48)

In particular, simple algebraic manipulations yield

sN,2N
2 ~m!5s~m!2

1

12«N,2N
usN~m!2s2N~m!u

3H 1 s2N~m!>sN~m!

1

t
~12«N,2N!21 s2N~m!,sN~m!

, (49)
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sN,2N
1 ~m!5s~m!1

1

12«N,2N
usN~m!2s2N~m!u

3H 1

t
~12«N,2N!21 s2N~m!>sN~m!

1 s2N~m!,sN~m!

. (50)

The desired result then directly follows from our hypothesis on
«N,2N , ~29!, and the range oft.

The proof for the upper effectivity inequality~sharpness prop-
erty! parallels the derivation of Section 4.2.2. In particular, we
write

hN,2N~m!5

1

t
us2N2sNu

us2sNu
5

1

t
us2N2s1s2sNu

us2sNu
(51)

5
1

t
u12«N,2Nu; (52)

from our hypothesis~29! we may thus conclude thathN,2N(m)
→1/t asN→`. Note in the noncompliant, nonsymmetric case we
can make no stronger statement.

We demonstrate our effectivity claims in Table 3, in which we
present the error, bound gap, and effectivity for the noncompliant
output ~s2(m), average stress! of the truss example of Section
2.2.2; the results tabulated correspond to the choicet51/2. We
clearly obtain bounds for allN; and the effectivity rather quickly
approaches 1/t ~for N>120,hN,2N(m) remains fixed at 1/t52.0!.

5.2 Eigenvalue Problems. We next consider the extension
of our approach to symmetric positive definite eigenvalue prob-
lems. The eigenvalues of appropriately defined partial-differential-
equation eigenproblems convey critical information about a physi-
cal system: in linear elasticity, the critical buckling load; in
dynamic analysis of structures, the resonant modes; in conduction
heat transfer, the equilibrium timescales. Solution of large-scale
eigenvalue problems is computationally intensive: the reduced-
basis method is thus very attractive.

The abstract statement of our eigenvalue problem is: find
(ui(m),l i(m))PX3R, i 51, . . . , such that

a~ui~m!,v;m!5l i~m!m~ui~m!,v;m!, ;vPX,

and m~ui~m!,ui~m!;m!51. (53)

Here a is the continuous, coercive, symmetric form introduced
earlier, andm is ~say! the L2 inner product overV. The assump-
tions ona and m imply the eigenvaluesl i(m) will be real and
positive. We order the eigenvalues~and corresponding eigenfunc-
tionsui! such that 0,l1(m),l2(m)< . . . ; weshall assume that
l1(m) and l2(m) are distinct. We suppose that our output of
interest is the minimum eigenvalue,

s~m!5l1~m!; (54)

other outputs may also be considered.

Following ~Machiels et al.@24#!, we present here a reduced-
basis predictor and a Method I error estimator for symmetric
positive-definite eigenvalue problems; we also briefly describe the
simpler Method II approach.

5.2.1 Reduced-Basis Approximation.We sample, randomly
or log-randomly, our design spaceD to create the parameter
sample SN/25$m1 , . . . ,mN/2%; we then introduce the reduced-
basis spaceWN5span$u1(m1),u2(m1), . . . ,u1(mN/2),u2(mN/2)%,
where we recall thatu1(m) and u2(m) are the eigenfunctions
associated with the first~smallest! and second eigenvaluesl1(m)
and l2(m), respectively. Note thatWN has good approximation
properties both for the first and second lowest eigenfunctions, and
hence eigenvalues; this is required by the Method I error estimator
to be presented below. Our reduced-order approximation is then:
find (uNi(m),lNi(m))PWN3R, i 51, . . . ,N, such that

a~uNi~m!,v;m!5lNi~m!m~uNi~m!,v;m!, ;vPWN ,

and m~uNi~m!,uNi~m!;m!51; (55)

the output approximation is thensN(m)5lN1(m).
The formulation admits an on-line/off-line decomposition

~Machiels et al.@24#! very similar to the approach described for
equilibrium problems in Section 3.

5.2.2 Method I A Posteriori Error Estimators.As before, we
assume that we are given a positive functiong(m):D→R1 and a
continuous, coercive, symmetric bilinear formâ(w,v):X3X
→R, that satisfy the inequality~16!. We then findê(m)PX such
that

g~m!â~ ê~m!,v !5@lN1m~uN1~m!,v;m!2a~uN1~m!,v;m!#,

;vPX, (56)

in which the right-hand side is the eigenproblem equivalent of the
residual. We then evaluate our estimators as

sN
1~m!5lN1~m!, sN

2~m!5lN1~m!2DN~m!,

DN~m!5
g~m!

td~m!
â~ ê~m!,ê~m!!,

whered(m)512lN1(m)/lN2(m) andtP~0,1!. The effectivity is
defined ashN(m)5DN(m)/(lN1(m)2l1(m)).

We now consider the lower and upper effectivity inequalities.
As regards the lower effectivity inequality~bounding property!,
we of course obtainsN

1(m)>l1(m), ;N. The difficult result is
the lower bound: it can be proven~Machiels et al.@24#! that there
exists anN* (SN/2 ,m) such thatsN

2(m)<l1(m), ;N.N* . In
practice,N* 51, due to the good~theoretically motivated! choice
for d~m!; there is thus very little uncertainty in our~asymptotic!
bounds. We also prove in Machiels et al.@24# a result related
to the upper effectivity inequality~sharpness property!; in, prac-
tice, very good effectivities are obtained. To demonstrate these
claims we consider the eigenvalue problem associated with~the
homogeneous version! of our two-dimensional thermal fin ex-
ample of Section 2.2.1. We present in Table 4 the error, error

Table 4 Error, error bound „Method I …, and effectivities as a
function of N, at a particular representative point m«D, for the
thermal fin eigenproblem

N ul1(m)2lN1(m)u/l1(m) DN(m)/l1(m) hN(m)

10 1.1931022 6.6631022 5.63
20 1.0831023 7.1931023 6.65
30 6.2031024 3.1931023 5.17
40 1.7231024 1.5531023 9.44
50 3.4731025 4.0631024 11.74

Table 3 Error, error bound „Method II …, and effectivity as a
function of N, at a particular representative point m«D, for the
truss problem „noncompliant output …

N us(m)2sN(m)u/s(m) DN,2N(m)/s(m) hN,2N(m)

20 2.3531022 4.6731022 1.99
40 1.7431024 3.1931024 1.83
60 5.5931025 1.0631024 1.90
80 1.4431025 2.7331025 1.89
100 7.4531026 1.4031025 1.88
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bound, and effectivity as a function ofN at a particular pointm
PD. We observe rapid convergence, bounds for allN, and good
effectivities.

Finally, we note that our output estimator admits an off-line/on-
line decomposition similar to that for equilibrium problems; the
additional terms in~56! are readily treated through our affine
expansion/linear superposition procedure.

5.2.3 Method II A Posteriori Error Estimators.For Method
II, we no longer require an estimate for the second eigenvalue. We
may thus define SN5$m1 , . . . ,mN%, WN5span$u1(m i),i
51, . . . ,N%, and ~for M52N! S2N5$m1 , . . . ,m2N%.SN , W2N
5span$u1(m i),i 51, . . . ,2N%.WN . The reduced basis approxi-
mation now takes the form~53!, yielding sN(m)5lN1(m) and
~for N→2N! s2N(m)5l2N1(m). Our estimators are then given by

sN,2N
1 ~m!5lN1~m!, sN,2N

2 5lN1~m!2DN,2N~m!,

DN,2N~m!5
1

t
~sN~m!2s2N~m!! (57)

for tP(0,1). The effectivityhN,2N(m) is defined as for Method I.
For the lower effectivity inequality~bounding property!, we of

course retainsN,2N
1 (m)>l1(m), ;N. We also readily derive

sN,2N
2 (m)5l12(lN12l1)(1/t(12«N,2N)21); under our hy-

pothesis~29!, we thus obtain asymptotic bounds asN→`. For the
upper effectivity inequality~sharpness property!, we directly ob-
tain hN,2N51/t(12«N,2N). By variational arguments it is readily
shown that 0<«N,2N<1: we thus conclude that 0<hN,2N<1/t,
;N. Additionally, under hypothesis~29!, we deduce thathN,2N
→1/t asN→`.

5.3 Further Generalizations. In this section we briefly de-
scribe several additional extensions of the methodology. In each
case we focus on the essential new ingredient; further details~in
most cases! may be found in the referenced literature.

5.3.1 Noncoercive Linear Operators.The archetypical non-
coercive linear equation is the Helmholtz, or reduced-wave, equa-
tion; many~e.g., inverse scattering! applications of this equation
arise, for example, in acoustics and electromagnetics. The essen-
tial new mathematical ingredient is the loss of coercivity ofa. In
particular, well-posedness is now ensured only by the inf-sup con-
dition: there exists positiveb0 , b~m!, such that

0,b0<b~m!5 inf
wPX

sup
vPX

a~w,v;m!

iwiXiviX
, ;mPD. (58)

Two numerical difficulties arise due to this ‘‘weaker’’ stability
condition.

The first difficulty is preservation of the inf-sup stability condi-
tion for finite dimensional approximation spaces. To wit, although
in the coercive case restriction to the spaceWN actually increases
stability, in the noncoercive case restriction to the spaceWN can
easily decrease stability: the relevant supremizers may not be ad-
equately represented. Loss of stability can, in turn, lead to poor
approximations—the inf-sup parameter enters in the denominator
of thea priori convergence result. The second numerical difficulty
is estimation of the inf-sup parameter, which for noncoercive
problems plays the role ofg(m) in Method I a posteriori error
estimation techniques. In particular,b~m! can not typically be de-
duced analytically, and thus must be evaluated~via an eigenvalue
formulation! as part of the reduced-basis approximation. Our reso-
lution of both these difficulties involves two elements~Maday
et al. @23#!: first, we consider projections other than standard
Galerkin; and second, we consider ‘‘enriched’’ approximation
spaces.

In one approach~Maday et al.@23#!, we pursue a minimum-
residual projection: the~low-dimensional! infimizing space con-
tains both the solutionu and also the inf-sup infimizer at themn
sample points; and the~high-dimensional! supremizing space is
taken to beX. Stability is ensured and rigorous~sharp! error

bounds are obtained—though technically the bounds are only
asymptotic due to the approximation of the inf-sup parameter;
and, despite the presence ofX, the on-line complexity remains
independent of the dimension ofX—as in Section 3.3, we exploit
affine parameter dependence and linear superposition to precom-
pute the necessary inversions. In a second suite of much simpler
and more general approaches~see Maday et al.@23# for one ex-
ample in the symmetric case!, we exploit minimum-residual or
Petrov-Galerkin projections with infimizer-supremizer enriched,
but still very low-dimensional, infimizing and supremizing spaces.
Plausible but not yet completely rigorous arguments, and empiri-
cal evidence, suggest that stability is ensured and rigorous
asymptotic~and sharp! error bounds are obtained.

In Maday et al.@23# we focus entirely on Method Ia posteriori
error estimator procedures; but Method II techniques are also ap-
propriate. In particular, Method II approaches do not require ac-
curate estimation of the inf-sup parameter; we thus need be con-
cerned only with stability in designing our reduced-basis spaces.

5.3.2 Parabolic Partial Differential Equations.The next ex-
tension considered is the treatment of parabolic partial differential
equations of the formm(ut ,v;m)5a(u,v;m); typical examples
are time-dependent problems such as unsteady heat conduction—
the ‘‘heat’’ or ‘‘diffusion’’ equation. The essential new ingredient
is the presence of the time variable,t.

The reduced-basis approximation and error estimator proce-
dures are similar to those for noncompliant nonsymmetric prob-
lems, except that we now include the time variable as an addi-
tional parameter. Thus, as in certain other time-domain model-
order-reduction methods~Antoulas and Sorensen@25#, Sirovich
and Kirby @26#!, the basis functions are ‘‘snapshots’’ of the solu-
tion at selected time instants; however, in our case, we construct
anensembleof such series corresponding to different points in the
non-time parameter domainD. For rapid convergence of the out-
put approximation, the solutions to an adjoint problem, which
evolvesbackwardin time, must also be included in the reduced-
basis space.

For the temporal discretization method, many possible choices
are available. The most appropriate method, although not the only
choice, is the discontinuous Galerkin method~Machiels et al.
@27#!. The variational origin of the discontinuous Galerkin ap-
proach leads naturally to rigorous output bounds for Method Ia
posteriori errorestimators; the Method II approach is also directly
applicable. Under our affine assumption, off-line/on-line decom-
positions can be readily crafted; the complexity of the on-line
stage~calculation of the output predictor and associated bound
gap! is, as before, independent of the dimension ofX.

5.3.3 Locally Nonaffine Parameter Dependence.An impor-
tant restriction of our methods is the assumption of affine param-
eter dependence. Although many property, boundary condition,
load, and even geometry variations can indeed be expressed in the
required form~2! for reasonably smallQ, there are many prob-
lems, for example, general boundary shape variations, which do
not admit such a representation. One simple approach to the treat-
ment of this more difficult class of nonaffine problems is~i! in the
off-line stage, store thezn[u(mn), and ~ii ! in the on-line stage,
directly evaluate the reduced-basis stiffness matrix as
a(z j ,z i ,m). Unfortunately, the operation count~respectively,
storage! for the on-line stage will now scale asO(N2dim(X))
~respectively,O(Ndim(X)!, where dim(X) is the dimension of
the truth~very fine! finite element approximation space: the result-
ing method may no longer be competitive with advanced iterative
techniques; and, in any event, ‘‘real-time’’ response may be
compromised.

We prefer an approach which is slightly less general but poten-
tially much more efficient. In particular, we note that in many
cases—for example, boundary geometry modification—the non-
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affine parametric dependence can be restricted to a small subdo-
main of V, V II . We can then express our bilinear forma as an
affine/nonaffine sum,

a~w,v;m!5aI~w,v;m!1aII ~w,v;m!. (59)

HereaI , defined overV I , the majority of the domain, is affinely
dependent onm; andaII , defined overV II , a small portion of the
domain, is not affinely dependent onm. It immediately follows
that the reduced-basis stiffness matrix can be expressed as the sum
of two stiffness matrices corresponding to contributions fromaI
andaII , respectively; that the stiffness matrix associated withaI
admits the usual on-line/off-line decomposition described in Sec-
tion 3.3; and that the stiffness matrix associated withaII requires
storage~and inner product evaluation! only of z i uV II

~z i restricted
to V II !. The nonaffine contribution to the on-line computational
complexity thus scales only asO(N2dim(XuV II

)), where
dim(XuV II

) refers ~in practice! to the number of finite-element
nodes located withinV II , often extremely small. We thus recover
a method that is~almost! independent of dim(X), though clearly
the on-line code will be more complicated than in the purely af-
fine case.

In the above we focus on approximation. As regardsa poste-
riori error estimation, the nonaffine dependence ofa ~even lo-
cally! precludes the precomputation and linear superposition strat-
egy required by Method I~unless domain decomposition concepts
are exploited~Machiels et al.@28#!; however, Method II directly
extends to the locally nonaffine case.
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Large Eddy Simulation of
Turbulent Wake Behind a Square
Cylinder With a Nearby Wall
Computations of the time-averaged and phase-averaged fluid flow and heat transfer based
on large eddy simulation (LES) are presented for turbulent flows past a square cylinder
with and without a nearby wall at a fixed Reynolds number of 2.23104. The finite-volume
technique was used to solve the time-dependent filtered compressible Navier-Stokes equa-
tions with a dynamic subgrid-scale turbulence model, and the numerical fluxes were
computed using alternating in time the second-order, explicit MacCormack’s and the
modified Godunov’s scheme. Results show some improvements in predicting the stream-
wise evolutions of the long-time-averaged streamwise mean velocity and total fluctuation
intensity along the centerline over those predicted by using Reynolds stress models. A
better overall centerline streamwise mean velocity distribution is also predicted by the
present LES than by other LES. The wall proximity effect is studied through the compari-
son of turbulent wake flow past one free standing cylinder and one with a nearby wall,
and is illustrated by the phase-averaged spanwise vorticity components and the vortex
celerity of spanwise vortices. Moreover, documentation is given on the mechanisms re-
sponsible for the augmentation of heat transfer through the spanwise and longitudinal
vortices as well as periodic and random fluctuations.@DOI: 10.1115/1.1445797#

Introduction
In addition to being a model for fundamental studies of chal-

lenging fluid mechanics problems, the flow over bluff bodies is
widely encountered in practical applications such as a combustor
installed with flame holders, a heat exchanger system with bluff-
body turbulator arranged along the length of a passage to periodi-
cally disrupt the flow, a building in a crossflow, etc. Oscillating
flow resulting from the spanwise vortices behind bluff bodies ar-
ranged near a heating wall can enhance the heat transfer along the
wall due to periodically sweeping the thermal boundary layer
@1–2#. The streamwise vortices are naturally generated in a num-
ber of flows, e.g., flow along a concave wall~Goertler vortex!,
boundary layer transition to turbulence, mixed convective flow
through a bottom heated horizontal rectangular duct. It can also be
produced by mounting vortex generators, e.g., two-
dimensional~2-D! broken ribs, delta wings@3#, v-shaped ribs@4#,
and three-dimensional~3-D! bodies~cube, hemisphere, cone! on
the heat exchange wall. The secondary flow induced by stream-
wise vortices can entrain the fresh or cooler fluids from the main
stream toward near wall region and thus effectively enhance the
wall heat transfer. The design of a heat exchanger requires, there-
fore, a thorough understanding of the aforementioned vortex
structures and their role in affecting heat transfer. For turbulent
flows past bluff bodies, which usually occur in practice, stochastic
three-dimensional turbulent fluctuations are superimposed on the
periodic vortex-shedding motion in the wake region. The simula-
tion of large coherent structures in the turbulent wake flow is
difficult because of the wide-spread spectrum of scales. Phenom-
enological turbulence modeling is a practical alternative choice
but needs further improvements. Large eddy simulation~LES! is a
promising one to solve this problem and attracts much attention.

Firstly, some works relevant to turbulent flow past a free-
standing cylinder are cited. For numerical studies, Rodi@5# re-
viewed the simulations of turbulent flows past a bluff body and
concluded the general superiority of Reynolds stress model over

k2« model and the promising application of LES. Franke and
Rodi @6# calculated the turbulent flow past a square cylinder be-
hind which a von Karman vortex street existed according to the
experiments. They compared four different turbulence models: k
2« model and Reynolds stress model~RSM!, each with wall func-
tion and one-equation near wall treatment. In using the RSM the
wall-related pressure-strain model of Gibson and Launder@7# was
adopted. They found that the k2« model with wall function did
not produce any vortex shedding at all whereas the other three
models predicted vortex shedding. Among them, the RSM vari-
ants produced results in fairly good agreement with experiments.
Tamura et al.@8# calculated 2-D and 3-D unsteady flows around a
cylinder ~circular, square, and rectangular! by a finite difference
method without a turbulence model. The convection terms were
discretized with a third-order upwind scheme which introduces
numerical damping and basically takes over the role of a subgrid-
scale model in a LES. Murakami et al.@9# reported 2-D and 3-D
LES results of vortex shedding flow past a square cylinder using
the Smagorinsky subgrid-scale~SGS! model. Rodi et al.@10#
compiled the LES results from a workshop to assess the present
state-of-the-art in LES of complex flows. The test cases selected
were the flow over a free-standing square cylinder and the flow
over a cube mounted on one wall of a channel.

For experimental studies, Durao et al.@11# measured the turbu-
lent wake flow field of a square cylinder using laser-Doppler ve-
locimetry ~LDV !. The experiments were performed in a water
channel with a blockage ratio of 0.14 and Reynolds number based
on the cylinder height of 1.43104. They showed that in the zone
of highest velocity oscillations the energy associated with the tur-
bulent fluctuations is about 40 percent of the total energy, includ-
ing periodic and turbulent fluctuations. Lyn and Rodi@12# and Lyn
et al. @13# measured the turbulent wake flow of a square cylinder
using LDV. The experiments were performed in a water channel
with a blockage ratio of 0.07 and Reynolds number based on the
cylinder height of 2.23104. Lyn and Rodi@12# focused on the the
turbulent shear layer and the associated recirculation region on the
top and bottom walls of the cylinder due to the flow separation
from the forward corner of the cylinder. Lyn et al.@13# focused on
the turbulent near-wake flow around the cylinder.

Some works relevant to turbulent flow past a cylinder with a
nearby wall~Fig. 1! are also worthy of being cited. Durao et al.
@14# investigated the flow around a square cylinder near a wall
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with a two-component LDV at Re51.43104. They found that
vortex shedding activity is suppressed for gap sizes smaller than
C/H50.375. The mean flow field were measured forC/H
50.25 and 0.50. Devarakonda and Humphrey@15# investigated
the near wall streamwise velocity component and the pressure
forces acting on the square cylinder as a function of the gap height
at Re51.03104. The results showed that the drag coefficient de-
creases while the lift coefficient and Strouhal number increase
with decreasing gap height for Re51.0– 2.753104. Bosch et al.
@16# and Bosch and Rodi@17# conducted experimental and nu-
merical studies of vortex shedding past a square cylinder near a
wall at Re52.23104. Detailed two-component LDV measure-
ments were carried out forC/H50.75. In addition to time-
averaged mean-velocity and stress components, phase-averaged
components were presented. Bosch and Rodi@17# compared the
standard k2« model and the modification attributable to Kato and
Launder@18# ~abbreviated as KL model!. The KL model yielded
reasonable predictions over the standard k2« model.

The dynamics of 3-D spanwise and streamwise vortical struc-
tures behind a nominally 2-D circular cylinder attracts much at-
tention in the recent years. However, very little attention has been
given to high Reynolds number turbulent wake flows behind a
square cylinder. It is clear that the applications of LES to the
systematic study of fluid flows past a square cylinder with and
without wall proximity are still limited, a fact motivating the
present investigation. LES is adopted in the present study since
the fluid flow and heat transfer behind the bluff-body cylinder are
expected to be dominated by the large-scale coherent structures
prevailing there. Previously, LES with the Smagorinsky SGS
model had been successfully applied by authors to simulate com-
pressible turbulent free mixing layers@19# and confined reacting
shear layers@20,21#. In the present study, we extend its application
with, however, a dynamic SGS turbulence model to investigate
the wake flow behind a square cylinder with and without a nearby
wall.

In the following text, code verifications are performed through
comparisons with the measurements. The time-averaged mean ve-
locities and turbulence fluctuation intensities are compared with
the measured data of Lyn et al.@13#. The gap between the cylinder

and the wall yields a profound influence on the interaction be-
tween the wake flow behind the cylinder and the boundary layer
along the wall and thus the design of an efficient heat transfer
enhancement system@2,22#. The effect of wall on turbulent wake
is examined through the comparison of flow past one free standing
cylinder and one with a nearby wall. For the latter case, the value
of C/H is 0.75. The choice ofC/H50.75 is based on the
measurements of Bosch et al.@16#. Finally, the fluid dynamic
mechanisms responsible for the augmentation of heat transfer is
documented.

Theoretical Analysis

Governing Equations. The flow variables are decomposed
into a large-scale~or resolved! part which can be solved explicitly
and a SGS part which is modeled with a SGS model. The filtering
operation

ḡ~x!5E
V

GD~x2z!g~z!dz , (1)

whereG is a filter function, decomposes a variableg into a large-
scale componentḡ and a subgrid-scale componentg8, which ac-
counts for the scales not resolved by the filter widthD:

g5ḡ1g8 (2)

A mass-weighted filter that simplifies the mathematical expres-
sions for compressible flow simulations is defined by

g̃5
rg

r̄
(3)

This implies a second decomposition ofg:

g5g̃1g9 (4)

Assuming that there are no external heat additions and body
forces, the filtered forms of compressible mass, momentum, and
total energy equations with a dynamic subgrid scale model in
Cartesian coordinates can be respectively written as

]r̄
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where viscous stressest ij are defined as

Fig. 1 Coordinate system and schematic drawing of the com-
putational domain and boundary conditions
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The termstsij
and qsj

are subgrid-scale stresses and heat fluxes,
respectively, and can be modeled as
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wherenS, the subgrid kinematic viscosity, andkS , the subgrid
turbulent kinetic energy, prescribed by the eddy viscosity model
of Smagorinsky@23# are

ns5csD
2S 2S̃ij

]ũi

]xj
D 1/2

, (13)

ks5ys
2/~ckD!2. (14)

In the equations,ck(50.094) is a model constant,D the average
size of the computational cell, andcS determined by a least-
squares approach proposed by Lilly@24#, a modification to the
original formulation of Germano et al.@25#. Spatial averaging of
cS along the homogeneous spanwise direction and clipping of
negative eddy viscosities were performed to avoid the numerical
instability. The basic idea of the dynamic model is to improve the
Smagorinsky model by setting the constant at a different value at
each mesh node and at each time step, in an attempt to adjust the
induced dissipation to the local state of the flow.
Equations~5!–~9! can be put into the following general form

]Q

]t
1

]F

]x
1

]G

]y
1

]H

]z
50 (15)

For an ideal gas, the total energyÊ per unit volume is related to
the filtered pressureP̄ and axial(ũ), transverse(ṽ), and

spanwise(w̃) velocity components via Eˆ 5P̄/(g21)10.5r̄(ũ2

1 ṽ21w̃2). The filtered temperature T˜ is related tor̄ and P̄by
ideal gas law T˜5P̄/ r̄R. In the above R andg are the gas constant
and specific heat ratio, respectively. Equations~5!–~9! are used to
solve r̄, ũ, ṽ, w̃, p̄, Ê, and T̃ can be further calculated from
aforementioned definition and ideal gas law.

Decomposition of an Instantaneous Quantity. Following
the concept of Reynolds decomposition an instantaneous quantity
w is split into

w5^w&p1w8s (16)

where ^w&p is the mean value andw8s the stochastic turbulent
fluctuation. It is expected from previous studies mentioned in In-
troduction that the large-scale coherent vortex shedding may ap-
pear behind the square cylinder. The mean value^w&p may there-
fore vary slowly with time and must be the so called ensemble~or
phase! averaged value. Due to the periodic vortex shedding be-
hind the cylinder bluff bodies, the ensemble averaged value^w&p ,
as suggested by Hussain and Reynolds@26#, can be further de-
composed into

^w&p5^w& t1w8p5w̄ t1w8p (17)

where ^w& t or w̄ t is the long-time-averaged value andw8p the
periodic fluctuation. In summary, an instantaneous quantity can be
expressed as

w~ t !5^w& t1w8p~ t !1w8s~ t !5^w& t1w8t~ t ! (18)

wherew8t(t) stands for the total fluctuation.

Numerical Method. The finite-volume technique is adopted
in the present code. The conservation variablesr̄, r̄ũ, r̄ ṽ, r̄w̃,
and Ê are calculated at the center of each computational cell
whereas flux vectorsF, G, andH in Eq. ~15! are calculated at the
cell edges using alternating in time the second-order, explicit
MacCormack’s and the modified Godunov’s scheme@27#. Reduc-
tion in phase error can be achieved by temporal switching of these
two schemes since MacCormack’s scheme has a lagging phase
error and Godunov’s scheme a leading phase error@28#. Hence,
using the alternating in time the MaCormack’s and modified Go-
dunov’s schemes is less dissipative than using the modified Go-
dunov’s scheme alone. In Godunov’s scheme, characteristic infor-
mation is used to solve forward in time the Riemann problem.
From the solution of the Riemann problem the numerical flux at
the cell edges can thus be calculated. To improve the order of
spatial accuracy of Godunov’s original scheme, the piecewise ini-
tial states to the left and right of the cell edges are obtained by a
second-order extrapolation@27# in the present work.

Note that since the Mach number is low, many time-steps and
long run-times are necessary to achieve statistically stationary
flow. In the present study, the time step of only 0.27msec was
necessary~giving a maximum CFL number of 0.6!. 30,000 steps
were used to start up the LES calculations from a zero velocity
initial field.

Boundary and Initial Conditions. The computational do-
main, coordinate system and boundary conditions are shown in
Fig. 1. At the solid wall of bluff body, Werner and Wengle’s ap-
proach@29# for instantaneous velocity parallel to the solid wall,
zero normal pressure gradient, and adiabatic wall conditions are
used for the primitive variables (ũ,ṽ,w̃), p̄, and r̄, respectively.
Along the upper and lower boundaries of computational domain
for the free standing cylinder, the slip~symmetry! conditions are
applied. Along the lower wall adjacent to the cylinder, the same
conditions as cylinder wall are used except the heating condition.
Periodic conditions are implemented to the side boundaries of the
computational domain. Characteristic-based boundary conditions
are enforced on the inflow and outflow boundaries. At the inflow,
transverse and spanwise velocities, mass flux, and energy flux are
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kept constant since there are four incoming and one outgoing
characteristics for the subsonic inlet velocity. To simulate the in-
flow turbulence existed in the experiments, a perturbation with
amplitude of 2 percent of Uref was given to inflow transverse
velocity. At the exit, there are four outgoing and one incoming
characteristics for the subsonic outlet velocities, and the pressure
boundary condition is specified. The initial condition is specified
from still condition.

Grid Independence. The computations to be reported in the
following sections were performed on a 122390334 grid. Addi-
tional runs for the coarser (92368326) and finer (1823134
350) meshes were undertaken for a check of grid independence.
The distance from the near-wall node to the nearest wall was kept
constant for the three runs. A comparison of the results showed
that the maximum changes of 1.8 percent in the time-mean axial
velocity profiles on the central planez50 between 122390334
and 1823134350 grid sizes were smaller than 9.4 percent found
between 92368326 and 1823134350 mesh sizes. Conse-
quently, the accuracy of the solutions on a 122390334 grid size
is deemed satisfactory. In fact, in LES the grid size is the filter
scale which separates the computed large scales from the modeled
small scales. This grid size should lie in the inertial range of
scales, beyond the energetic but larger than the dissipation scales.
The velocity power spectrum shown shortly in Fig. 3~b! was
based on the 122390334 grid and does resolve the inertial range
of scales. Hence, the mean quantities obtained from 122390
334 grid and 1823134350 grid should be grid independent in
LES.

Results and Discussion

Turbulent Wake Behind a Free-Standing Cylinder. Time-
Averaged Flow. Statistics for time averaged and phase-averaged
flow were compiled over 15 vortex shedding cycles. The results
shown below are on the central plane ofz/H50. Figure 2 depicts
the variation of the computed time-averaged streamwise mean ve-
locity along the centerline for Re52.23104. For comparison with
the results of RANS, the experimental data of Lyn et al.@13#,
computational results of Franke and Rodi@6# based on a RSM
model, and our previous results@30# computed using a RSM
model with the wall-related pressure-strain model of Craft and
Launder@31# are included in Fig. 2~a!. In addition, four represen-
tative predictions, KAWAMU~Kawamura, H., Kawashima, N.,
Science Univ. of Tokyo, Japan!, UMIST-2 ~Archambeau, F., Lau-
rence, D., EDF/LNH Chatou, France and Leschziner, M.A.,
UMIST, Manchester, U.K.!, UKAHY-2 ~Pourquie, M., Breuer, M.,
Rodi, W., Univ. of Karlsruhe/Inst. for Hydromechanics, Germany!
and TAMU-2 ~Tamura, T., Itoh, Y., Takakuwa, A., Tokyo Inst. of
Technology, Japan! taken from the LES data bank compiled by
Rodi et al.@10# are included in Fig. 2~b! to illustrate the current
status of LES in the prediction of turbulent wake flow behind a
square cylinder. Note that the negative time-averaged mean ve-
locities behind the cylinder indicate the wake recirculation flow
and the zero streamwise mean velocity position represents the
wake saddle point. The distance between the rear face of the cyl-
inder and the saddle point is the wake length which is an impor-
tant characteristic length often used for validating computation.
The dimensionless mean wake lengths (LR /H) obtained by the
present calculations and measured by Lyn et al.@13# are 0.91 and
0.88, respectively. As a comparison, the wake lengths based on the
RSM model computed by Liou and Chen@30# and Franke and
Rodi @6# are 1.10 and 0.48 respectively. The measured data~tri-
angle symbol in Fig. 2~a! and~b!! of Lyn et al. @13# indicate that
the time mean velocity recovers fast asx/H increases from 1 to 2
and gradually levels off beyondx/H53 with the velocity defect
recovering to about 60 percent of the bulk mean velocity. Figure
2~a! further shows that the present LES of the time-averaged
streamwise centerline mean velocity distribution is superior to the
previous RSM simulations. As for the above-mentioned four LES

results@10#, Fig. 2~b! shows that UKAHY-2 gives a better predic-
tion of wake region and TAMU-2 attains a better velocity recov-
ery downstream of wake. The present LES predicts a better over-
all centerline streamwise mean velocity distribution. As shown in
the top table of Fig. 2~b!, finer grid resolution in the spanwise
direction, more cycles for time or phase average, and different
numerical schemes adopted are the possible reasons for the better
centerline mean velocity predictions attained in the present study.

Table 1 shows a comparison of some predicted and measured
flow parameters for turbulent wake flow past a square cylinder
with and without wall proximity, including mean recirculation
wake length (LR /H), maximum negativêu& t /Uref in the wake
region,^u& t /Uref at x/H59.0 along the centerline, Strouhal num-
ber ~St!, and mean drag coefficient (c̄d). Comparing with the data
of Lyn et al. @13#, the present LES results in discrepancies in
LR /H of about 3 percent while other LES in the range of 8–50
percent, in maximum negativêu& t /Uref of 23 percent while other
LES in the range of 19 percent–71 percent, in centerline^u& t /Uref
at x/H59.0 of 12 percent while other LES in the range of 8
percent–52 percent. In the prediction of St, the predicted values of
most LES lie in the range of 0.1360.02 with a discrepancy
smaller than 15 percent compared with the experimental data,
except 0.09 predicted by UMIST-2. The present computed power
spectra of the fluctuating lift coefficient acting on the cylinder and

Fig. 2 „a… Streamwise time-averaged mean velocity variation
along the centerline behind the free-standing cylinder for Re
Ä2.2Ã104

„comparison with RANS …. „b… Streamwise time-
averaged mean velocity variation along the centerline behind
the free-standing cylinder for Re Ä2.2Ã104

„comparison with
other LES …
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the fluctuating velocity component are plotted in Fig. 3. There is a
distinct peak with a value of St50.133, as also shown in Table 1.
In the present prediction ofc̄d the discrepancy compared with the
experimental data of Lyn et al.@13# is about 8.6 percent, and the
predictedc̄d of other LES are in the range of 4–32 percent.

Figure 4 depicts the total streamwise and transverse velocity
fluctuation distributions along the centerline downstream of the
cylinder for Re52.23104. The peak of transverse total velocity
fluctuation occurs at a position slightly downstream of the stream-
wise one, and the peak value of the former is about twice that of
the latter. The discrepancy inu8t/Uref between the LES results and
the measured data of Lyn et al.@13# is larger in the region imme-
diately behind the cylinder. The poor prediction of the streamwise
mean velocity ^u& t /Uref recovery by the RSM, as mentioned
above, results in a pooru8t /Uref prediction downstream ofx/H
52. Overall speaking, the LES results are in a better agreement
with the measured data of Lyn et al.@13# than the RSM results.
Some possible explanations for the discrepancies of^u& t /Uref ,

Fig. 3 „a… Power spectra of fluctuating lift coefficient for cylin-
der with and without a nearby wall. „b… Power spectra of trans-
verse fluctuating velocity component with and without SGS
model. „c… Power spectra of transverse fluctuating velocity
component at different locations.

Fig. 4 Streamwise and transverse total fluctuation intensity
variation along the centerline downstream of the free-standing
cylinder for Re Ä2.2Ã104

Table 1 Predictions or measurements of fluid flow parameters

Authors TEC
Re

3104 LR /H

Max.
negative
^u& t /Uref

^u& t /Uref
~X/H59.0,
Y/H50.0,
Z/H50.0! St c̄d

Wall
Proximity

Durao et al.@11# LDV 1.4 0.83 0.14 No
Lyn et al. @13# LDV 2.2 0.88 20.21 0.60 0.132 2.1 No

Devarakonda and
Humphrey@15#

LDV 2.75 2.35 Yes
C/H50.95

Bosch et al.@16# LDV 2.2 1.10 20.28 0.139 Yes
C/H50.75

Authors
TURB
model

Re
3104 LR /H

Max.
negative
^u& t /Uref

^u& t /Uref
~X/H59.0,
Y/H50.0,
Z/H50.0! St c̄d

Wall
Proximity

Franke and Rodi@6# RSM 2.2 0.48 20.04 0.82 0.136 2.15 No
Two-layer

RSM
2.2 0.48 0.159 2.43 No

Liou and Chen@30# RSM 2.2 1.1 20.12 0.84 No
Bosch and Rodi@17# KL 2.2 1.73 20.17 0.56 Yes

C/H50.75
KAWAMU LES 2.2 0.70 20.13 0.55 0.15 2.58 No
UKAHY2 LES 2.2 0.96 20.25 0.91 0.13 2.30 No
UMIST2 LES 2.2 0.71 20.17 0.90 0.09 2.02 No
TAMU2 LES 2.2 0.44 20.06 0.66 0.14 2.77 No

Present study LES 2.2 0.91 20.16 0.67 0.133 2.14 No
Present study LES 2.2 1.06 20.15 0.50 0.139 2.41 Yes

C/H50.75

TEC: Technique TURB: Turbulence
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u8t /Uref , andv8t/Uref in the reversal flow zone immediately be-
hind the cylinder between the present LES results and the experi-
mental data of Lyn et al.@13# may be attributable to the uncertain-
ties associated with measurements, in particular the insufficient
inlet conditions provided, and to the SGS model adopted in mod-
eling the unresolved part of the turbulence scales.

Phase-Averaged Flow.The vortex shedding phenomenon can
not be revealed by the above long-time-averaged flow field; how-
ever, it can be demonstrated by the phase-averaged flow field.
Figure 5 shows the phase averaged transverse velocity along the
centerline at two selected phases. It is seen that the calculated
results are in reasonable agreement with the measured data of Lyn
@32#. At both selected phases, the first positive peak values of the
phase-averaged transverse velocities are located betweenx/H
51 andx/H52, which is in accordance with the distribution of
time-averaged transverse total velocity fluctuation shown in Fig.
4. However, Fig. 5 reveals alterative positive and negative peaks
with a decreasing amplitude as the flow proceeds downstream, a
piece of information lacking in Fig. 4.

Turbulent Wake With A Nearby Wall. Attention is now fo-
cused on the effect of wall proximity (C/H50.75) and the inter-
action of turbulent wake behind a cylinder and the wall boundary
layer. The mechanism responsible for heat transfer augmentation
is also an important topic in the cylinder-wall interaction.

Time-Averaged Flow. In Table 1, it can be seen that limited
literature on wake flow with wall proximity is available. Compar-
ing with the data of Bosch et al.@16#, the present LES and the
prediction with KL model of Bosch and Rodi@17# result in dis-
crepancies in LR /H of 4 percent and of 57 percent, respectively,
and in maximum negativêu& t /Uref of 46 percent and 39 percent,
respectively. The computed power spectra of the fluctuating lift
coefficient acting on the cylinder and the transverse fluctuating
velocity component are plotted in Fig. 3~a! and Figs. 3~b!–3~c!,
respectively. There is a distinct peak with a peak frequency of

St50.139, which is close to the experimental data shown in Table
1. In the present prediction ofc̄d , the discrepancy compared with
the experimental data of Devarakonda and Humphrey@15# is
about 3 percent.

Phase-Averaged Flow.Figure 6 depicts the phase-averaged
spanwise vorticity contours on z/H50 plane at 5 selected phases
~t/tcyc50.05, 0.25, 0.45, 0.65, and 0.85! for C/H50.75 and Re
52.23104. The vortex shedding phenomenon is clearly demon-
strated. The vortex shed from the upper side of the cylinder is
nearly circular and is similar to the The vortex shed from a free-
standing cylinder, while the vortex shed from the lower side is
stretched and generally smaller than the vortex shed from the
upper side when reached the same streamwise position. Moreover,
the lower-side-shed vortex induces a wall vortex. The wall vortex
originates from the wall boundary layer and connects to the wall
layer over the entire shedding cycle without isolating from the
wall layer. Both the lower-side-shed vortex and wall vortex have
the same vortex celerity, as will be further shown later. Figure 7
depicts the trajectory (xc /H,yc /H) of vorticity peak and the varia-
tion of vortex peak value with x/H. The location of the vorticity
peak can be identified as the vortex center. Three vortices includ-
ing upper, lower, and wall vortices are traced to reveal the vortex
motion. The upper vortex is the upper-side-shed vortex and almost
moves along the upper edge of the cylinder but gradually directs
away from the wall. The lower vortex is the lower-side-shed vor-
tex and moves along the center line in a somewhat back and forth
way. Note that the wall vortex is not an isolated vortex but it still
can be identified during t/tcyc50.25, 0.45, and 0.65. The trajectory
of wall vortex is in pace with the lower vortex, indicating that the

Fig. 5 Phase-averaged transverse velocity variation along the
centerline behind the free-standing cylinder at two selected
phases „tÕtcycÄ0.05 and 0.45 … for ReÄ2.2Ã104

Fig. 6 Nondimensionalized phase-averaged spanwise vortic-
ity contours at five selected phases „tÕtcycÄ0.05, 0.25, 0.45,
0.65, and 0.85 … for C ÕHÄ0.75 and ReÄ2.2Ã104
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wall vortex is induced by the lower vortex. The vortex peak value
(^v&pH/Uref) decays with increasing streamwise coordinate; it de-
cays rapidly at the base region~immediately behind the cylinder!
and at a slower rate downstream of x/H53. The decay profile
along the flow direction is different between the upper and lower
vortices. The upper vortex has a slower rate of decay while the
lower and wall vortices have a rapid decay rate. The lower and
wall vortices have about the same decay profile which means that
the interaction between them is a mutual process. It should be
pointed out that the large-scale vortex decay can also be shown by
the power spectra of the fluctuating velocity component at differ-
ent x/H stations in Fig. 3~c!. As the flow proceeds from x/H
520.48 through x/H54.0 to x/H58.0, the decrease and increase
of the amplitudes of the large-~lower frequency part! and small-
scale~higher frequency part! eddies indicates the evolution of the
large-scale vortex to the random small-scale eddies.

Figure 8 depicts the variation of the streamwise location of the
vortex peak (xc /H) with time. The slope of the curve gives the
vortex celerity@30#. Within the range of x/H.2.0, the vortex ce-
lerity is almost a constant of uc50.78Uref for the upper vortex
which is equal to that of a free-standing cylinder measured by Lyn
et al. @13# and a constant of uc50.66Uref for the lower and wall
vortices. The vortex celerity of the upper vortex is larger than that
of the lower and wall vortices. This indicates the retardation effect
of the wall on the shedding vortex. Within the range of x/H
,2.0, the vortex celerity is almost a constant of uc50.31Uref for
the three vortices, which is lower than 0.43Uref of Lyn et al. @13#.
The slower vortex celerities for x/H,2.0 means that the wall
effect is imposed on alternating vortex formation at the base re-
gion via the mutual interaction of upper and lower vortices, as the
basic mechanism of Von-Karman vortex shedding is.

Time-Averaged Heat Transfer.Figure 9 shows the time-
averaged Nusselt number distribution along the bottom heated
wall. Two distinct peaks of time-averaged Nu exist. The first one

is located at x/H520.48, and is attributed to the fluid flow be-
tween the cylinder and the bottom wall. Because of the high speed
flow there, the forced convection is dominating. The second peak
is related to the wall vortices which are shown in Fig. 6~b–d!. The
wall vortex is induced by the lower vortex and has the same
nature as the upper vortex in the sense that they are characterized
by negative spanwise vorticity or clockwise fluid motion. The
clockwise fluid motion entrains fresh or cooler fluid from its
downstream side to the space between itself and the channel wall.
This is called the washing action, as also experimentally visual-
ized using intermittent dye injection method by Yao et al.@33#. In
the range of x/H52.0– 5.0, where the wall vortex can be clearly

Fig. 7 Trajectory of vortex peak and variation of spanwise vor-
ticity peak value with x ÕH for C ÕHÄ0.75 and ReÄ2.2Ã104

Fig. 8 Time history of spanwise vorticity peak along the
streamwise direction for C ÕHÄ0.75 and ReÄ2.2Ã104

Fig. 9 Streamwise time-averaged Nusselt number variation
along the wall on z ÕHÄ0 plane for C ÕHÄ0.75 and ReÄ2.2Ã104
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identified in Fig. 6, the time-averaged Nu attains its second peak
value, and the clockwise-rotating spanwise vortex can contribute
heat transfer augmentation by the aforementioned washing action.
In exploring the possible method for augmenting heat transfer, an
appropriate control of the evolution of the spanwise and stream-
wise vortices is helpful. For instance, the streamwise vortices with
common-flow-down are especially important@34#. The stream-
wise vortices with common-flow-down, denoting the counter-
rotating vortices with the direction of the secondary flow between
them that are directed toward the wall, are found to be essential
for elevating heat transfer@34#. The streamwise vortices for the
present case ofC/H50.75 are counter-rotating vortices with sec-
ondary flow directed toward the wall, as evidenced by the second-
ary flow pattern~Fig. 10! at x/H54.0. These vortices produce
strong distortion of the normal 2-D boundary layer structure. As
the secondary flow is directed toward the wall, the boundary layer
is thinned and the heat transfer is elevated. Among the flow dy-
namic factors relevant to heat transfer augmentation, such as main
stream convective velocity, near-wall turbulence, and secondary
flow induced by longitudinal vortices, the direction~relative to the
wall! and strength of the aforementioned secondary flow have
been experimentally found to be more influential on enhancing the
local heat transfer for duct flows with wall-mounted vortex gen-
erators@4#. For a square cylinder detached a dimensionless dis-
tance ofC/H50.75 from the heated wall, the computed results
further indicate that spanwise and longitudinal vortices are also
able to generate washing action and favorable secondary flow di-
rection relative to the heated wall, which thus attains a better local
heat transfer elevation.

It is interesting to know the relative contributions of the peri-
odic and random fluctuations to the cooling enhancement while
approaching the wall. Thus, the contour maps of their streamwise
components at a selected phase t/tcyc50.45 are depicted in Fig. 11.
The relatively high values of the streamwise periodic fluctuation
component̂ u8pu8p&p /Uref

2 , more than 10 times those of the ran-
dom fluctuation component^u8su8s&p /Uref

2 , in the region between
the cylinder and bottom wall certainly contribute to the first Nu
peak at x/H520.48 ~Fig. 9!. Adjacent to the bottom wall and

proceeding downstream, the^u8pu8p&p /Uref
2 decreases rapidly from

a value of 2.4 at x/H520.48 to 0.1 at x/H54 where Nu attains
its second peak~Fig. 9!. Correspondingly,̂ u8su8s&p /Uref

2 drops
slower from 0.16 at x/H520.48 to 0.08 at x/H54. It is now clear
that both the periodic and random fluctuations contribute to the
second Nu peak at x/H54. Note that the transverse and spanwise
components of the periodic and random fluctuations are typically
an order of magnitude smaller than their streamwise counterparts.
Hence, they contribute little to the cooling enhancement.

Concluding Remarks
The following conclusions are drawn from the data presented:

1 The present three-dimensional large eddy simulations of the
turbulent wake behind a square cylinder attain a better overall
agreement with the available experimental data in predicting the
streamwise variation of centerline mean velocity and turbulence
intensity components than the previous computations.

2 Strouhal number is increased and drag coefficient is de-
creased when a nearby wall is present. The celerity of the lower
vortex is smaller than that of the upper vortex due to the interac-
tion with the wall boundary layer. The mutual interaction between
the lower and wall vortices can be identified through the vortex
peak trajectory, the decay profile of vortex peak value, and the
vortex celerity.

3 For a turbulent flow past a square cylinder with a nearby wall
located at an adequate dimensionless distance, such as C/H
50.75 examined, the wall vortex induced by the lower-side-shed
vortex can cause a washing effect and direct the secondary flow in
the cross-sectional (y-z) plane toward the heat transfer wall.
These physical mechanisms are responsible for the observed local
heat transfer augmentation and are revealed computationally for
the first time by using LES.

Fig. 10 Instantaneous secondary velocity vector plot at x ÕH
Ä4.0 for CÕHÄ0.75 and ReÄ2.2Ã104

Fig. 11 Nondimensionalized phased-averaged contours of the
streamwise periodic Šu8pu8p

‹p ÕUref
2 and random Šu8su8s

‹p ÕUref
2

fluctuations at a selected phase t ÕtcycÄ0.45 for CÕHÄ0.75 and
ReÄ2.2Ã104
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4 Among the periodic and random fluctuation components, the
streamwise periodic fluctuation component is found to have a
dominant contribution to the major peak of Nusselt number dis-
tribution. Both the streamwise periodic and random fluctuation
components have about the same contribution to the second Nus-
selt number peak.
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Nomenclature

C 5 gap between the cylinder and the wall
ck 5 model constant
cs 5 Smagorinsky constant
Ê 5 p̄/(g21)10.5r̄(ũ21 ṽ21w̃2), filtered total energy

per unit volume, J/m3

F 5 convective flux vector in x direction of Navier-Stokes
equations

f 5 vortex shedding frequency
G 5 spatial filter function
G 5 convective flux vector in y direction of Navier-Stokes

equations
g 5 flow variable
H 5 convective flux vector in z direction of Navier-Stokes

equations
H 5 cylinder height~4 mm!
h 5 local heat transfer coefficient[qw /(Tw2T`)
k 5 turbulent kinetic energy, m2/s2

ks 5 subgrid turbulent kinetic energy, m2/s2

LR 5 mean reattachment length, wake length
Nu 5 local Nusselt number ([hH/k)

p 5 pressure, N/m2

PrS 5 SGS Prandtl number
Q 5 conservation variables vector of Navier-Stokes equa-

tions
qs 5 subgrid-scale heat flux, W/m2

qw 5 local wall heat flux, W/m2

Re 5 Reynolds number based on cylinder height
([rU refH/m)

St 5 Strouhal number ([ f H/U ref)
Si j 5 1/2(]ui /]xj1]uj /]xi)21/3d i j ]uk /]xk , strain rate

tensor
T 5 temperature, K

Tw 5 local wall temperature, K
T` 5 freestream temperature, K

t 5 time coordinate, s
tcyc 5 period of a vortex shedding cycle, s

u 5 streamwise velocity, m/s
^u& t 5 long-time mean streamwise velocity
^u&p 5 phase-averaged streamwise velocity

u8t 5 streamwise velocity total fluctuation5(^u8pu8p& t

1^u8su8s& t)
1/2

U ref 5 inlet mean velocity as a reference velocity
uc 5 vortex celerity
v 5 transverse velocity, m/s

^v& t 5 long-time mean transverse velocity
^v&p 5 phase-averaged transverse velocity

v8t 5 transverse velocity total
fluctuation5(^v8pv8p& t1^v8sv8s& t)

1/2

w 5 spanwise velocity, m/s
x 5 position vector
x 5 streamwise coordinate
y 5 transverse coordinate
z 5 spanwise coordinate
8 5 filter width

d i j 5 Kronecker delta function

g 5 specific heats ratio
k 5 thermal conductivity, W/~m•K!
m 5 dynamic viscosity, kg/~m•s!
n 5 kinematic viscosity, m/s2

ns 5 subgrid kinematic viscosity, m/s2

V 5 flow domain
v 5 vorticity
r 5 density, kg/m3

t 5 viscous shear stress, N/m2

ts 5 subgrid-scale shear stress, N/m2

tw 5 shear stress at wall, N/m2

z 5 dummy variable
« 5 dissipation rate of turbulence kinetic energy, m2/s3

Subscripts

e 5 exit plane
w 5 wall

Superscripts

8 5 subgrid component
8p 5 periodic fluctuation component
8s 5 stochastic turbulent fluctuation component
8t 5 total fluctuation component
9 5 mass-weighted subgrid component

5 spatially filtered quantity
t 5 long-time averaged quantity

; 5 mass-weighted spatially filtered quantity
^&p 5 phase-averaged quantity
^& t 5 time-averaged quantity5 t
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Large Eddy Simulation of a Flow
Past a Free Surface Piercing
Circular Cylinder
Interactions between surface waves and underlying viscous wake are investigated for a
turbulent flow past a free surface piercing circular cylinder at Reynolds number Re
52.73104 using large eddy simulation (LES). The computations have been performed for
three Froude numbers Fr50.2, 0.5 and 0.8 in order to examine the influence of the
Froude number. A second-order finite volume method coupled with a fractional step
method is used for solving the grid-filtered incompressible Navier-Stokes equations. The
computational results are found to be in good agreement with the available experimental
data. At low Froude numbers Fr50.2 and 0.5, the amplitude of generated surface wave
is small and the influence on the wake is not evident. On the other hand, strong wave-
wake interactions are present at Fr50.8, when the generated free surface wave is very
steep. It is shown that structures of the underlying vortical flow correlate closely with the
configuration of the free surface. Computational results show presence of a recirculation
zone starting at the point where the surface slope changes discontinuously. Above
this zone the surface elevation fluctuates intensively. The computed intensity of the
surface fluctuation is in good agreement with the measurements. It is also shown that the
periodic vortex shedding is attenuated near the free surface at a high Froude number. The
region in which the periodic vortex shedding is hampered extends to about one diameter
from the mean water level. It is qualitatively shown that the separated shear layers are
inclined outward near the free surface due to the generation of the surface waves. This
change in the relation between two shear layers is suggested to be responsible for the
attenuation of the periodic vortex shedding.@DOI: 10.1115/1.1431545#

1 Introduction
Numerical simulations of turbulent flows can be classified into

three groups. The most accurate approach is direct numerical
simulation ~DNS!, which resolves all the scales of motions in a
turbulent flow. However, because of the large difference between
the largest and smallest scales, it is generally impossible at present
to apply DNS to flows of realistic industrial or environmental
interest. The approach that is most commonly used for practical
applications is Reynolds averaged Navier-Stokes~RANS! simula-
tion. There are a variety of turbulence models for RANS simula-
tion from algebraic models to higher order models. The advanced
models such as Reynolds stress models are generally more accu-
rate than the simpler ones, and can be applied to a wider range of
turbulent flows. However, the complexity of the advanced models
decreases their utility as an engineering approximation.

The approach called large eddy simulation~LES! determines
the large scales of turbulent motions while modeling only the
small scale motions. LES can be applied to more complex flows
than DNS, since LES requires much less computational effort. On
the other hand, since the small scale motions modeled in LES are
much less energetic than explicitly solved large scale motions, it is
expected that relatively simple models can represent a wide range
of turbulent flows. The application of LES was limited to simple
flows in its early years since it was first applied to an engineering
flow by Deardorff@1#. However, the importance of LES is increas-
ing as the growing capability of computers enlarges the feasible
range of its application.

In the present study we investigate an unsteady flow past a
circular cylinder vertically piercing a free surface using LES. A
surface-piercing bluff body placed in a steady current creates quite
a complex flow. At a high Froude number, the generated surface
waves become very steep and also unsteady. The process of the
periodic vortex shedding has been noted to be significantly altered
by the generation of surface waves@2#. Triantafyllou and Dimas
@3# have analytically shown an instability of the wave-wake inter-
action about a horizontal cylinder piercing a free surface. Sheridan
et al.@4# have experimentally shown that the wake of a horizontal
cylinder submerged beneath a free surface at various depths can
have several different states. Unlike the cases with a horizontal
cylinder, the case with a vertical cylinder is a fully three-
dimensional problem, and analytical treatment becomes much
more difficult.

Inoue et al.@2# have experimentally investigated cases with a
vertical cylinder at high Froude numbers. They carried out a tow-
ing tank experiment using a cylinder of 5 cm in diameter for two
Froude numbers, Fr50.8 and 1.0. The experimental data suggest
that the periodic vortex shedding is attenuated near the free sur-
face, while an instability mechanism different from the Karman
mode plays an important role in that region. The measurement of
the velocity shows that the periodic vortex shedding is apparent in
the deeper region. However, the periodic component of the fluc-
tuations is small in the region near the free surface, while more
random fluctuations of higher frequency are more prominent in
that region. Intensive oscillations of the free surface are also
present in the wake region. They also presented numerical simu-
lations using a finite volume method, however the results are lim-
ited to a laminar case at the Reynolds number Re550, and the
unsteady feature of the free surface was not captured. Laminar
cases have been studied also by Chiba and Kuwahara@5# using a
finite difference method.

The primary objective of the present study is to provide a better
understanding of the three-dimensional wave-wake interactions
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using LES. The flow over a circular cylinder exhibits many dif-
ferent features as the Reynolds number increases. The Reynolds
number based on the cylinder diameter, free-stream velocity, and
the kinematic viscosity is set to 2.73104 in this study. At this
subcritical Reynolds number, the boundary layer on the cylinder
surface is laminar, and the transition to turbulence occurs in the
wake region@6#. Several researchers have applied LES to the flow
over an infinite circular cylinder at subcritical Reynolds numbers
@7–10#. Beaudan and Moin@7# have shown that LES provides
better predictions of the hydrodynamic forces and the near wake
mean flow statistics than RANS. While Kravchenko and Moin
@10# have indicated that a high grid resolution is required for
accurate prediction of the flow statistics in the near wake region,
the results of the LES computations are generally in a good agree-
ment with the experimental data.

Although LES has been applied to various kinds of flows by
many researchers, there have been small number of applications to
flows with a free surface. Zanden et al.@11# and Thomas and
Williams @12# have separately applied LES to open channel flows,
and Salvetti et al.@13# have studied the decay process of turbu-
lence under a free surface by LES with dynamic-type SGS mod-
els. Most previous applications including the examples above
have dealt with a rigid free surface. But very little work has been
done for cases with finite amplitude free surface waves. Therefore,
one of the objectives of this paper is to verify the accuracy of the
LES method applied to a problem involving strong interactions
between free surface waves and vortices through comparisons
with experimental data.

This paper is organized as follows. Section 2 describes the gov-
erning equation; Section 3 gives the outline of the numerical
method. The results of the numerical simulation are shown and
discussed in Section 4. In Section 5 we summarize our main con-
clusions.

2 Governing Equation
The governing equations are the grid-filtered incompressible

Navier-Stokes equations,

]ūi

]t
52

]ūi ū j

]xj
1

]

]xj
H nS ]ūi

]xj
1

]ū j

]xi
D J 2

] p̄

]xi
2

]t i j

]xj
(1)

and

]ūi

]xi
50, (2)

where t, xi , ui and n are the time, the Cartesian coordinate, the
fluid velocity, and the kinematic viscosity, respectively, and the
filtering operation is denoted by the overbar. The filtering opera-
tion gives rise to the SGS stress tensort i j written as

t i j 5uiuj2ūi ū j . (3)

The Smagorinsky model@14# is used to model the SGS stress
tensor in this study. The SGS stress tensor is given by

t i j 522nTS̄i j 522~CsD!2A2S̄lm ,S̄lmS̄i j , (4)

wherenT , Cs , and D are the eddy viscosity, the model coeffi-
cient, and the cubic root of the volume of the cell, respectively.Si j
is the strain rate tensor defined as

S̄i j 5
1

2 S ]ūi

]xj
1

]ū j

]xi
D . (5)

The optimum value of the coefficientCs is known to be around
0.1 for a channel flow and 0.2 for a wake or jet flow@15#. Since
the primary objective of this study is to investigate the interaction
between the turbulent wake and the free surface,Cs is set to 0.2
with an appropriate damping function to account for the near-wall
effects.

The pressure variablep is defined as the deviation from the
hydrostatic pressure, that is,

p5 p̃1gx3 , (6)

in which p̃ is the pressure divided by the fluid densityr, g is the
gravitational acceleration, andx3 is the vertical coordinate.

The position of the free surface, denoted ash, is expressed by a
single-valued function of time and the horizontal coordinatesx1
and x2 . The time evolution of the heighth is governed by the
kinematic condition of the free surface,

]h̄

]t
1ū1

]h̄

]x1
1ū2

]h̄

]x2
5ū3 . (7)

The contribution of the SGS terms in the above equation is as-
sumed to be small@16#, and is neglected in this study.

3 Numerical Method

3.1 Discretization and Solution Procedure. The governing
equations are discretized by a finite-volume formulation on a
boundary-adapted structured curvilinear grid, where all the flow
variables are defined at cell centers. A second-order central inter-
polation is used for calculating fluxes except for the convective
flux for which the second-order QUICK scheme is used. The ef-
fect of the numerical schemes on the calculated flow field has
been investigated by Breuer@9#, who carried out LES computa-
tions of the flow past an infinite circular cylinder at Re53900
with five different numerical schemes. That work shows that the
turbulent fluctuations are sustained in the simulations with the
second-order QUICK scheme, while a better agreement with the
experimental data is obtained with a second-order central scheme.
Although the nondissipative nature of the central schemes are
preferable, preparatory simulations carried out with central
schemes failed to converge because of the additional nonlinearity
of the flow due to the higher Reynolds number and the presence of
the deformable free surface. Therefore, the second-order QUICK
scheme is used in the following computations. The dissipative
nature of the QUICK scheme acts as an additional SGS term@9#,
and the influence on the simulated flow field should be carefully
investigated.

The computational grid is fitted to the free surface and updated
every time step by moving the grid points in the vertical direction.
The volume flux due to this movement of the grid is taken into
account in the momentum equation. Since the details of the
method and validations are found in Mayer et al.@17# and Kawa-
mura @18#, we give only a brief outline of the solution procedure
and the treatment of the viscous free surface condition.

Given the velocity, the pressure and the free surface elevation at
time stepn, the free surface elevation at the next time step is
obtained first by explicitly integrating Eq.~7! by a second-order
explicit scheme. The free surface elevationh is defined at the
centers of cell boundaries at the free surface, and Eq.~7! is dis-
cretized by a second-order finite-difference scheme in space. The
resulting height of the free surface at the next time step is used to
regenerate the grid.

Time integration of the momentum equation is performed by a
semi-implicit second-order fractional step method. First in the
predictor step, the intermediate velocityūi* is obtained from

ūi* 2ūi
n

Dt
5

3Ci
n2Ci

n21

2
1

Di* 1Di
n

2
1

Gi* 1Gi
n

2
1

3Pi
n2Pi

n21

2
,

(8)

where C, D, G, and P represent the convective terms, viscous
terms including the SGS stress, convective terms due to the move-
ment of the grid, and pressure gradient terms respectively. The
superscriptsn andn21 denote the time levels, and* refers to the
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Fig. 1 Definition of the coordinate system

Fig. 2 Grid system „Grid-B … used for the simulations of a flow
past a surface-piercing circular cylinder at Re Ä2.7Ã104

Fig. 3 Computed and measured mean surface elevation
around a surface-piercing circular cylinder at Re Ä2.7Ã104 and
FrÄ0.8

Fig. 4 Computed and measured r.m.s of the surface fluctua-
tion around a surface-piercing circular cylinder at Re Ä2.7
Ã104 and FrÄ0.8

Fig. 5 Profiles of the time-averaged elevation and r.m.s. fluc-
tuation of the surface at Fr Ä0.8: „a… x 1Ä0.9, „b… x 1Ä2.0
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intermediate time step between the stepsn andn11. The implicit
termsDi* andGi* are expressed by a 19-point stencil. The system
of Eq. ~8! is solved forui* by a line relaxation.

The velocity at the next time step is obtained by correcting the
intermediate velocityūi* to enforce the divergence free condition,

ūi
n115ūi* 2

]f̄n11

]xi
, (9)

wheref is a scalar variable obtained by solving a Poisson equa-
tion,

¹2f̄n115
]ūi*

]xi
. (10)

Finally, the pressure field is obtained by solving the Poisson equa-
tion, which is derived by taking the divergence of the momentum
equation,

¹2p̄n115
]

]xi
F2

]ūi
n11ū j

n11

]xj

1
]

]xj
H ~n1nT!S ]ūi

n11

]xj
1

]ū j
n11

]xi
D J G . (11)

The Poisson equations are solved by a multigrid method employ-
ing an incomplete line LU factorization~ILLU ! as the smoother
on each level.

3.2 Dynamic Free Surface Condition. When the surface
tension is neglected, the dynamic condition of the free surface can
be written as

~n1nT!S ]ūi

]xj
1

]ū j

]xi
Dnj2pD ni50, (12)

whereni is the unit normal vector of the free surface. The un-
known velocity components at the free surface are solved for from
the condition Eq.~12!, and the results are then used in solving the
momentum equation and the kinematic condition of the free sur-
face. Discretizing Eq.~12! using a second-order one sided differ-
encing scheme at the free surface yields a set of three equations.
Since there are four unknowns including the pressurepD , this equa-
tion system is closed by coupling with the continuity equation
discretized at the free surface. The obtained value ofpD is used as
a Dirichlet boundary condition in solving the Poisson equation for
the pressure.

3.3 Other Boundary Conditions. The computational do-
main is discretized using an O-H-type mesh. The boundary of the
computational domain consists of the free and body surfaces, the
bottom, and the outer boundary. The outer boundary is divided
into in- and outflows atu5120 andu5240 deg, in whichu is the
tangential angle starting from the upstream direction. The stress
free condition is applied at the free surface as described in the
previous section, while a symmetry condition is applied at the
bottom boundary. On the body surface, the no-slip condition is
imposed and surface elevation is linearly extrapolated from the
two points nearest to the body surface. Since the grid spacing in
the direction normal to the body surface is very small in order to
resolve the boundary layer, the numerical results are insensitive to
the treatment of the surface elevation at the body boundary.

At the inflow boundary, the velocity components are fixed at
the free-stream value, while a homogeneous Neumann condition

Fig. 6 Profiles of the time-averaged elevation of the surface:
„a… x 1Ä0.9, „b… x 1Ä2.0

Fig. 7 Profiles of the r.m.s. fluctuation of the surface eleva-
tion: „a… x 1Ä0.9, „b… x 1Ä2.0
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is applied to pressure. At the outflow, the velocity components are
extrapolated and pressure is kept at zero. The vortices reaching the
outflow boundary undergo deformations due to this rather crude
outflow boundary condition. However, the effect is limited within
the region very close to the outer boundary due to the numerical
dissipation resulting from the large grid spacing in this region.
The boundary condition forf is a homogeneous Neumann con-
dition at body and in-flow boundaries, and a homogeneous Dirich-
let condition at the free surface and outflow boundaries.

An artificial damping function is applied to the surface eleva-
tion near the outer boundary as described in@17#. The surface
elevation h̄ and the vertical component of the velocityū3 are
relaxed towards zero by a procedure of the form

h̄5~12a!h̄, ū35~12a!ū3 . (13)

a denotes a relaxation parameter, which is zero at the entrance of
the damping region and one at the outer boundary. The variation
of a in the damping region is prescribed as

a~x!5S x2xstart

xend2xstart
D 3

, (14)

in which the local coordinatex is taken in the direction normal to
the outer boundary, andxstart and xend are the locations of the
starting and ending points of the damping region. The width of the

damping region is set to four times the diameter of the cylinder.
Throughout the LES computations no significant reflection waves
at the outer boundary was observed.

4 Numerical Simulation

4.1 Condition of Computation. We carried out a LES com-
putation of the steady flow past a free surface piercing circular
cylinder. Figure 1 shows the definition of the Cartesian coordinate
system. The origin is the center of the cylinder at the still water
level, and thex1 , x2 , andx3 axes are taken in the longitudinal,
the transverse, and the vertical direction, respectively.

Hereafter, all the quantities are nondimensionalized with re-
spect to the diameter of the cylinderD, and the uniform velocity
U. Since the surface tension is neglected, there are two nondimen-
sional parameters, the Froude number and the Reynolds number,
defined as

Fr5
U

AgD
(15)

and

Re5
UD

n
, (16)

Fig. 8 Contours for the time-averaged streamwise velocity component at Fr Ä0.8: „a… x 1Ä1.0, „b… x 1Ä2.5. The contour
interval is 0.1. Dotted lines denote negative values.
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respectively.
In order to investigate the influence of the Froude number on

the flow, simulations were carried out for three Froude numbers
Fr50.2, 0.5 and 0.8, while the Reynolds number was set to 2.7
3104 in all cases. The case at Fr50.8 and Re52.73104 was also
investigated experimentally by Inoue et al.@2#.

The influence of the grid resolution is investigated by perform-
ing computations for Fr50.8 using three different grid resolu-
tions. The coarse grid, referred to as Grid-A, has 81349317
points in the tangential, radial and vertical directions, respectively,
while the medium grid~Grid-B! and the fine grid~Grid-C! have
129365317 and 161399333 points, respectively. Figure 2

shows the medium grid, Grid-B. The results from the computa-
tions using Grid-B are most extensively shown, while the results
obtained using Grid-A and -C are used for investigating the influ-
ence of the grid resolution. The numerical results presented here-
after are from the computations using Grid-B unless otherwise
mentioned.

The depth of the domainH is set to 4. A deep draft is assumed
in the present case, and the depth of four diameters was confirmed
to be sufficient. The distance from the front and side outer bound-
aries to the center of the cylinder is 10, while that from the rear
outer boundary is set to 15 following the studies by Breuer@9# and
Kravchenko and Moin@10#.

The flow initially at rest is gradually accelerated fromt50 to
10. A statistically steady state is achieved at aboutt550, which
corresponds to about ten vortex-shedding periods. The computa-
tions are continued untilt5200 with the time increment being
0.005; the results from the latter 100 non-dimensional time is used
for calculating the statistics.

4.2 Surface Waves. Contours of the computed and mea-
sured time-averaged surface elevation at Fr50.8 are shown in Fig.
3. The shape of the time-averaged free surface is characterized by
the hump on the upstream side of the body, an almost constant
slope leading to the large depression on the downstream side, and
the diverging Kelvin wave system. These features are well repro-
duced in the LES computation. The root mean square~r.m.s.! of
the computed and measured fluctuations of the free surface are
symmetrically compared in Fig. 4. The fluctuation of the surface
starts near the end of the slope from the hump to the hollow. The
peak value is located near the edge of the flat hollow part on the
downstream side of the body. The results of the LES computation
agree well with the measurements.

The influence of the grid resolution on the computation of sur-
face waves is examined in Fig. 5~a! and ~b!, which compare the
profiles of the time-averaged elevation and r.m.s. fluctuation of the
surface at Fr50.8 at two transverse sections on the downstream
side of the body. Although some discrepancies are observed in the
results from Grid-A, the difference between the results from
Grid-B and Grid-C is small.

The dependencies of the mean elevation and fluctuation of the
surface on the Froude number are examined Figs. 6 and 7. Natu-
rally, both elevation and fluctuation decrease as the Froude num-
ber Fr is decreased. The deformation of the surface at Fr50.2 is
an order of magnitude smaller than that at Fr50.8. The effect of
this difference on the viscous flow beneath the surface is exam-
ined hereafter.

4.3 Wave-Wake Interactions. Figure 8 shows distribution
of the wake by contours of the computed time-averaged stream-
wise velocity at two transverse sections. At low Froude numbers
Fr50.2 and 0.5 the wake distribution is almost symmetrical with
respect to the horizontal mid-depth plane, indicating that the free
surface acts like a rigid free-slip boundary. On the other hand, the
influence of the surface deformation in the wake is clearly ob-
served at Fr50.8. At x151.0 shown in Fig. 8~a!, the lateral width
of the wake is nearly constant from the bottom boundary to the
level about 0.6 diameter below the mean water level; beyond that
level the width increases rapidly. The section atx151.0 is located
within the recirculation region; the mean velocity near the center
line is negative from the bottom to the free surface. Observe that
the lateral spread of the wake is not uniform in the vertical direc-
tion. Figure 8~b! shows that the width of the wake is narrowest at
the level about one diameter below the mean water level, and that
it increases in both directions toward the free surface and the
bottom. Negative streamwise velocity is seen only near the free
surface.

Unfortunately, only a few velocity measurements were pro-
vided, but the comparisons of the time-averaged streamwise ve-
locity at Fr50.8 shown in Fig. 9 indicate fair agreement with the
computation. The decrease in the streamwise velocity near the

Fig. 9 The vertical profiles of the computed and measured
mean streamwise velocity at Fr Ä0.8: „a… x 1Ä2.5, x 2Ä0, „b… x 1
Ä4.5, x 2Ä0, „c… x 1Ä2, x 2Ä1
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free surface is clearly seen both in the computation and the mea-
surement. It is also noted that the differences among the compu-
tational results using different grid resolutions are also small.

The contour plots of the time-averaged streamwise vorticity
shown in Fig. 10 for the same sections as Fig. 8 indicate that there
are a pair of counter rotating streamwise vortices under the free
surface at Fr50.8. There are also weaker secondary vortices be-
tween the primary vortex pair and the free surface. The locations
of the strong streamwise vortices and the constriction of the wake
shown in Fig. 8 correlate well, indicating that the secondary flow
characterized by streamwise vortices contributes to the distortion
of the wake. On the other hand, three-dimensionality of the mean
flow is small at low Froude numbers Fr50.2 and 0.5.

Figures 11~a! and ~b! show the contours of the time-averaged
transverse component of the vorticityv̄2 at Fr50.8 for two sec-
tions ofx251.0 andx252.0, respectively. The large magnitude of
the negative vorticity seen atx251.0 clearly exhibits the presence
of a recirculation zone starting from the point where the surface
slope changes suddenly. The surface fluctuation is probably re-
lated to instabilities of shear layers under a free surface~see for
example@19,20#!. On the other hand, the weak vorticity seen un-
der the crest and the trough is due to the curvature of the free
surface@21#.

Figure 12 shows an instantaneous field of computed vertical
vorticity componentv̄3 at Fr50.8 at different depths. Atx35

24.0, the flow pattern is very similar to that for an infinitely long
cylinder, where periodic vortex-shedding is apparent. As the free
surface is approached, the large scale interaction between two
separated shear layers becomes less prominent, and more random
smaller scale vortices come to the fore. The variation of the flow
pattern in the vertical direction is due to the change in the relation
between the two separated shear layers. At a deep level, the shear
layers stretch straight in the downstream direction, while near the
free surface due to the deformation of the surface the shear layers
are inclined outward prohibiting the formation of the large scale
vortex shedding.

At the Reynolds number of Re52.73104, the boundary layer
along the cylinder surface is laminar, and the transition to turbu-
lence occurs in the wake. However, this feature is not well repro-
duced in the present LES computations, since the SGS stresses do
not vanish in laminar region. This results in an overestimation of
the growth of the boundary layer and an erroneous prediction of
the separation point. Use of the dynamic SGS model@22# or an ad
hoc damping function on the Smagorinsky coefficient in the lami-
nar region may improve the quality of the solution.

4.4 Velocity Fluctuation. The vertical distribution of the
computed r.m.s. velocity fluctuation at Fr50.8 is shown in Figs.
13~a!, ~b!, and ~c! for three locations in the wake. The velocity
fluctuationui8 is defined as

Fig. 10 Time-averaged streamwise vorticity at Fr Ä0.8: „a… x 1Ä1.0, „b… x 1Ä2.5. Solid and dotted lines denote clock-
wise and counterclockwise rotation, respectively. Contour interval is 0.5.
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ui85ūi2^ūi&, (17)

in which the angle brackets denote time-averaging. Both periodic
and random components are included, but the subgrid scale fluc-
tuation is assumed to be small and is not included in the statistics.
Phase-averaging can separate the periodic and random compo-
nents. However it was not performed because the periodicity is
not perfectly regular and it requires very long simulation time to
converge.

On the center symmetry plane (x250) shown in Figs. 13~a!
and ~b!, the transverse componentu2 rms8 decreases near the free
surface, whileu1 rms8 andu3 rms8 exhibit small variation in the ver-
tical direction.

On the other hand, under the trough of the surface wave shown
in Fig. 13~c!, u1 rms8 andu2 rms8 first decrease in the region from the
bottom to the level about one diameter below the still water level
(x3521.0), whereas the intensities of all the three components
increase sharply near the free surface. The fluctuation of the free
surface is also intensive at this point.

The vertical profile of the time-averaged velocity at this point
shown in Fig. 9~c! also indicates the existence of a strong shear
layer beneath the free surface. Figure 14 shows the time history of
the transverse velocity componentū2 for the same point. At the
bottom boundary (x3524.0) the periodic component of the fluc-
tuation is dominant while, at the levelx3521.0, the intensity of
the fluctuation becomes small and more random fluctuations of
higher frequencies stand out. The intensity of the random fluctua-
tion increases at the levelx3520.6 near the mean free surface
level. The same tendency was also confirmed qualitatively in the
experiment by Inoue et al.@2#. An analysis of the time history of

the measured velocity showed the decay of the periodic compo-
nent and the increase in the random component toward the free
surface. The results of the present LES suggests that the fluctua-
tion due to the shear flow instability near a free surface are locally
predominant while the periodic vortex shedding is attenuated.

4.5 Hydrodynamic Forces. The drag coefficientCD and
the lift coefficientCL are defined as

CD5
F1

1/2rU2DH
(18)

and

Fig. 11 Contours of the transverse component of the time-
averaged vorticity at Fr Ä0.8: „a… x 2Ä1.0, „b… x 2Ä2.0.

Fig. 12 Comparison of the instantaneous vertical vorticity
component at Fr Ä0.8 on horizontal planes: „a… on the free sur-
face, „b… x 3ÄÀ0.6, „c… x 3ÄÀ1.0, „d… x 3ÄÀ4.0. Contour interval
is 0.4
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CL5
F2

1/2rU2DH
, (19)

in which F1 and F2 are the forces in thex1 and x2 directions,
respectively. Table 1 shows the mean value of the drag coefficient
CD mean and the r.m.s. of the lift coefficientCL rms from the LES
computations. The forces are calculated by integrating the normal
and tangential stresses on the body surface.

It is shown that the dependencies of the computed hydrody-
namic forces for a case at Fr50.8 on the grid resolution is small.
The experimental value ofCD meanfor an infinite cylinder is about

1.2 @23,24#. The influence of the aspect ratio on vortex shedding
from a circular cylinder has been investigated by Szepessy and
Bearman@24#, and their results indicate that the influence of the
end condition onCD mean at H/D54 and Re52.73104 is small.
The values ofCD meanfrom the LES computations are smaller than
the experimental value probably due to the deformation of free
surface. As the Froude number is decreased, the influence of the
deformation of the free surface decreases, and the value ofCD mean
approaches the experimental value for an infinite cylinder. The
computed values ofCD meanfor a surface-piercing cylinder include
the wave making resistance. However, from the observed wave
pattern, the contribution of the wave making resistance onCD mean
is estimated to be less than 1%@25# at Fr50.8 andH/D54.

The experimental value ofCL rms at H/D54 and Re52.7

Fig. 13 Profiles of the computed r.m.s. velocity fluctuations,
u 1rms8 „solid …, u 2rms8 „dashed …, and u 3rms8 „dot-dashed … at FrÄ0.8:
„a… x 1Ä2.5, x 2Ä0, „b… x 1Ä4.5, x 2Ä0, „c… x 1Ä2, x 2Ä1

Fig. 14 Vertical variation of the velocity signals in the wake
„x 1Ä2,x 2Ä1… at FrÄ0.8
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3104 is about 0.45@24#, while the computed values ofCL rms
range between 0.24 and 0.32. The difference between the experi-
ment and the LES computation becomes smaller, as the Froude
number in the computation is decreased. It is also noted that the
dependency ofCL rms on the Froude number is larger than that of
CD mean.

Figure 15 shows the distributions of sectionalCD mean and
CL rms along the cylinder span. The values ofCD mean increase
toward the bottom and the free surface boundaries probably due to
the restriction of the three-dimensionality@24#, while the effect of
the free surface is not apparent. On the other hand, the variation of
the sectionalCL rms at Fr50.8 is more obvious. The minimum
value observed atx3521.5 is less than a half of its maximum
value near the bottom boundary, and the value increases towards
the free surface and bottom boundaries. This trend is consistent
with the trend of the velocity fluctuations shown in Fig. 14.

5 Summary and Conclusions
Turbulent flow around a surface piercing circular cylinder at

Re52.73104 has been investigated using LES. The objective has
been to gain deeper insight into the wave-wake interaction about a
surface piercing bluff body while validating the computational
method through comparisons with experimental data. The compu-
tations have been performed for three Froude numbers Fr50.2,
0.5 and 0.8 in order to examine the influence of the Froude num-
ber.

The computational results are generally in good agreement with
the available experimental data with respect to the mean velocity
profiles and the surface elevation. At Fr50.2 and 0.5 surface de-
formations are small, and the mean flow near the surface is similar
to that near the bottom symmetry boundary. On the other hand,
the generated surface waves at Fr50.8 is very large and strongly
unsteady. The computational results show that the distribution of
the surface fluctuation and the structure of the vortical structure
beneath correlate closely with the mean configuration of the sur-
face. Computational results show the presence of a recirculation
zone starting at the point where the surface slope changes discon-
tinuously. Above this zone the surface elevation fluctuates inten-

sively. Very good agreement with experimental results has been
obtained in the intensity of the surface fluctuation.

It has been also shown that the periodic vortex shedding is
attenuated near the free surface in the high Froude number case
Fr50.8. This is clearly shown by the plots of the instantaneous
vertical vorticity component, the time history of the velocity, and
the profiles of the intensity of the velocity fluctuation. This feature
is consistent with the experimental observations@2#. The region in
which the periodic vortex shedding is hampered extends to about
one diameter from the mean water level. It is qualitatively shown
that the separated shear layers are inclined outward near the free
surface due to the generation of the surface waves. This change in
the relation between two shear layers is suggested to be respon-
sible for the attenuation of the periodic vortex shedding.
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Turbulent Reacting Flows
The recently proposed multi-environment model, R. O. Fox, 1998, ‘‘On the Relationship
between Lagrangian Micromixing Models and Computational Fluid Dynamics,’’ Chem.
Eng. Proc., Vol. 37, pp. 521–535. J. Villermaux and J. C. Devillon, 1994, ‘‘A Generalized
Mixing Model for Initial Contacting of Reactive Fluids,’’ Chem. Eng. Sci., Vol. 49, p.
5127, provides a new category of modeling techniques that can be employed to resolve the
turbulence-chemistry interactions found in reactive flows. By solving the Eulerian trans-
port equations for volume fractions and chemical species simultaneously, the local con-
centrations of chemical species in each environment can be obtained. Assuming micro-
mixing occurs only in phase space, the well-known IEM (interaction by exchange with the
mean) model can be applied to close the micromixing term. This simplification allows the
model to use micromixing timescales obtained from more sophisticated models and can be
applied to any number of environments. Although the PDF shape doesn’t change under
this assumption, the interaction between turbulence and chemistry can be resolved up to
the second moments without any ad-hoc assumptions for the mean reaction rates. Fur-
thermore, the PDF shape is found to have minimal effect on mean reaction rates for
incompressible turbulent reacting flows. In this formulation, a spurious dissipation term
arises in the transport equation of the scalar variances due to the use of Eulerian trans-
port equations. A procedure is proposed to eliminate this spurious term. The model is
applied to simulate the experiment of S. Komori, et al., 1993, ‘‘Measurements of Mass
Flux in a Turbulent Liquid Flow With a Chemical Reaction,’’ AIChE J., Vol. 39, pp.
1611–1620, for a reactive mixing layer and the experiment of K. Li and H. Toor, 1986,
‘‘Turbulent Reactive Mixing With a Series Parallel reaction: Effect of Mixing on Yield,’’
AIChE J., Vol. 32, pp. 1312–1320, with a two-step parallel/consecutive reaction. The
results are found to be in good agreement with the experimental data of Komori et al. and
the PDF simulation of K. Tsai and R. Fox, 1994, ‘‘PDF Simulation of a Turbulent Series-
Parallel Reaction in an Axisymmetric Reactor,’’ Chem. Eng. Sci., Vol. 49, pp. 5141–5158,
for the experiment of Li and Toor. The resulting model is implemented in the commercial
CFD code, FLUENT,1 and can be applied with any number of species and reactions.
@DOI: 10.1115/1.1431546#

Introduction
Micromixing and chemical reactions in turbulence have long

been a challenging topic in both academia and industry due to its
importance in many industrial processes and combustion. Recent
work shows that the problem can be divided into two parts~e.g.,
Tsai and O’Brien,@1#; Tsai et al.@2#!: the shape of scalar PDF and
the micromixing timescale that governs the rate of change of the
scalar PDF.

Monte-Carlo PDF methods~Pope@3#; Fox @4#! are considered
the state-of-the-art technique for such problems. Unfortunately,
the computational cost severely hinders their application for prac-
tical problems~e.g., Tsai and Fox@5#!. The advantage of a full
PDF simulation is that the interaction between micromixing and
reaction terms is resolved exactly. While neglecting the change in
micromixing timescales due to chemical reactions, the PDF meth-
ods are able to provide more accurate predictions than conven-
tional moment-method based closures. The widely used model of
Magnussen and Hjertager@6# assumes the rate limiting timescale
to be the eddy-breakup time and thus provides a measure for
mixing-controlled reactions. However, such measure strongly de-
pends on the local structure of the scalar field. Since the concen-
tration fluctuations are not accounted for, empirical parameters are
needed for reasonable predictions. The uncertainty of determining
the empirical parameters exacerbates when applied to high

Schmidt number flows. It is very difficult~if not impossible! to
have universal parameters that account for the structure differ-
ences in concentration fluctuations due to Schmidt number effects.

Conceptually, the Magnussen model can be considered as using
a single delta function in state space to represent the bulk reaction
rates. Since only mean equations are solved, rate-limiting param-
eters must be introduced to represent the effect of turbulence.
However, it is possible to use multiple delta functions in state
space to represent both the concentration means and fluctuations
in a deterministic manner~Fox @7#!. The micromixing timescale
can be embedded using the dissipation rate of scalar variance,
thus, eliminating the need for empirical parameters. Furthermore,
it has been found that, for incompressible flows, the effects of
PDF shape may be of little consequence to the prediction of mean
reaction rates~Tsai et al.@2#!. This evidence further confirms the
adequacy of using a finite number of delta functions as a repre-
sentation of scalar PDF. The details are described below.

Scalar Transport Equations. For simplicity, the following
discussion is limited to constant-density flows~i.e., density fluc-
tuation not considered!. However, the method is general and can
be easily extended to flows with variable density.

Using the concept of probability~described below! in constant-
density flows, the equations that govern the probability flow from
inlet stream~environment! i can be written as

r
DPi

Dt
50, (1)

1FLUENT is a trade designation of Fluent Incorporated
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where capitalD on the left denotes the material derivative andr is
the density. This equation can be also used to describe the mass
fraction transport in reactive flows without molecular diffusion
and is the basis for the FMPDF model. In comparison, the trans-
port of composition joint PDF equation without reaction and mi-
cromixing can be described below~Pope@3#, Section 7!

]

]t
@r f f#1

]

]xi
@r^ui uf5c& f f#50, (2)

wheref f is the composition joint PDF and̂ui uf5c& denotes the
mean velocity conditioned on compositionf. If f f is assumed as
a sum of delta functions from each inlet streamj, then

f f5(
j

Gjd~c2c j !, (3)

whereGj is the magnitude of the delta functiond(c2c j ). Using
the gradient diffusion assumption and Reynolds’ averaging the
second term in the bracket can be rewritten as

r^ui uf5c& f f5rūi f f2GT

] f f

]xt
, (4)

where ūi is the ensemble average ofui , andGT the eddy diffu-
sivity, defined as

GT5r
Cm

h t

k2

«
. (5)

In Eq. ~5!, Cm is a model constant~50.09!, h t the turbulent
Schmidt number~50.7!, k the turbulent kinetic energy, and« the
turbulent dissipation rate. Substituting Eq.~3! in Eq. ~2!, the fol-
lowing equation is obtained:

r
]

]t S (j
Gjd~c2c j ! D 1rūi

]

]xi
(

j
Gjd~c2c j !

5
]

]xi
GT

]

]xi
(

j
Gjd~c2c j !. (6)

One possible solution is that eachGjd(c2c j ) satisfies Eq.~6!.
This leads to

r
]

]t
@Gjd~c2c j !#1rūi

]

]xi
@Gjd~c2c j !#

5
]

]xi
GT

]

]xi
@Gj~c2c j !#. (7)

Integrating over phase spacec, Eq. ~7! is reduced to

r
]Gj

]t
1rūi

]Gj

]xi
5

]

]xi
GT

]

]xi
Gj (8)

Equation~8! is identical to Eq.~1! when the gradient assumption
is used to model the turbulent flux. It is therefore assumed that the
transport of mass fraction can also be interpreted as the probabil-
ity flow from streami without micromixing. Equation~6! can be
regarded as the transport equation for the discrete representation
of f f(c), similar to the Monte-Carlo PDF equation without mi-
cromixing. Note thatGj in Eq. ~8! will be referred asPj hereafter.

If ~7! is multiplied byc and then integrated over phase space,
the transport equation for the total concentration of speciesk from
inlet streami

Sk
i 5Pick

i (9)

can be written as follows:

r
]Sk

i

]t
1rū j

]Sk
i

]xj
5

]

]xj
GT

]Sk
i

]xj
1rMk

i ~P,Sk!1rRk~Pi ,Si !

(10)

with M[R[0, whereM andR represent the source terms due to
micromixing and chemical reactions, respectively, andP andS are
the vector form ofP andS. The proposedM andR terms are also
taken hint from the transport equation off f(c), which reads
~Pope@3#!

]

]t
@r f f#1

]

]xj
~rū j f f!5

]

]c F K ]Jj

]xj
UcL f fG2

]

]c
@rR~c! f f#,

(11)

whereJ is the molecular diffusion flux,̂]Jj /]xj uc& the micro-
mixing term conditioned onc, andR(c) the reaction source term
~for simplicity, only a single scalar is considered!. Since the terms
on the right-hand side only depend onc, it is therefore assumed
that M andR can be modeled as functions ofc ~i.e., functions of
P andS!.

Since Eqs.~8! and ~10! are identical withM[R[0, ck
i will

remain the same as in inlet streami. This is similar to the La-
grangian concentration described in the Monte-Carlo PDF
method. Thus, by definition, the following relations must be sat-
isfied,

(
i

Pi51 (12)

and

f̄k5(
i

Sk
i . (13)

Note thatfk is the physical counterpart of the phase variablec
and is used hereafter to represent both the phase~Lagrangian! and
physical concentration variables. Furthermore, since micromixing
does not change scalar concentration means, the micromixing
term M must satisfy the following criterion:

(
i

Mk
i 50. (14)

Equation~14! provides the first guideline for modeling the micro-
mixing term. Since both the mean and Lagrangian values offk

can be obtained through Eqs.~8!, ~9!, and~10!, Mk
i can be mod-

eled using the IEM~interaction by exchange with the mean! clo-
sure~Villermaux and Devillon@8#; Dopazo@9#!, which gives

Mk
i 52gPi~fk

i 2f̄k!, (15)

whereg is the scaling factor for the micromixing timescale. With
Eqs.~9! and ~13!, Eq. ~15! can be rewritten as

Mk
i 5gS Sk

i 2Pi(
j

Sk
j D (16)

Note that in this formulation,g needs to be provided as a model
input as in the other one-point closures~e.g., Tsai and OBrien@1#,
Tsai and Fox@5#!. The last term in Eq.~10! can be obtained by
multiplying the regular expression of chemical source term with
Pi . For instance, letfa

i andfb
i be the Lagrangian molar concen-

trations of reacting species A and B in environmenti, a bimolar
reaction rate for species A in can be expressed as

2kcfA
i fB

i , (17)

wherekc is the reaction rate constant. Multiply Eq.~17! by Pi ,
the source termRk(S

i ,Pi) in Eq. ~10! can be expressed as

Ra
i 52Pikcfa

i fb
i 52

kcSa
i Sb

l

Pi
, (18)

thus closes Eq.~10!. Equations~8! and ~10! are implemented in
Fluent using the user-defined subroutines. For a problem with two
PDF modes~i.e., inlet streams! and two species, a total of 5~1
PDF mode and twoSk in each PDF mode! user-defined scalars
need to be solved since one PDF mode can be obtained using Eq.
~12!.
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Mixture Fraction Variance. Using the definition ofPi and
Si , the mixture fraction variances2 can be found by

s25(
i

f i 2Pi2S (
i

f i Pi D 2

, (19)

wheref i is the Lagrangian concentration of a inert tracer from
inlet streami. Differentiating Eq.~19! with respect to time and
applying Eqs.~8! and ~10!, the transport equation fors2 can be
derived as

r
]s2

]t
1rū j

]s2

]xj
5

]

]xj
FGT

]s2

]xj
G12GT

]f̄

]xj

]f̄

]xj

22GT(
i

Pi

]f i

]xj

]f i

]xj
12r(

i
f iM i .

(20)

The last two term on the right-hand side are the ‘‘spurious’’ dis-
sipation term and the scalar dissipation term due to micromixing
~Fox @7#!, respectively. Applying the definition ofMi ~Eq. ~16!!
and Eq.~13!, the last term can be rewritten as

2(
i

f iM i522g(
i

Pi~f̄2f i !2, (21)

which has the same form as the IEM model~Villermaux and Dev-
illon @8#, Dopazo@9#!. In the absence of the ‘‘spurious’’ dissipa-
tion term,g can be defined as

g5
1

tm
, (22)

wheretm is the characteristic timescale for micromixing. Details
of determining the value fortm can be found elsewhere~Fox
@10#!. The scope of this paper is limited to evaluating the FMPDF
model. Several different expressions oftm will be exploited to
compare with the full PDF simulation~Tsai and Fox@11#!, Mag-
nussen model, and Baldyga and Henczka’s model based on mix-
ture fraction variance@12#.

With the gradient-diffusion assumption, the correct transport
equation for mixture fraction variance can be written as

r
]s2

]t
1rū j

]s2

]xj
5

]

]xj
FGT

]s2

]xj
G12GT

]f̄

]xj

]f̄

]xj
2

2r

tm
s2.

(23)

Compared with Eq.~10!, it is clear that the ‘‘spurious’’ term is
indeed an extra dissipation term that should be eliminated. It is
argued that this term is relatively small~Fox @7#!. However, there
are several ways to eliminate this term. One possibility is to solve
both Eq.~20! and Eq.~23! simultaneously and redefineg usings2

solved in Eq.~23!. This method thus forces the solutions of Eq.
~23! and Eq.~20! to be identical. For numerical implementation,
only Eq. ~23! needs to be solved explicitly because Eq.~20! is
implied by the solution of Eqs.~8! and ~10!. It is found this cor-
rection is essential for a correct modeling of turbulence-chemistry
interactions since the spurious dissipation term can enhance mi-
cromixing. Another advantage with this method is that the models
for timescale~e.g., Baldyga and Henczka@12#, Fox @10#! can be
implemented through Eq.~23!. It is found that this method pro-
vides a stable and accurate solution fors2 and is adopted for all
simulations performed in this paper.

The velocity and turbulence fields are solved using both the
standard and the RNGk2« model ~Launder and Spalding@13#,
Yakhot and Orszag@14#!. For results presented below, there is
little difference found between these two models.

Results and Discussion

The Experiment of Komori et al. †15‡. The FMPDF model
is compared with the Magnussen model and Baldyga’s model for
the reactive mixing layer experiment of Komori et al.@15#. The

experiment was conducted in a water tunnel with both inert tracer
and a one-step irreversible acid-base neutralization reaction

A1B ——→
kc

product, (24)

where kc→`. In the model, kc is assumed to be 1015

(m3/mole-s). However,kc can be as small as 108 without altering
the results significantly.

A Experimental Configuration.The water tunnel has a
square cross section and the inlet streams have equal volume ratio.
The Reynolds number is about 25,000 and Schmidt number is
800. This experiment is chosen because of its relatively high
Schmidt and Reynolds numbers, and because the measurements
can be more accurately taken with few complications from the
effects of wall boundary layers. Figure 1 is a schematic diagram
of the experiment configuration. The two vertical lines shown in
Fig. 1 are the locations~X/M56 and X/M512 with M
50.02 m! where concentration profiles of species A are compared
~Eq. ~13!!. TheX value is measured from the splitter tip.

The micromixing timescale,tm , for the FMPDF model is given
by the classic formula of Corssin@16#:

tm5
3

2

k

«
1

1

2
ln~Sc!S n

« D 1/2

, (25)

where« is the turbulent dissipation rate,k the turbulent kinetic
energy andv the kinematic viscosity~'1026 for water!. This
timescale contains the correct scaling for fluids with high Schmidt
numbers, and is derived for a fully developed turbulence at high
Reynolds number where a viscous-convective spectrum is present.
For liquid flows, this is the only timescale accounts for the well-
known scaling of 21 for the inertial-viscous range at high-
Schmidt numbers. The initial concentrations of two reacting spe-
cies,CA0 andCB0 , have the same values of 10 mole/m3.

B Boundary Conditions. The experiment has two streams
and two reactants, thus a total of 7~2 environments12 species in
each environment and 1 variance! variables need to be solved. By
applying Eq.~12!, the variables can be reduced to 5. The bound-
ary conditions are summarized below:

Inlet\Variable P1 P2 SA
1 ~mol/m3! SB

1
A
2 SB

2

1 1.0 0.0 10.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 10.0

The mean values can be obtained according to Eq.~13!.

Results and Discussion. The predictions of the FMPDF
model for the inert tracer is shown in Fig. 2 and the reactive
mixing layer case shown in Fig. 3. Both results match quite well
with the experimental data.

Both the Magnussen model and Baldyga’s mixture fraction re-
action model predict almost identical results as shown in Fig. 2 for
the inert tracer case~not shown!. For the case of reactive mixing
layer, the Magnussen model requires adjustment of the empirical

Fig. 1 Schematic diagram for the experiment of Komori et al.
†15‡
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parameters to fit the data correctly. The Magnussen model as-
sumes the limiting reaction rate has the following form for one-
step irreversible reactions:

Ri5n i8Wiar
«

k

PR

nR8WR
, (26)

wheren i8 is the stochiometric coefficient for speciesi, a the em-
pirical parameter,Wi the molecular weight of speciesi, r the fluid
density, andPR the mass fraction of reactantR. After some trial
and error,a is found to be 0.8. The effect ofa is shown in Fig. 4.
With a50.8, both profiles atX/M56 ~Fig. 4! andX/M512 ~not
shown! fits the data closely. However, determining the value ofa
is highly empirical and a universal value for different reactions
and flows might not be possible.

Baldyga’s model contains two parts. Part one is a cascade
model for the decay of mixture fraction variance, which includes
the effects of dissipation rate at different stages of the scalar spec-
trum, and therefore does not require any empirical constants.
However, the model requires solving three stages of variance cas-
cade and the final variance is the sum of the three stages. Equation
~23! is used as the first stage. Depending on the Reynolds number,
Baldyga’s model always predicts a larger variance when the same
tm is chosen. The second part is a model for the mean reaction

rates based on the PDF shape of mixture fraction. A beta distribu-
tion is assumed for the mixture fraction PDF. By solving the mean
and the three-stage variance equations, a beta density function is
assigned as the mixture fraction PDF and a linear relationship is
assumed between reactants and the mixture fraction. This gives
the mean reaction rates for reactants and products. Details can be
found elsewhere~Baldyga and Henczka@12#! and is not repeated.
The results are shown in Fig. 5. Significant deviations can be
found at both locations~X/M56 andX/M512!. The reason for
the deviation is not clear since both the models for the mixture
fraction variance and the mean reaction rates could contribute to
the error.

The simulations are performed in 2-D since the mixing layer
thickness is relatively small compared to the equipment dimen-
sion. Three resolutions are used~241340, 120330, and 50320!.
The two higher-density grids produced almost identical results
within 2500 iterations with an error tolerance of 1028 for scalars.

Li and Toor’s Experiment. The experiment of Li and Toor
@17# is conducted using a coaxial jet reactor with the following
parallel/consecutive reaction:

A1B ——→
k1

Q,

B1Q ——→
k2

T, (27)

Fig. 2 Vertical profiles of inert tracer at the position of X ÕM
Ä6 and X ÕMÄ12 predicted by Eq. „3…. X is the axial distance and
M is the mesh size „Ä0.02 m….

Fig. 3 Vertical profiles of species A for the reactive mixing
layer experiment predicted by the FMPDF model

Fig. 4 Vertical profiles of species A mean concentration at
XÕMÄ6 predicted with different values of empirical parameters
using the Magnussen model

Fig. 5 Vertical profiles of species A predicted by Baldyga’s
model
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wherek151015(m3/gmole-s) andk251800. This reaction is well-
known for its sensitivity to micromixing. The formation of species
T is highly dependent on flow parameters. The reaction source
terms for FMPDF can be expressed as follows:

RA
i 52k1

SA
i SB

i

Pi

RB
i 52k1

SA
i SB

i

Pi
2k2

SB
i SQ

i

Pi
(28)

RR
i 5k1

SA
i SB

i

Pi
2k2

SB
i SQ

i

Pi

Concentration values for speciesT is obtained through molar bal-
ance. For this reaction, a total of seven variables need to be solved
plus Eq. ~23!. The inlet boundary conditions can be derived as
discussed in the previous section.

The initial volume ratio of species A and B is equal to one. The
experiment uses a single-jet reactor consisted of a smaller tube
centered with four vanes in a larger tube. The smaller tube has a
0.004 m inner diameter and 0.0048 m outer diameter. The larger
tube has an inner diameter of 0.0066 m and a length of 1.8m.
More details of the experimental configuration can be found in Li
and Toor @17#. In order to demonstrate that the turbulence-
chemistry interactions are correctly modeled, the FMPDF model
adopts identical micromixing timescales used in the Monte-Carlo
PDF simulations performed by Tsai and Fox@11#. Interested read-
ers should refer to that paper for more details. Only results rel-
evant to this study are outlined here. Three different timescales are
used in their study:

Tm15Cf1

d

Ak
(29)

tm25Cf2

k

«
(30)

tm35Cf3An

«
, (31)

whered is the inner diameter of the larger tube. In the PDF simu-
lations, these three timescales are chosen to predict the yield de-
fined below

YQ5
f̄Q

f̄Q12f̄T

, (32)

It is concluded that Eq.~29! provides the best fit since the PDF
simulations are able to reproduce the yield within 2 percent accu-
racy with a constant value ofCf1(51.65) for several configura-
tions ~Table 1!. The other two timescales require different values
of Cf2 andCf3 to predict the correct yield at different Reynolds
numbers. In order to show that the proposed model correctly re-
solves the turbulence-chemistry interactions, all three timescales
are used to reproduce the results predicted by the PDF simula-
tions.

It should be noted that the three timescales are significantly
different from Eq.~25!. Equations~29! to ~31! contain no infor-
mation about the Schmidt number and thus should only be con-
sidered as a best fit to the experimental data. Since the Reynolds
numbers in Li and Toor’s experiment are relatively low, a reason-
able prediction of the time scale is difficult. As pointed out by
Kruis and Falk@18# even with sophisticated models~e.g., spectral
relaxation model of Fox@10#!, the prediction is still less than
desirable. Furthermore, as mentioned earlier, the FMPDF model is
a one-point closure and thus incapable of predicting timescale
information. The purpose of this comparison is to demonstrate
that the interaction between turbulence and chemistry can be mod-
eled reasonably well without resorting to the full PDF simulation,
which is known for its analytical formulation for turbulence-
chemistry interactions~Pope@3#!.

The results shown in Table 1 to Table 3 contain eight cases,
including two different inlet concentrations of A and B at two
Reynolds numbers~3530 and 7552!, and cases in which species A
and B are switched at the inlet. In Table 1, the experimental data
are attached in the last column of each data field marked EXP for
comparison.

In Table 1, the first column shows the concentration of species
B ~species A is always 4 percent in excess to ensure the comple-
tion of species B!. The second column indicates the Reynolds
number. The third column summarizes the results with species B
injected through the center jet, and the fourth column shows the
results with species A injected through the center jet. In column 3
and 4, the numbers on the left are the results predicted by the
FMPDF model and the numbers on the right are the results pre-
dicted by the Monte-Carlo PDF simulation. While a constantCf1
can be used with timescaled/Ak, at different Reynolds numbers,
the commonly used timescale,k/«, requires two different values
of Cf2 ~0.525 and 0.37 as shown in Table 2! to predict the ex-
perimental results correctly. Table 3 shows the results with the
third timescale,An/«, with a constant value ofCf3 ~0.028!, but
the results are less satisfactory at the low Reynolds number.

For all cases shown here, the predicted results from these two
models differ less than 2 percent with identical values ofCf . This
is remarkable considering the fact that FMPDF takes a completely
different approach then the full PDF formulation and the differ-
ence in CPU time consumed. Since FMPDF is formulated in an
Eulerian frame, it can be easily integrated into many commercial
CFD codes and solved as a steady-state solution. In contrast, the
Monte-Carlo PDF simulation can only obtain time-averaged sta-
tionary solutions because of the randomness in particle move-
ment. The Monte-Carlo PDF simulation requires approximately 5

Table 1 Summary of results from the FMPDF and the Monte-
Carlo simulations using Eq. „29…

B ~gmol/m3! Re
FMPDF/PDF/EXP

B in jet
FMPDF/PDF/EXP

A in jet Cf1

2.86 3530 80.40/81.0/82.05 % 79.9/80/84.92 1.65
2.86 7552 88.11/88.3/88.33 87.43/88.38/90.86 1.65
0.964 3530 91.28/91.8/88.95 91.0/90.0/91.13 1.65
0.964 7552 95.14/95.4/93.45 95.06/95.3/94.88 1.65

Table 2 Summary of results from the FMPDF and the Monte-
Carlo Simulations using Eq. „30…

B ~gmol/m3! Re
FMPDF/PDF

B in jet
FMPDF/PDF

A in jet Cf2

2.86 3530 85.6/82.5 % n/a 0.525
2.86 7552 88.8/88.53 88.11/87.14 0.37
0.964 3530 93.9/92.49 n/a 0.525
0.964 7552 95.4/95.18 95.4/95.08 0.37

Table 3 Summary of results from the FMPDF and the Monte-
Carlo simulations using Eq. „31…

B ~gmol/m3! Re
FMPDF/PDF

B in jet
FMPDF/PDF

A in jet Cf3

2.86 3530 76.1/74.5 % n/a 0.028
2.86 7552 88.46/88.5 88.04/87.6 0.028
0.964 3530 88.86/86.6 n/a 0.028
0.964 7552 94.4/95.1 95.2/95.2 0.028
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hr on a HP-Appolo 7352 workstation~with optimization! for each
simulation while the FMPDF model uses less than 15 minutes on
a Sun Ultra 303 workstation for a simulation with an identical
mesh.

Numerically, the simulations are performed in a 2-D axisym-
metric domain due to the co-axial jet configuration. The simula-
tion dimension and grid density are chosen to be identical to the
full PDF simulations. The grid coordinates and velocity fields are
available in Tsai and Fox@11#.

Conclusions
A simple deterministic model based on the concept of finite-

mode PDF is proposed to resolve the turbulence-chemistry inter-
actions in turbulent reacting flows. By using delta functions rep-
resenting the probability flow from each inlet streams, both
concentration mean and variance can be solved. This new tech-
nique allows a more physically sound methodology for resolving
the turbulence-chemistry interactions. The model is validated
against the experimental data of Komori et al.@15# using the ti-
mescale formulated by Corrsin@16#, which includes the high
Schmidt effects of liquids used in the experiment. The results
match reasonably well with the experimental data. The Magnus-
sen model requires adjustment of empirical parameters with which
good results cannot always be assured. The model of Baldyga and
Henczka does not predict the experimental data well. This may be
a result of either the cascade micromixing model or the mean
reaction rate model based on the beta mixture fraction PDF, and a
simplified interpolation between infinite and zero reaction rate
constants.

The comparison with the Monte-Carlo PDF simulation is also
satisfactory. In all the cases compared, the FMPDF results match
closely with the full PDF method under different micromixing
timescales and model constants. This clearly indicates that the
micromixing effect on reaction is correctly coupled. The short
CPU time requirement will also allow simulations for realistic
industrial problems.

The formulation presented in this paper can be easily extended
to compressible flows. However, since only a small number of
PDF modes have been tested, the model’s ability to predict mean
reaction rates with nonlinear temperature dependency remains un-
certain, especially for flows with high density and temperature
variations, which can alter the probability density greatly. More
investigation in the area of combustion may be a worthwhile ven-
ture.
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Nomenclature

A 5 chemical speciesA
B 5 chemical speciesB

Cf 5 micromixing coefficient
Cm 5 model constant for Eddy diffusivity
Dm 5 molecular diffusion coefficient
Gj 5 magnitude of probability density atc j
Jj 5 molecular diffusion flux at directionj
Pi 5 volume fraction of environmenti
P 5 vector ofP
M 5 mesh size

Mk
i 5 micromixing source term for speciesk in environ-

ment i
Q 5 chemical speciesQ

T 5 chemical speciesT
Rk 5 reaction source term for speciesk
Sk

i 5 total concentration of speciesk in environmenti
S 5 vector ofS
W 5 molecular weight

YQ 5 yield of productQ
Y 5 vertical distance
X 5 axial distance

f f(c) 5 composition joint PDF
k 5 turbulent kinetic energy

kc ,k1 ,k2 5 reaction rate constant
t 5 time

ū 5 mean velocity
GT 5 turbulent diffusion coefficient
a 5 empirical constant in Magnussen’s model

s2 5 mixture fraction variance
g 5 micromixing scaling factor

h t 5 turbulent Schmidt number
fk

i 5 concentration of speciesk in environmenti
c 5 phase variable off

tm 5 micromixing timescale
« 5 turbulent energy dissipation rate
n 5 kinematic viscosity

n8 5 stoichiometric ratio
Sc 5 Schmidt number
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Modèle d’interaction Phe´noménologique,’’ 2nd Int’l. Symp. Chem. React. En-
gng., Amsterdam B, pp. 1–13.

@9# Dopazo, C., 1975, ‘‘Probability Density Function Approach for a Turbulent
Axisymmetric Heated Jet Centerline Evolution,’’ Phys. Fluids,18, pp. 397–
404.

@10# Fox, R. O., 1995, ‘‘The Spectral Relaxation Model of the Scalar Dissipation
Rate in Homogeneous Turbulence,’’ Phys. Fluids,6, pp. 334–348.

@11# Tsai, K., and Fox, R. O., 1994, ‘‘PDF Simulation of a Turbulent Series-Parallel
Reaction in an Axisymmetric Reactor,’’ Chem. Eng. Sci.,49, pp. 5141–5158.

@12# Baldyga, J., and Henczka, M., 1997, ‘‘Turbulent Mixing and Parallel Chemical
Reactions in a Pipe-Application of a Closure Model,’’ Re´cents Progre`s en
Génie des Proce´dés, 11, pp. 341–348.

@13# Launder B. E., and Spalding D. B., 1972,Lecture in Mathematical Models of
Turbulence, Academic Press, London, England.

@14# Yakhot, V., and Orszag, S. A., 1986, ‘‘Renormalization Group Analysis of
Turbulence: I Basic Theory,’’ J. Sci. Comput.,1, pp. 1–51.

@15# Komori, S., Nagata, K., Kanzaki, T., and Murakami, Y., 1993, ‘‘Measurements
of Mass Flux in a Turbulent Liquid Flow with a Chemical Reaction,’’ AIChE
J., 39, pp. 1611–1620.

@16# Corssin, S., 1964, ‘‘The Isotropic Turbulent Mixer: Part II. Arbitrary Schmidt
Number,’’ AIChE J.,10, pp. 870–877.

@17# Li, K., and Toor, H. L., 1986, ‘‘Turbulent Reactive Mixing with a Series-
Parallel Reaction: Effect of Mixing on Yield,’’ AIChE J.,32, pp. 1312–1320.

@18# Kruis, F. E., and Falk, L., 1996, ‘‘Mixing and Reaction in a Tubular Jet Reac-
tor: A Comparison of Experiments with a Model Based on a Prescribed PDF,’’
Chem. Eng. Sci.,51, pp. 2439–2448.

@19# Tsai, K., and Fox, R. O., 1998, ‘‘The BMC/GIEM Model for Micromixing in
Non-Premixed Turbulent Reacting Flows,’’ Ind. Eng. Chem. Res.,37, pp.
2131–2141.

@20# Villermaux, J., and Falk, L., 1994, ‘‘A Generalized Mixing Model for Initial
Contacting of Reactive Fluids,’’ Chem. Eng. Sci.,49, p. 5127.

2HP-Apollo 735 is a trade designation of Hewlett Packard.
3Sun Ultra 30 is a trade designation of Sun Microsystems.

Journal of Fluids Engineering MARCH 2002, Vol. 124 Õ 107

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S. Becker
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LDA-Measurements of
Transitional Flows Induced
by a Square Rib
New fundamental measurements are presented for the transition process in flat plate
boundary layers downstream of two-dimensional square ribs. By use of laser Doppler
anemometry (LDA) and a large Matched-Index-of-Refraction (MIR) flow system, data for
wall-normal fluctuations and Reynolds stresses were obtained in the near wall region to
y1,0.1 in addition to the usual mean streamwise velocity component and its fluctuation.
By varying velocity and rib height, the experiment investigated the following range of
conditions: k155.5 to 21, 0.3,k/d1,1, 180,Rek,740, 63104,Rex,k,1.53105,
ReQ660, 2125,~x2xk!/k,580. Consequently, results covered boundary layers which
retained their laminar characteristics through those where a turbulent boundary layer
was established shortly after reattachment beyond the forcing rib. For ‘‘large’’ elements,
evolution of turbulent statistics of the viscous layer for a turbulent boundary layer~y1

,;30! was rapid even in flows where the mean velocity profile still showed laminar
behavior. @DOI: 10.1115/1.1446067#

1 Introduction

Laminar-to-turbulent flow transition is a phenomenon which
continues to be of interest to fluid mechanics scholars. In many
technical applications, laminary boundary layers are induced, by
roughnesses, to undergo transition to a turbulent flow at lower
Reynolds numbers than the natural flow transition in order to en-
hance heat, mass or momentum transfer. This situation also has
some flow phenomena in common with separation bubbles and
the blockage of film cooling on turbine blades, both of which can
induce early transition. Although investigations of laminar-to-
turbulent flow transition have been going on for many decades,
there are still many open questions that await answers. In general,
the present studies were initiated to extend the knowledge of the
structure of the transition process induced by a square roughness
element.

A few studies of boundary layer development examined the
process from transition through to the resulting turbulent bound-
ary layer via hot wire anemometry. However, of these, Purtell
et al. @1#, Murliss et al.@2# and Erm and Joubert@3# all concen-
trated on behavior after the turbulent flow was established. Data
on the evolution of the boundary layer structure during transition
are sparse. Suder et al.@4# observed the flow structure in the case
of ‘‘bypass’’ transition due to ‘‘high’’ freestream turbulence, ex-

amining the development of the streamwise velocity component
and its mean turbulence statistics from laminar through turbulent
flow. The evolution of integral parameters in comparable experi-
ments by Roach and Brierley of Rolls Royce is presented by
Savill @5#. Qui and Simon@6# measured profiles of streamwise
velocity, turbulence intensity and intermittency through transition
on a model of the suction surface of a gas turbine blade; they
concluded that their transition started in the shear layer of a sepa-
ration bubble and propagated to the wall. Transition characteris-
tics were measured for an NACA 0012 airfoil by Lee and Kang
@7#, with and without another airfoil upstream.

Most studies of transition induced by roughness elements have
concentrated on determining the resultant reduction in transition
Reynolds number~Fage@8#, Schlichting@9#, Masad@10#!. Con-
ventional wisdom is that, for single circular elements, transition is
not affected if k1,;7 and it occurs at the element itself if
k1.;20. As noted by Schlichting, such criteria for transition
induced by sharp elements become smaller than for cylindrical
ones. This observation is demonstrated by comparable studies re-
cently conducted at the Lehrstuhl fu¨r Strömungsmechanik
~LSTM! to extend knowledge to include the structure of the tran-
sition process caused by a rectangular element~Durst et al.@11#!;
one of their objectives was to characterize the dependence of a
transition Reynolds number on the size of the roughness element
to determine the increased effectiveness of a square obstacle com-
pared to a circular cylinder for forcing transition.

The measurements were carried out in a wind tunnel with five
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different roughness heights (k50.25, 0.52, 0.72, 0.8 and 1.1 mm!
and a range of free stream velocities. A pressure signal corre-
sponding to the velocity gradient close to the wall was obtained
with a Preston tube~a Pitot tube held against the wall!; for given
flow conditions it is a measure of the local wall shear stress or
skin friction coefficient. Because the laminar-turbulent transition
leads to an increase of the wall velocity gradient, the transition
location was defined as the streamwise location where this local
pressure was a minimum. Results are compared to experiments
reported by Schlichting@9# in Fig. 1. One sees that the square,
sharp-edged roughness elements are more effective, especially at
small values ofk/d1 . As the nondimensional roughness size in-
creases, the difference becomes smaller.

Due to the curved surface of a cylinder, it will perturb the base
flow less than a rectangular element of equal height. Recirculating
regions with shear layers and their inflectional profiles are estab-
lished before and after the circular element. For the sharp-edged
element these regions are larger and there is likely to be an addi-
tional separation bubble on top of the element. The radius of cur-
vature of the cylinder is larger than that of the corner of a square
element so the former can be expected to introduce a narrower
spectrum of disturbance frequencies than the rectangular rib and
the dominant frequency would be lower. Consequently, the ‘‘re-
ceptivity’’ of the boundary layer should be greater for a rectangu-
lar rib than for such a rounded shape.

Some details of the structure of the transition process down-
stream of a roughness element have been determined by Kleban-
off and Tidstrom@12# with a single hot wire sensor; these inves-
tigators examined the response to the presence of a circular wire.
However, their main emphasis was on the ‘‘recovery zone’’ where
the flow could be considered to be essentially laminar. In addition
to mean velocity and turbulence intensity distributions in the
freestream direction, the spectral density distributions were re-
ported for a range of Reynolds numbers. This investigation
showed that it is possible to understand the behavior of a dis-
turbed boundary layer as if the effect of the element is ‘‘that of a
strong wavelike disturbance which vigorously destabilizes the
boundary layer and thus has the same effect as an increase in
turbulence intensity of the free stream’’~Schlichting@9#!.

In measuring low-Reynolds-number turbulent boundary layers,
Erm and Joubert@3# demonstrated that mean-flow profiles are sen-
sitive to the shape of tripping device used to induce the transition
to turbulent flow. From the report of Arnal et al.@13#, Arnal @14#

presented limited measurements of the development ofU/U inf and
u8/U inf downstream of a band of carborundum grains employed as
a near-rectangular roughness element. Little information exists
about the behavior of the transition process and its flow structure
very close to the wall, especially in other flow directions.

Phenomenologically, the Reynolds shear stress2ruv̄ can be
interpreted as the turbulent contribution to momentum transfer
towards and away from a surface. In order to determine its evo-
lution in the key viscous layer, simultaneous measurements ofu
andv are desired for the range of about 3,y1,40; none of the
experiments mentioned above had the instrumentation or spatial
resolution necessary to deducev and uv accurately through this
range. Most used single sensors (;u); the few that measured the
normal component were constrained, by the configuration of their
X-wire probes, to obtain data at locations greater thany1 of about
fifty ~Murliss et al.@2#, Erm and Joubert@3#! and concentrated on
the fully turbulent region. Use of two-component laser anemom-
etry in the large Matched-Index-of-Refraction flow system at the
Idaho National Engineering and Environmental Laboratory
~INEEL! has made possible such measurements for the present
paper.

A presentaim is to obtain fundamental data for the evolution of
the Reynolds stresses in transition processes induced by rough-
nesses, especially in the near-wall region. The very high velocity
gradients near the wall can raise questions regarding data accu-
racy for both numerical and experimental investigations. For ex-
ample, even results of the DNS boundary layer flow simulations
of Kim et al. @15# and Horiuhi@16# differ significantly from each
other near the wall. With the present well-defined geometry, the
results should also be valuable for benchmarking direct numerical
simulations of transition~Laurien and Kleiser@17#, Fasel et al.
@18#, Spalart@19#, Narasimha@20#! enhanced by the presence of
roughness elements. Patel@21# calls flow over rough surfaces an
Achilles heel of computational fluid dynamics~CFD!. For a first
application to transition induced by roughness, a two-dimensional
geometry would be most convenient for the DNS modeler. How-
ever, representing a circular element on a flat plate could involve
undesirable complications with the numerical grid. A rectangular
or square rib should be much easier for the analysts to represent;
however, detailed data on the structure of the transition process
have not been available for this case.

The present paper describes the experimental arrangements and
uncertainties, behavior for a smooth plate without a roughness
element, typical results for the streamwise component for a range
of ~nondimensional! roughness heights and detailed examination
of the streamwise development for an example with ‘‘laminar re-
covery’’ and one that undergoes transition to a turbulent boundary
layer. The presentation ends with a few remarks summarizing the
study and its new results.

2 Experiment
The objectivesof the present work include

• Obtaining laser Doppler velocimeter~LDV ! measurements of
the development of laminar, transitional and/or turbulent bound-
ary layers evolving behind roughness elements of heightsk1

ranging from less than six to over twenty,
• Determining the wall-normal velocity componentv and its

mean statistics in the near-wall region downstream~as well as the
usual streamwise velocity component! and

• Determining the evolution of the viscous layer~typically
y1,30 or so in an unheated turbulent boundary layer!.

In contrast to the study of Klebanoff and Tidstrom@12#, emphasis
also includes the transition from laminar to turbulent conditions as
well as the recovery of a laminar boundary layer.

Quantification of boundary layer flows requires measurements
very close to the wall for determination of the wall shear stress.
Hot wires for near-wall velocity studies are intrusive and pose
wall conduction problems; the inherent difficulty of measuringv

Fig. 1 Comparison of transition induced by a square rib „Durst
et al. †10‡… to that by a circular wire „Schlichting †8‡…
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and uv at small values ofy1 has been mentioned above. With
hot-wire and hot-filmX- or slant-probes to deduce Reynolds shear
stresses, the sensor volume required has a dimension of the order
of a millimeter perpendicular to the surface plus the additional
space necessary for the support prongs. With laser Doppler an-
emometry~LDA !, an effective sensor diameter of about 60mm or
less can be achieved so measurements can be obtained toy'30
mm before ‘‘intersecting’’ the surface. LDA measurements usually
suffer from optical interference of the laser beams, especially
when systems for two and three component measurements are
employed. One way to eliminate optical interference of multicom-
ponent LDA systems is by employing suitable transparent wall
materials together with fluids that possess the same refractive in-
dex as the wall material itself~Corino and Brodkey@22#, Budwig
@23#!. In this way, the wall disappears optically~and therefore has
no influence on the laser beams! but maintains its full mechanical
influence on the flow.

To measure the wall-normal component close to the surface,
two-component laser Doppler anemometry~LDA ! was used with
the INEEL Matched-Index-of-Refraction~MIR! flow system. This
facility has the world’s largest test section for an MIR system;
previous systems were about an order-of-magnitude smaller in
size. Consequently, the INEEL MIR system allows significantly
improved spatial resolution~in terms of sensor diameter relative
to the characteristic dimension!. The working fluid is a light min-
eral oil ~Penreco Drakeol #5! which has the same refractive index
as quartz glass near room temperature, has almost no odor and is
almost non-toxic, relatively inflammable and nonvolatile, cheap,
and very stable. Further details of the system are provided else-
where~Condie et al.@24#, Stoots et al.@25#!.

2.1 Apparatus. The configuration of the experiment is
sketched in Fig. 2. The cross section of the MIR test section is
about 61 cm by 61 cm and is 2.44 m long. At the entrance, for a
velocity of 1.4 m/s the nonuniformity in velocity has been found
to be about one percent of the mean velocity. At 1.2 m down-
stream, this nonuniformity decreased to about 0.1 percent outside
the wall boundary layers. Freestream turbulence levels at the inlet
have been measured with a hot film anemometer; turbulence in-
tensities ranged from 0.4 to 0.6 percent. Thus, the facility isnot
appropriate for experiments concerningnatural transition. How-
ever, it can be employed for ‘‘bypass’’ transition experiments
~Suder et al.@4#! and for flows where induced disturbances have
effects significantly greater than the background freestream
turbulence—as in the present experiments. Atx'2.3 m and
U inf'1.25 m/s for a flat plate without a roughness element, the
mean velocity agrees with the Blasius profile and the maximum
streamwise turbulent fluctuation in the boundary layer, as mea-
sured with the LDV, isu8/U inf'0.01 or u8/uinf8 '1.3 at h'1.3
to 3.

Based on guidance from an earlier study of Durst et al.@26#, it

was estimated that the oil temperature must be controlled to be
steady and uniform to within 0.3 C to match the refractive index
of quartz adequately for high-quality LDV measurements. A
computer-controlled auxiliary system accomplishes this task.
Temperature sensing is via precision thermistor probes and Lab-
View software from National Instruments provides the necessary
data acquisition and control of the heating and cooling
components.

Figure 2 is a simple illustration of the experimental model and
measurement orientation. The flat plate is about 60 mm wide, 12
mm thick and 2.4 m long with the forward face of the roughness
element located atx51150 mm. Flow across the plate is from left
to right. The leading edge of the plate is a NACA 0009 air foil.
The plate was oriented horizontally at the centerplane of the tun-
nel test section and spanned almost the entire width. A small gap
~;5 mm! was designed between the test section walls and the
plate edges to reduce the propagation of disturbances from that
region across the flow~Strunz @27#, Wiegand @28#!. The plate
material upstream of a square quartz roughness element is anod-
ized aluminum, with quartz glass downstream from this rib. Ele-
ment heights of 2, 4 and 6 mm were used as well as runs without
a rib in order to obtain measurements for comparison to accepted
boundary layer theory for laminar flows. This experimental fixture
was designed and constructed at the LSTM. An adjustable flap
~not pictured! is located on the downstream end of the model to
adjust the flow to yield a negligible streamwise pressure gradient.

Velocity and turbulence measurements are primarily obtained
with a TSI two-component, fiberoptic-based laser Doppler veloci-
meter operated in the forward scattering mode with custom LSTM
receiving optics~see Fig. 2!. Transmitting optics are provided by a
Model 9832-XX fiber optics probe with a collimating lens option
included and a lens of 350 mm focal distance. With this configu-
ration, the diameter of the LDV measurement control volume
~MCV! is approximately 60mm. Since the receiving optics were
designed to focus on a region of about 50mm in diameter, the
effective MCV was smaller yet. A traversing system is integrated
with the LDV to allow movement in all three axes. Data process-
ing is accomplished via a TSI IFA 655 digital burst correlator and
their FIND-W software.

2.2 Procedures. Most of the data were acquired with the
two-component LDV operating in the forward scattering mode,
thereby permitting simultaneous streamwise and normal velocity
component measurements and calculations of their higher-order
moments to be performed. For calculating mean quantities, so-
called ‘‘transit-time weighting’’ was employed to counter velocity
bias ~Hoesel and Rodi@29#, Tummers@30#!.

The LDA data acquisition was normally operated in the ‘‘coin-
cidence mode’’ requiring near simultaneous detection of samples

Fig. 2 Experimental apparatus, model configuration and nomenclature
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in both coordinate directions, i.e., from the same scattering par-
ticle. For each point, data collection was programmed to acquire
50,000 to 100,000 samples or to measure for a duration of two
minutes, whichever came first. Normally, the former criterion was
satisfied except in the vicinity of the wall and in the recirculating
region after the rib where particle arrival rates were reduced~for
example, for a typical reattached boundary layer, a duration of two
minutes yielded about 12,000 samples aty'0.5 mm and 21,000
samples aty'1 mm!.

The database provides a series of profiles downstream~and up-
stream! from the rib at each run combination of rib height and
freestream velocity. Traversing for a profile was conducted verti-
cally in the upward direction (y). Small bubbles in the quartz wall
cause continuous signals on the oscilloscope; observing such a
signal served a criterion to indicate that the MCV was touching
the quartz wall. Data then were acquired at locations spaced 50
mm apart until well into the boundary layer where the spacing was
increased. Velocity measurements could be made at the plate sur-
face, with part of the laser probe volume located within the quartz
plate~such velocity data are not included in the results due to the
biasing of their statistics!. Streamwise and normal velocity com-
ponents were measured, and the calculation of their higher-order
moments was performed, for wall proximities ofy1'0.1 and
less. For the immediate vicinity of the wall the resulting mean
streamwise velocity profile was plotted~Condie et al.@24#! and a
straight line was manually fit through the linear region of the
profile. The extrapolation of this line defined the effective surface,
y50, and its slope provided the velocity gradient at the wall for
deducing the friction velocity,ut . Thus, it was possible to deter-
mine the local apparent mean wall shear stress accurately from the
measured gradient]U/]y.

3 Experimental Uncertainties
The following uncertainty analysis is derived largely following

the approach of MacManus et al.@31#. Instead of presenting a
single overall uncertainty value, individual sources of uncertainty
are discussed.

3.1 Particle Behavior. LDV measurements require seeding
of the flow field with a second phase such as particles, bubbles or
droplets. In this work, microbubbles were the seeding particles.
There are two criteria that must be met to ensure that the move-
ment of the bubbles truly represents the turbulent movement of
the continuous phase. First, the size of the bubbles must be
smaller than the Kolmogorov microscale. Second, the inertial re-
laxation time of the bubbles should be less than the Kolmogorov
time scale. The procedure recommended by Calabrese and
Middleman@32# was used to estimate the inertial relaxation time.

The smallest Kolmogorov microscale is estimated to be 250
mm. The Kolmogorov time scale is estimated to be 0.0048 sec-
onds. For the inertial relaxation time of the bubbles to be less than
the Kolmogorov time scale, their diameter must be less than 1500
mm. The bubbles in the flow field were estimated to be the order
of ten mm in diameter or less, smaller than the measuring control
volume of the LDV. The ‘‘oversize level’’ control of the LDV was
also adjusted to avoid measurements from the largest particles in
the size distribution.

3.2 Frequency Measurement. The manufacturer’s specifi-
cations claim that their IFA 655 digital burst correlator has a reso-
lution of 0.05 percent of the reading.

3.3 Optical Errors. Great care has been taken by the inves-
tigators to ensure that the alignment and intersection of the beams
within the flow field are correct. Since the index of refraction of
the oil is wavelength-dependent as well as temperature-dependent,
matching indices of refraction for both beam wavelengths simul-
taneously is impossible, the optimum temperature for the green
component of laser light is not exactly the optimum for the blue.
Thus, some misalignment can be expected when more than one

beam passes through quartz and oil. The temperature at which the
indices are matched best for both components was ultimately de-
termined experimentally. In order to match the refractive indices,
the refractive index of the oil was varied by adjusting the oil
temperature via the temperature control system. With the LDV
placed so one blue beam passed through the quartz rib and one
green beam passed through the quartz horizontal plate of the
present test model, the LDV data acquisition was operated in the
two velocity coincidence mode for short time series and the oil
temperature was gradually varied. The maximum sampling rate
that was obtained served to indicate the best temperature for op-
eration so that the blue and green measuring control volumes are
most coincident. For the oil in the MIR flow system this maxi-
mum in coincidence sampling rate occurred at about 23.7 C. At
this condition the reduction in overlap of the two MCVs is esti-
mated to be about thirty percent of their lengths, thereby reducing
the size of the effective MCV when operating with the coinci-
dence mode. There is also an uncertainty in the crossing angles of
the beam~and focal distances! in air or oil that leads to uncertain-
ties in the velocities~Schwartz et al.@33#!. The value is an ap-
proximately constant error but usually our normalized presenta-
tion will cause this error to cancel from the results presented.

3.4 Statistical Uncertainties Due to Finite Sample Size.
Estimation of the statistical errors encountered due to a finite
sample size followed the approach presented by Bendat and Pier-
sol @34# and used a typical sample size of 50,000 and measure-
ment time of 120 seconds. For a peak velocity of 1.7 m/s and peak
turbulence intensity of 15 percent of that velocity, the absolute
maximum statistical uncertainties for the mean and rms velocity
measurements were estimated to be60.015 m/s and 0.010 m/s or
0.9 and 0.6 percent of that velocity, respectively. This approach
utilized half the channel height as a typical length scale. A more
conservative length scale is the maximum boundary layer thick-
ness~approximately 50 mm! and a more characteristic turbulence
intensity is 5 percent of the mean velocity, resulting in typical
uncertainties of60.0019 m/s and60.0013 m/s for the mean and
rms velocities, respectively.

3.5 Positional Accuracy. The vertical motion is accom-
plished with a traversing mechanism consisting of a spindle and a
stepper motor. The spindle advance is 5 mm per revolution and
the manufacturer’s inspection report shows the measured motion
to agree within about 0.015 percent or less of the setting. The
stepper motor gives 500 steps per revolution, corresponding to an
advance of 10mm per step. While the resolution would appear to
be 10mm, the uncertainty in vertical position is believed to be less
since all LDV measurements were accomplished with the travers-
ing mechanism moving in the same direction to avoid backlash
difficulties. The positional accuracy becomes important in deduc-
ing the wall shear stress and the wall location from fitting the
measurements fory1,;3. For the highest wall shear stress mea-
sured, this distance corresponds toy'400 mm so with an uncer-
tainty of 10mm this contribution to the uncertainty inDy would
be about four percent or less. The uncertainty of the extrapolation
to y'0 is also thought to be about 10mm. For the streamwise
direction the uncertainty of reading the scale is estimated to be
about 0.5 mm.

3.6 Temperature Accuracy. The index of refraction for the
oil is a relatively strong function of temperature~Orr et al.@35#!.
Mismatch of the indices of refraction for the oil and quartz plate
can result in movement of the measurement volume as well as
distortion of the fringes within the measurement volume. Durst
et al. @26# recommended that the indices of refraction should be
matched to the fourth decimal point~i.e., 0.0001!. For the oil used
in this work, the temperature control must therefore be better than
1/20.3 C. Temperature control tests were conducted with both
water and oil in the loop. Measurements of the spatial and tem-
poral variation with a precision thermistor probe have shown
spanwise uniformity and steadiness within 0.1 °C.
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3.7 Uncertainties in Oil Properties. The properties of the
light mineral oil were measured by Orr et al.@35#. An indication
of the precision of these data is provided by their variations for
3s; these were 0.002 g/cm2 and 0.3 centistokes or about 0.3 and
two percent of typical values, respectively. The latter uncertainty
would dominate the uncertainties in Reynolds numbers, making
them of the order of two percent of their calculated values.

3.8 Calibration. To obtain a measure of the accuracy of the
overall LDV system, the mean velocity indicated by the data pro-
cessing system was compared to that of a rotating ‘‘calibration
wheel’’ passing through the measuring volume formed by the laser
beams. The indicated velocity agreed with this standard to within
about 0.3 percent. The variation along the axis of the measuring
volume was less than one percent of its average value; this varia-
tion is a contributor to the apparent turbulence intensities of the
LDV technique~Condie et al.@24#!.

4 Experimental Results
As noted, conventional wisdom concerning detailed investiga-

tions in the past has been limited to only two dimensional circular
wire roughness elements~Klebanoff and Tidstrom@12#!. These
measurements were carried out by one-dimensional hot-wire tech-
niques. In addition to mean velocity and turbulence intensity dis-
tributions in the free stream direction, the spectral density distri-
butions were reported for a range of Reynolds numbers. They
concentrated on disturbance growth in a ‘‘laminar recovery’’ be-
fore transition. Their investigation showed that it is possible to
understand the behavior of the boundary layer in their flows
through comparison of the influence with a kind of wave distur-
bance. Stability theory supported these conclusions. Little infor-
mation exists about the behavior of the transition process and the
flow structure very close to the wall, especially for other velocity
components.

Detailed velocity and turbulence measurements were obtained
for a range of laminar and transitional flows. Schlichting@9#
shows that the influence of a roughness element upon the transi-
tion process can extend through two limits. He suggests that in the
case where the disturbance by the roughness element is less than
the freestream turbulence intensities, the effect upon transition is
negligible. Then the transition process is located at the same
streamwise location as would be predicted for transition on a
smooth plate with the same freestream turbulence level. The other
extreme is when the transition process begins directly behind the
roughness element. Data for two-dimensional circular roughness
elements indicate that these limits are approximately given by
k1,7 and k1.20, respectively. The present authors’ interest
centers upon the transition process between these two cases.

The measurements with a square rib were carried out at three
different roughness heightsk and three different freestream veloci-
ties, resulting in the following ranges of nominal parameters:

k155.5 to 21, 0.3,k/d1,1, 180,Rek,740,

63104,Rex,k,1.53105, ReQ,660,

2125,~x2xk!/k,580.

For comparison to accepted analytical results, measurements
were also conducted without installing a rib in the model, i.e., as
a smooth flat plate. The nominal parameters for each of the eight
sets of experimental conditions are listed in Table 1.

4.1 Smooth Plate. First experiments were conducted with a
smooth plate model—~1! to qualify the facility as providing data
in agreement with existing theory and~2! to serve as a reference
condition (k50) for the effects of square roughness elements.
Figure 3 summarizes some of the results. The subfigure examines
the variation of freestream velocity in the streamwise direction
along the length of the plate. Values from the location where the
rib would be placed and further downstream varied less than one

percent, indicating a near constant freestream velocity distribution
along the plate and a negligible streamwise pressure gradient. Fol-
lowing a procedure outlined by Lienhart and Becker@36#, we used
the displacement thickness of the boundary layer at each stream-
wise measurement position to calculate a virtual plate origin (xn)
of 2209 mm. From this information, the streamwise mean veloc-
ity distribution can be compared to predictions from the boundary
layer theory of Blasius~Schlichting @9#!. Figure 3 demonstrates
excellent agreement.

The streamwise variation of the shape factorH is included in
later figures for comparison purposes~e.g., Figs. 4–6!. From
x5400 to 2100 mm,H falls in the range between 2.49 and 2.60,
compared to 2.59 for the Blasius solution. The measured skin
friction coefficient varied from 0.98 to about 1.1 times the theo-
retical value. At these locations the rms fluctuations in the stream-
wise component,u8, varied smoothly from near zero at the wall to
its freestream value ash increased. The last two profiles atx
52200 and 2300 mm show a slight increase tou8/U inf'0.01 or
u8/uinf8 '1.3 at h'1.3–2.2 and a slight increase in shape factor.
These last locations may be affected by the control flap at the end
of the plate.

4.2 Development of Transitional Boundary Layers. The
typical evolution of the flow and the effects of the roughness
element on the streamwise component are demonstrated in Fig. 4.
These measurements were obtained with the largest roughness
element,k'6 mm, and nominal freestream velocities of 0.75,
1.25 and 1.75 m/s. Results are normalized with the roughness
height and the freestream velocity.~The numbers in parentheses
indicate the scaling of the quantities relative to the scale on the
abscissa.! In addition, the local values of the shape factor are
compared to the value predicted for a laminar boundary layer and
to the values measured at the same location without an element
installed.

Fig. 3 Velocity distribution in the flat plate boundary layer
without a roughness element

Table 1 Nominal values of experiment parameters

k
~mm!

U inf
~m/sec! Rex,k k/d1 k1 Rek

None 1.25 101000 0 0 0
2 1.25 103000 0.297 5.53 179
2 1.75 145000 0.351 7.11 251
4 1.25 103000 0.593 11.05 358
4 1.75 145000 0.702 14.22 502
6 0.75 61200 0.683 11.16 318
6 1.25 102000 0.882 16.37 529
6 1.75 143000 1.043 21.07 741
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In each case the mean velocity profiles upstream from the rib
appear to be laminar and the shape factors there agree with the
Blasius theory. The freestream turbulence levelsu8/U inf measured
with the LDV are about 1.5, 1.3 and 1.2 percent or less for
nominal freestream velocities of 0.75, 1.25 and 1.75 m/s, respec-
tively, upstream of the rib. The mean velocity profiles show
expected recirculating flows immediately following the rib with
reattachments occurring between 13 and 34 heights downstream.
A separated profile yields higher values of the shape factor than
for the attached flow. Values of the fluctuating componentu8
within the recirculating region and development downstream of
reattachment vary with the Reynolds number and roughness pa-
rameters.

The first case shown (k1'11, Fig. 4~a!! appears to correspond
to the study of Klebanoff and Tidstrom@12# with recovery to a
laminar mean velocity profile following reattachment at 16 to 25
heights. In the recirculating region and in the boundary layer
above itu8 is low, approaching the freestream value gradually as
y increases. Downstream the shape factors agree with the Blasius
theory but theu8 distributions show evidence of growth of distur-
bances evolving from the level of the inflectional region of the
separated profiles (y/k'1.5 or so!. At (x2xk)/k'140 or
x'2000 mm, the maximum value ofu8 in the boundary layer is
about twice the freestream value; the quantityu8/uinf8 is about 2.5
times its value at the same location on the smooth plate.

Fig. 4 Evolution of flow over a two-dimensional square rib. „a…
Rex,kÉ6Ã104, k¿É11, k Õd1É0.7, RekÉ318; „b… Rex,kÉ1Ã105,
k¿É16, k Õd1É0.9, RekÉ529; „c… Rex,kÉ1.4Ã105, k¿É21, k Õd1
É1, RekÉ741.
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In the second and third cases (k1'16 and 21, Figs. 4~b! and
~c!!, the profiles and shape factors indicate a more obvious tran-
sition toward a turbulent boundary layer. After reattachment, the
shape factors decrease to values of about 1.5 to 1.6, characteristic
of fully-developed turbulent boundary layers. For the range
75,(x2xk)/k,175 the deduced local skin friction coefficients
agreed with a correlation for a fully-developed turbulent boundary
layer,

cf50.0256 ReQ
21/4,

~Schlichting, Eq. 21.12@9#! to within five percent. In both cases
u8 profiles show evidence of disturbance growth within and above
the recirculating region; after reattachment both demonstrate rapid
development of near-wall peaks in theu8 profiles.

Klebanoff and Tidstrom@12# suggested that, for much ‘‘larger’’
roughness elements than in their investigation, the inflectional na-
ture of the velocity profile may be such that the instability will be
characteristic of a free shear layer rather than the boundary-layer
type they studied. The third case likely represents such a situation.
In the last profile before reattachment, over a range from near the
wall to y/k'1.6—which corresponds to the inflectional point in

Fig. 5 „a… Development of boundary layer and turbulence sta-
tistics for flow with ‘‘laminar recovery.’’ Results normalized by
freestream velocity and rib height. „b… Development of bound-
ary layer and turbulence statistics for flow with ‘‘laminar recov-
ery.’’ Wall coordinates.

Fig. 6 „a… Evolution of turbulent boundary layer. Results nor-
malized by freestream velocity and rib height. „b… Evolution of
turbulent boundary layer. Wall coordinates.
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the mean velocity profile at that location—u8 is approximately six
times its freestream value. Reattachment appears to be closer to
the rib than for the first and second cases, despite the higher
Reynolds number. At (x2xk)/k'25, the first station after reat-
tachment, normalization by wall variables shows the near-wall
region already to be approaching the behavior of the viscous layer
of a fully-developed turbulent flow. The distribution of (u8)1

reaches a level of about 2.6–2.7 neary1'15 as in a pipe flow
~Durst et al.@37#!. One may surmise that transition occurred in the
shear layer of one of the three ‘‘separation bubbles’’ formed
around the rib; this idea would be consistent with the suggestion
of Qui and Simon@6# that their transition on the suction surface of
a turbine blade model started in the shear layer of a separation
bubble and propagated to the wall.

4.3 Structure of the Transition Process. Detailed results
are presented to examine the evolution of turbulent momentum
transport, as represented by the Reynolds shear stress, for two
situations. By operating the LDV in the ‘‘coincidence mode’’
while measuring bothu and v, one can determine the instanta-
neous and mean values of the productuv. The first case with
k1'11 corresponds approximately to Fig. 4~a! and to some ex-
tent to the study of Klebanoff and Tidstrom. The second is with
k1'14, or a slightly ‘‘smaller’’ roughness element than the
middle case in Fig. 4, in order to review the development from an
apparent near-laminar flow after reattachment to a nearly fully-
developed turbulent boundary-layer.

Data are for a physical rib height of 4 mm at nominal
freestream velocities of 1.25 and 1.75 m/s. The presentations pro-
vide distributions in two forms: normalized by freestream velocity
and rib height first and then by wall variables. The former is
useful in identifying inflectional profiles, reattachment and recir-
culation while the latter emphasizes the evolution of the viscous
layer after reattachment. In both flows valid measurements were
obtained to values ofy1 as low as 0.5 and less.

The first examplecan be considered to be a case of ‘‘laminar
recovery.’’ Nominal values of roughness parameters were
k1'11, k/d1'0.6, Rek'358 and Rex,k'13105. Figure 5~a!
presents the results with vertical distance normalized by the rib
heightk so unity corresponds to the top of the element. Reynolds
normal stresses,u2 and v2, are represented by their root mean
square values,u8 andv8, and they are scaled equally in the figure.
Mean streamwise velocity profiles show mean reattachment be-
tween 24 and 38 heights downstream, closer to the latter~Fig.
5~a!!. The rib induces inflectional profiles above the recirculating
region with the inflection points in the range 1.4,y/k,1.8 rela-
tive to the rib. The shape factors show agreement with the Blasius
value after (x2xk)/k'60, corresponding to the appearance of the
mean profiles; before that station, the other profiles show evidence
of inflectional regions. Freestream turbulence values are about one
percent foru8/U inf and about 0.8 percent forv8/U inf . In general,
v8 decreases smoothly from its freestream value to zero at the
wall, displaying no evident peaks or growth. In the third profile
one sees a slight peak inu8 near the wall though it is less than the
freestream value; its location corresponds approximately to the
dividing mean streamline. However, in the reversed flow towards
the rib, u8 decreases and bothu8 and v8 are small, indicating a
laminar recirculating flow.

In the flow after reattachment, the peak inu8 near the wall can
be seen to persist and spread outward slightly but, in the profile at
(x2xk)/k'60, one can discern additional growth ofu8 ~near
y/k'1.5). Further downstream, this latter growth persists at
roughly the same height as the earlier inflectional region and its
peak moves slightly further from the wall while spreading both
inward and outward~not shown!. The magnitudes of the maxima
of u8/uinf8 at (x2xk)/k'140 ~;1700 mm! and (x2xk)/k'210
~;2000 mm! are about 1.6 and 3.9, respectively, compared to less
than 1.3 for the smooth plate atx'2200 mm. From their experi-

ments, Suder et al.@4# concluded that once the peak rms of veloc-
ity fluctuations in the boundary layer reached 3 to 3.5 percent,
turbulent bursting started regardless of the bursting mechanism.
Consequently, an effect of the rib has been to accelerate the
growth of the streamwise fluctuations, leading to an earlier tran-
sition than for the smooth plate at the present freestream turbu-
lence level.

In Fig. 5~b! one sees that downstream from (x2xk)/k'60 the
mean velocity profiles demonstrate the characteristic shape of a
Blasius profile when plotted in terms of semi-logarithmic coordi-
nates. The boundary layer thicknessd1 is about sixty for this
flow. Again v8 shows a mostly monotonic increase from the wall
to its freestream value. At (x2xk)/k'40, u8 does as well. But at
(x2xk)/k'60 and 75 there is a flattening of (u8)1 for
y1.;15 and then for (x2xk)/k'100 a slight but distinctive
peak appears. This peak grows and spreads but remains in the
region y1'15 to 30. The maximum value of (u8)1 at (x
2xk)/k'210 is about 1.6 and is located aty1 about 20; for
fully-developed pipe flow the respective values would be about
2.6 aty1'15 ~Durst et al.@37#!. Evidence of turbulent transport
can be imagined in the profile of (uv̄)1 at y1'15 as early as
(x2xk)/k'40. Though small, a peak can be seen in the profiles to
(x2xk)/k'145. It appears to grow significantly by (x2xk)/k
'200 ~the intermediate region is hidden by the structure of the
test section!. Neglecting possibly spurious points, one sees that at
(x2xk)/k'210 the peak value of (uv̄)1 is about 0.1 and is in the
region 15,y1,30. Though not evident in the mean profiles, in
this layer the turbulent momentum transport is already about ten
percent of the molecular value near the wall~since (uv̄)1 is de-
fined asuv̄/ut

25ruv̄/tw).
The second exampleinvolves development of a turbulent

boundary layer. Nominal values of roughness parameters were
k1'14,k/d1'0.7, Rek'502 and Rex,k'1.53105. Mean stream-
wise velocity profiles again show mean reattachment between 24
and 38 heights downstream~Fig. 6~a!!. Profiles above the recir-
culating region have inflection points in the range 1.6,y/k,1.7
relative to the rib. The first profiles ofu8 andv8 after the rib are
at about six heights downstream. The value ofu8 decreases from
its freestream value to near zero above the level of the rib; its
magnitude is approximately the same or less than for the smooth
plate at the same location. Since the flow must accelerate to clear
the rib ahead of this region, a decrease would not be surprising.
The values ofv8 show a smooth decrease from the freestream
value to near zero as well. Thus, the flow passing over the rib can
be considered to be a laminar flow despite the separated regions
before and above the square element.

The Reynolds stresses mostly grow as the flow progresses
downstream, as expected. The last station before reattachment dis-
plays a substantial increase inu8 and a moderate increase inv8.
The peak value ofu8 is about four times the freestream value.
This peak is approximately at the dividing mean streamline and
values then decrease asy increases towards the inflection point in
the mean velocity profile. Forv8, the profile is smoother and
broader with a peak of about 1.7 times its freestream value falling
at y/k'2, a bit beyond the inflection point of the mean velocity
profile. Examining theu8 andv8 distributions in the recirculating
region at the second and first profiles, one seesu8 andv8 decay in
the reverse flow towards the rib as with the example for
k1'11.

After reattachment, the first mean velocity profile at
(x2xk)/k'40 appears, to the eye, almost like a Blasius profile
and the shape factor is near the value for laminar flow with a
negligible streamwise pressure gradient. However, the turbulent
fluctuations have grown substantially. Two peaks appear in theu8
profile, one near the wall and the other aty/k'1.4, near the
upstream inflectional region. Both are approximately six times the
freestream value and both grow as the flow proceeds downstream.
The outer grows more rapidly at first but eventually the highest
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values occur near the wall aty/k'1/2 as the shape factor de-
creases to 1.6 and the mean velocity profile becomes more repre-
sentative of a turbulent boundary layer. From (x2xk)/k'50 on,
the v8 distribution has smooth profiles with gentle maxima vary-
ing in position fromy/k'2 to 1.4 to 1.9–2 again, corresponding
to the upstream inflectional region. It is not clear to this author
whether there is any significance to the latter observation; once a
fully-developed turbulent flow is established without ‘‘memory’’
of the rib, it would be fortuitous.

One might ask how the important viscous layer is established.
Further insight is obtained by presenting the data of Fig. 6~a! in
terms of wall coordinates, as done in Fig. 6~b!. Only the stations
following reattachment are shown since the wall shear stress is in
the opposite direction in the recirculating region. At (x2xk)/k
'50, the mean velocity profile still appears to correspond to a
Blasius profile in semi-logarithmic coordinates withd1'80.
However,u1 diverges fromy1 near y1'5 as for the viscous
layer of a turbulent boundary layer and values are below the old
‘‘buffer layer’’ approximation ~Kays, Eq. 6-32 @38#! until
y1'20; this observation is an indication of significant momen-
tum transport by other than molecular means in this range. The
two peaks in (u8)1 are about 2.2 aty1'10 and 2.9 aty1'35.
The maximum for (v8)1 is about unity aty1'40. For fully-
developed, high-Reynolds-number pipe flow, the values would be
(u8)1'2.6 aty1'15 and (v8)1 about unity aty1'100 ~Durst
et al. @36#!. The Reynolds shear stress demonstrates significant
turbulent momentum transport in a thin layer, say 10,y1,40; it
increases smoothly to a maximum value (uv̄)1'0.9 at y1'25
and then decreases to the edge of the boundary layer.

As the flow progresses downstream, the mean velocity profiles
evolve to the logarithmic-‘‘law’’ shape characteristic of a turbulent
boundary layer andd1 increases to about 200 at the last profile. In
terms of wall coordinates, the (v8)1 maximum retains its value
near unity and gradually shifts to highery1 without a change in
profile shape; this trend corresponds to the peaks at largery/k in
Fig. 6~a! and to an increase intw with x. The outer peak in (u8)1

retains its magnitude until (x2xk)/k'90 and then decreases and
loses its identity. The inner peak grows slightly and becomes es-
tablished at (u8)1'2.5 aty1'15. The layer of turbulent momen-
tum transport broadens as the flow proceeds downstream but after
(x2xk)/k'60 it does not ‘‘penetrate’’ closer to the wall; the pro-
file becomes approximately self-preserving in wall variables from
the wall toy1'20. The Reynolds shear stress distribution shows
the maximum turbulent momentum transport located in a range
about 20,y1,40 until (x2xk)/k'90 with (uv̄)1 values near
unity, corresponding to a constant stress layer; then at later sta-
tions it ‘‘spreads’’ and decreases in magnitude. As a first approxi-
mation, one may say that the important viscous layer becomes
established rapidly while the turbulent transport is developing and
spreading in the outer region.

4 Concluding Remarks
With transitions induced by a square rib, new measurements of

the evolution of the Reynolds stresses,v2 and uv̄, have been
obtained aty1,30 in transitional boundary layers on a flat plate.
To our knowledge, such data were not previously available so
close to the wall~in nondimensional terms! for transitional bound-
ary layers. These data were made possible by use of the unique
large Matched-Index-of-Refraction flow system at INEEL in con-
junction with two-component laser Doppler velocimetry. Tabu-
lated mean results are available for eight sets of experimental
conditions, spanning a range from flows that do not undergo sig-
nificant transition to ones which become turbulent in a short dis-
tance. These measurements extend the study of Klebanoff and
Tidstrom to larger non-dimensional roughnesses, square ribs,
moderate freestream turbulence levels and larger downstream dis-
tances. For small ribs~e.g.,k1'11), turbulence evolved from the
inflectional region above the separated region downstream of the

rib but laminar mean velocity profiles were recovered as in their
case. For larger ribs (k1.14) significant turbulence appeared in
the reattaching shear layer as well and the viscous layer of a
turbulent boundary layer began evolving soon after reattachment.
The new data showed the development of the turbulent momen-
tum transport across the boundary layer.
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Nomenclature

H 5 shape factor,d1 /Q
k 5 roughness height

u,v 5 velocity, streamwise and wall-normal compo-
nents

u8,v8 5 rms fluctuations of velocity components;uinf8 ,
value in freestream

ut 5 friction velocity, (tw /r)1/2

uv̄ 5 Reynolds shear stress
U 5 mean velocity in streamwise direction;U inf ,

freestream value
x,y 5 spatial coordinates, streamwise and wall-

normal;xk , localization of trailing face of rib
d 5 boundary layer thickness;d1 , displacement

thickness
Q 5 momentum thickness
n 5 kinematic viscosity
r 5 density

tw 5 wall shear stress

Nondimensional Variables and Parameters

cf 5 local skin friction coefficient, 2tw /(rU inf
2 )

k1,y1,d1 5 value in wall coordinates, ( )ut /n
Re 5 Reynolds number; Rek , roughness Reynolds

number,U infk/n; Rex,k , value at rib,U infxk /n;
ReQ, based on momentum thickness

u1 5 streamwise velocity,U/ut

(u8)1,(v8)1 5 rms fluctuations of velocity components, ( )/ut

(uv̄)1
5 Reynolds shear stress,uv̄/ut

2

h 5 Blasius variable,y(vx/U inf)
21/2
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Modification of Near-Wall
Structure in a Shear-Driven 3-D
Turbulent Boundary Layer
The near-wall physics of a planar, shear-driven, 3-D turbulent boundary layer with vary-
ing strengths of crossflow are examined. Flow visualization data reveals a reduction of
mean streak length by as much as 50% with increasing spanwise shear. Power spectra of
velocity confirm this shift towards higher temporal frequencies, corresponding to de-
creased streamwise length scales. PIV measurements indicate a significant modification of
the inner region of the boundary layer with increasing spanwise shear. Streamwise veloc-
ity profiles exhibit an increasing velocity deficit with increased crossflow. Increased levels
of the normal Reynolds stressesu82 and v82 and an increase in the2u8v8 Reynolds
shear stress are also observed. Modifications in the spanwise and transverse vorticity
were also observed at higher shear rates.@DOI: 10.1115/1.1431269#

Introduction

Most high Reynolds number flows of engineering interest are
three-dimensional and their extra rates of strain result in complex
flow fields that are not fully understood~see reviews by Johnston
and Flack@1#, Eaton@2#, Ölçmen and Simpson@3#!. Key features
include noncolateral shear stress and strain rate vectors and de-
creasing ratio of the shear stresses to the turbulent kinetic energy
with increasing three-dimensionality. These are indicators that the
skewing has a significant effect on the structure of turbulence. A
common feature of previous shear-driven experiments~e.g.,
Driver and Johnston@4#! is their complex geometry and multiple
strain rates. Computational studies~Moin et al. @5#, Sendstad and
Moin @6#! have used direct numerical simulation~DNS! to exam-
ine planar channel flows subject to transverse pressure gradient. A
study by Coleman et al.@7# includes both spanwise shear and
transverse pressure gradient effects on a plane channel flow. More
recent large eddy simulations~LES! by Le et al.@8# and Kanne-
palli and Piomelli@9# of shear-driven three-dimensional turbulent
boundary layers~3DTBLs! have provided further insight into the
near-wall flow physics of such flows. These computational stud-
ies, along with pressure-driven and shear-driven experimental in-
vestigations, have contributed to the understanding of 3DTBLs.

Complete comprehension of near-wall phenomena in these
complex flows is still elusive, indicating a continued need for
experimental and computational studies to expand the understand-
ing of 3DTBLs and their associated turbulence structure. The ob-
jective of the current study is to investigate the flow physics of a
nonequilibrium, planar, shear-driven 3DTBL having a simple ge-
ometry and also variation in the strength of the crossflow. The
effects of crossflow are thus isolated from the confounding effects
of streamwise pressure gradient, allowing closer examination of
the near-wall structural features of the 3DTBL. Examination of
the separate effects of skewing and streamwise pressure gradient
in this apparatus will complement numerical studies, e.g. the DNS
of Coleman et al.@7#. This investigation is performed using flow
visualization and particle image velocimetry~PIV! as well as us-
ing hot-film anemometry to evaluate the power spectra of the
streamwise velocity.

Experimental Apparatus and Techniques
The planar, shear-driven 3DTBL is studied in a low-speed re-

circulating water tunnel specifically designed for this purpose.
This facility provides a flat and smooth test surface along which a
canonical 2-D boundary layer develops and is subsequently sub-
jected to spanwise shear to generate a 3-D boundary layer. The
Reynolds number, based on the momentum thickness, at the mea-
surement location is Reu51450, and the boundary layer thickness
is d550 mm. A schematic of the 3-D turbulent boundary layer
test plate is shown in Fig. 1. This test plate supports a shearing
device integrated into a section of the sidewall to provide a
spanwise-translating motion, with variable speed capability. The
shearing device is an enclosed spanwise-translating belt mecha-
nism embedded in the wall with a 12.7 cm wide by 38.1 cm high
section of the belt exposed in the plane of the test section side
wall. This corresponds to 50% of the span of the test section
height and approximately two and a half boundary layer thick-
nesses in the streamwise direction. Considerable attention was
given to the design of the shearing mechanism in order to mini-
mize flow disturbances other than the desired spanwise translation
of the belt. The entire belt mechanism was submersed in water to
eliminate air entrainment. In addition, tensioning and tracking fea-
tures were included in the design of the belt mechanism to control
both the flatness and positioning of the belt during operation. The
shear-generating mechanism was operated at belt velocity ratios
of Wr50, 1.0, 2.0 and 2.75, whereWr is the spanwise belt speed
divided by the freestream velocity of the boundary layer,U`

527 cm/s.
Flow visualization using direct dye injection was performed to

examine the structural features of the shear-driven boundary layer.
The dye was introduced into the flow by means of two 20.3 cm
long dye slots located approximately one and a half boundary
layer thicknesses upstream and downstream of the translating
wall, respectively. The dye solution consisted of fluorescein diso-
dium salt dissolved in water at a concentration of 4 ppm. A laser
light sheet, formed using a Coherent I-90 5W Argon-Ion cw laser
and sheet-forming optics, was oriented in thexz-plane at y
50.5 mm andy51.5 mm and was used to illuminate the fluores-
cent dye in the near-wall region.

Hot-film anemometry measurements were used to obtain the
power spectral density of the streamwise velocity over a range of
belt operating conditions. A DANTEC model R01 hot-film probe
was used in conjunction with a TSI IFA-300 constant temperature
anemometry system. The hot-film probe was positioned along the
spanwise centerline approximately 1.5d downstream of the trail-
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ing edge of the translating belt. Measurements were acquired at a
sampling rate of 20 Hz and filtered at 10 Hz to obtain spectra over
a 10 Hz range at a resolution of 0.005 Hz. A sampling rate of 200
Hz and filtering at 100 Hz was also used to examine a larger
frequency range at a resolution of 0.05 Hz.

Additionally, a DANTEC FlowMap PIV 2100 processor was
used to obtain instantaneous measurements of two components of
velocity in thexy-plane~side view! andxz-plane~plan view!. The
optical system consists of a NewWave 100mJ Nd:YAG laser with
software-driven controls for the pulse separation time. Resolution
of particle movement was found to be optimal with a pulse sepa-
ration time of Dt50.9 ms. The laser beam propagates through
sheet-forming optics to form a sheet that is approximately 1 mm
thick and 150 mm wide. A Kodak® MEGAplus ES 1.0 CCD
cross-correlation camera with a 1008(H)31018(V) pixel array
provides on-line imaging capability. Controlled image acquisition,
storage and display, and processing of the image to obtain the
velocity data are accomplished on a personal computer running
FlowManager software. The flow was seeded with 5 micron sili-
con carbide particles at a concentration of approximately 20 par-
ticles per mm3. Typically, thirty images were ensemble-averaged
to provide the mean flow velocities that were subtracted from an
instantaneous flow image to reveal secondary structures. In addi-
tion, up to 250 images were ensemble-averaged to obtain statistics
for the mean flow velocity, rms velocities and Reynolds stresses.

Velocity vectors were determined from interrogation regions
having a size of 0.84 mm30.84 mm. The overall uncertainty in
the velocity measurements can be determined at a 95% confidence
level following the methods of Moffat@10#. The uncertainty in the
U andV velocities is estimated at63% of the local measurement.
Uncertainties in the Reynolds normal stressesu82 and v82 are
estimated to be69% of the local value. The uncertainty in the
primary Reynolds shear stress,2u8v8, is estimated to be on the
order of630% of the local measurement. This is a consequence

of the limited ensemble size of 250 images used to estimate sta-
tistical quantities such as second order moments.

Results
Laser-induced fluorescence~LIF! flow visualization studies

were performed to investigate the flow structure in the near-wall
region of the 3DTBL. The dye was introduced into the flow
through the downstream dye slot located approximately one and a
half boundary layer thickness downstream of the translating belt.
The illuminating light sheet was positioned parallel to the wall at
wall-normal locations of approximatelyy50.5 mm (y1'6) and
y51.5 mm (y1'18) and allowed a 150 mm streamwise3 200
mm spanwise section of the near-wall region to be visualized with
the fluorescent dye. Photographs of the LIF flow visualization at
y50.5 mm revealed a modification of the near-wall streak struc-
ture due to the crossflow as reported in Kiesow and Plesniak
@11,12#. In the presence of crossflow, the streak length is reduced
by as much as 50% compared to the 2-D base with no spanwise
shear. However, there does not appear to be any significant modi-
fication of the streak spanwise spacing.

In order to quantify the observations of the LIF flow visualiza-
tion, LIF images were digitized and with image enhancement, the
wall streaks were identified, counted, and measured. The length of
the individual low-speed streaks was measured along the imposed
flow direction. Although this procedure entailed a certain amount
of subjectivity in identifying streaks and determining their begin-
ning and ends, the procedure was applied consistently to all of the
images. Therefore, the resulting trends represent a reasonable pic-
ture of modifications to the streak structure. The image analysis
resulted in sample sizes of approximately 900 streaks for theWr
50 case and 1300 streaks for theWr52.0 case. The resulting
histograms for the streak length for the base case and at a velocity
ratio of 2.0 are shown in Fig. 2. These histograms clearly show a
shift towards smaller streamwise length scales with increasing
spanwise shear and a narrower distribution of streak sizes com-
pared to the 2-D base case. Both histograms are asymmetric; how-
ever, theWr52.0 case exhibits higher skewness and kurtosis
compared to the base case. Smaller standard deviations for the
sheared cases, along with the reduction in mean streak length, are
strong indications of a reduction in the streamwise length scales of
the wall streaks in the near-wall region. Similar results were re-
ported in a DNS of a channel flow with spanwise pressure gradi-
ent by Sendstad and Moin@6# as well as by Le et al.@8# of a DNS
and LES of a 3DTBL generated by a spanwise-moving wall in a
channel. Kannepalli and Piomelli@9# observed similar modifica-
tions of flow structures in their large-eddy simulation of a shear-
driven 3DTBL with significant disruption of near-wall streak
structures occurring at the moving/stationary wall junction as the
flow transitions to the stationary wall condition.

Plots of the one-dimensional normalized power spectra over a
frequency range of 0 to 10 Hz for the 2-D base case and forWr
52.0 are shown in Fig. 3. In these plots the power spectral density
is premultiplied by the frequency and divided by the variance, so
that the peak is centered about the most energetic frequencies. The
effect of increasing spanwise shear is to shift the energy peak
towards higher temporal frequencies, or smaller streamwise
scales. For the 2-D base case, the most energetic frequencies are
centered at 4 Hz. In contrast, for theWr52.0 case, the peak en-
ergy has not only shifted to around 10 Hz, but the boundary layer
has also become more energetic at these flow scales. Additional
power spectra over a frequency range of 0 to 100 Hz were ac-
quired to examine the energy content over a broader frequency
range. These power spectra exhibited the expected dissipation and
eventual drop-off of the flow energy at the higher frequencies but
are not included here since the focus of the measurements was at
the lower frequencies associated with the modifications of the
streak structure. Based on the aforementioned spectra and the two
other cases examined, i.e.,Wr51.0 and 2.75~not shown!, the
effect of increasing spanwise shear is to cause a progressive

Fig. 1 Schematic of 3-D turbulent boundary layer test plate
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growth of the flow energy and to shift the peak energy to higher
frequencies. This observation of more energy at the higher fre-
quencies and corresponding smaller scales corroborates the ob-
served shift towards smaller streamwise length scales in the LIF
flow visualization results.

Particle image velocimetry measurements were obtained in a
plane parallel to the approach flow and parallel to the wall~xz-
plane! and in a plane that is parallel to the flow and perpendicular
to the wall ~xy-plane!. Image analysis produced simultaneous
measurements ofU andW components of velocity in thexz-plane
or U andV velocities in thexy-plane at a maximum of 6972 points
over a uniform grid in an image region approximately 54 mm
square. Measurements were obtained with the belt stationary in
order to establish the base case for the 2-D boundary layer and
with the belt operating at velocity ratios ofWr51.0, 2.0 and 2.75.
The image region discussed here was located approximately on
the spanwise centerline at a streamwise location that extended
from x8/d520.4 upstream tox8/d50.6 downstream of the trans-
lating wall reference~x850 at the trailing edge of the belt!. Ad-
ditional PIV measurements were acquired at streamwise locations
extending from 0.8<x8/d<1.8 and 1.8<x8/d<2.8. Results of
these measurements have been reported in Kiesow and Plesniak
@12,13# and indicated the relaxation of the 3DTBL back to a
2DTBL with extended streamwise distance.

Representative plots of the instantaneous velocity field in the
xz-plane atx8/d520.4 andy/d'0.01 for velocity ratios ofWr
50.0 and 2.75, are presented in Fig. 4. Only the lower half of the
total spanwise extent of the image region is plotted to better high-

light flow structures. The trailing edge of the belt atx850
(x8/d50) is indicated by the dashed line and the motion of the
belt is in the plane of the paper and upward. Although the wall
friction velocity is the preferred parameter for normalizing turbu-
lence data, the friction velocity could not be reliably determined
in this experimental study. Therefore, the normalization was per-
formed in terms of outer variables using the freestream velocity,
U` , and the boundary layer thickness,d. The instantaneous flow
field for the 2-D base case~in Fig. 4~a!! exhibits several regions
of lower velocity, which are associated with the near-wall streaky
structure of the turbulent boundary layer. With increased spanwise
shear, as in theWr52.75 case shown in Fig. 4~b! the flow field
becomes increasingly non-uniform~i.e., unequal velocities! with
more numerous organized regions of strong fluctuating velocities,
particularly over the belt surface atx8/d,0. The velocity vectors
indicate significant flow turning but the flow field is highly per-
turbed and nonuniform, with numerous concentrated regions of
reduced velocity that do not appear to have any preferential align-
ment with the mean flow direction. These perturbed regions ex-
tend upstream over the belt surface, as well as downstream of the
belt/stationary wall junction.

Fig. 2 Histograms of streak length for „a… WrÄ0 and „b… Wr
Ä2.0

Fig. 3 Nondimensionalized power spectra at 1.5 d down-
stream of belt edge at y Ä6 mm for „a… WrÄ0 and „b… WrÄ2.0

120 Õ Vol. 124, MARCH 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Contours of the instantaneous transverse vorticity,vy , corre-
sponding to thexz-plane vector plots are shown in Fig. 5 for the
stationary belt case (Wr50.0) and belt velocity ratioWr52.75 at
x8/d520.4 andy/d'0.01. The transverse vorticity in the 2-D
base case typically ranges from640 s21 and the vorticity con-
tours are somewhat elongated and aligned horizontally with the
mean flow direction. In the case of the more highly sheared flow,
with Wr52.75 ~in Fig. 5~b!!, the fluctuating transverse vorticity
occurs in smaller, more concentrated regions with strong negative
and positive values exceeding 100 s21, particularly over the belt
surface and belt-wall junction. These regions do not tend to have
any preferential alignment with respect to the mean flow direction
and the disruption of near-wall vorticity with spanwise shear is
associated with the observed break-up of streak structure.

Representative plots of the secondary flow fields in thexy-plane
for the 2-D base case ofWr50 and for the most strongly sheared
case ofWr52.75 are shown in Fig. 6. The secondary velocity
field is obtained by subtracting the local mean velocity at each
y-normal location in order to reveal secondary flow patterns. The
secondary velocity field forWr50 is fairly uniform with minimal
variations in the magnitude of the secondary velocities and some
regions of mild recirculation. In contrast, the secondary velocity
field for the most strongly sheared case (Wr52.75) exhibits much
larger variations in the secondary velocity magnitude. More fre-
quent and significantly stronger regions of recirculation are also

observed. These regions extend further into the boundary layer
~out to y'15 mm ory/d'0.3! compared to the 2-D case.

Contour plots of the instantaneous spanwise vorticity,vz , for
the aforementioned vector fields, are shown in Fig. 7. The span-
wise vorticity for the 2-D base case (Wr50) is concentrated in a
layer ~of negative vorticity! near the surface (y,5 mm), where
the velocity gradients are highest. The addition of spanwise shear
results in a significant alteration of thevz distribution. With in-
creased crossflow, the layer of spanwise vorticity along the sur-
face is broken up and more isolated regions of both positive and
negative sign extend further into the boundary layer. For the most
strongly sheared case (Wr52.75) numerous counter-rotating vor-
tices of similar magnitude appear to exist. They are lifted off the
surface and extend out into the boundary layer~out to y
'15 mm or y/d'0.3!. It is hypothesized that these counter-
rotating vortices are representative of cross-sections of hairpin
vortices that have been skewed in the spanwise direction due to
the spanwise velocity in this region. These counter-rotating struc-
tures observed in these contour plots share many similarities with
studies by Zhow et al.@14# in which PIV was used to reveal the
formation of hairpin vortices in a turbulent channel flow. The
lifting of vortical flow regions is associated with increased mo-
mentum transfer between high and low momentum fluid leading
to the observed thickening of the inner region of the turbulent
boundary layer.

Fig. 4 Instantaneous velocity field in xz -plane at y ÕdÄ0.01 from x 8ÕdÄÀ0.4 to 0.6 for „a… stationary belt
„WrÄ0.0… and „b… WrÄ2.75
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Mean statistics were determined from an ensemble average of
250 vector maps with 3969 points in each image. Profiles obtained
by Spalart@15# using DNS of a 2-D flat plate boundary layer are
plotted with solid lines to provide a benchmark for the PIV pro-
files. Note that exact agreement is not expected because of the
difference in freestream turbulence levels between the experiment
and simulation. Boundary layer profiles for the four operating
conditions at a streamwise location ofx8/d50.5, corresponding to
approximately half a boundary layer thickness downstream of the
belt, are shown in Fig. 8. These profiles of the mean streamwise
velocity develop an increasingly severe velocity deficit in the in-
ner region of the boundary layer with increasing spanwise shear.
This velocity deficit is not very pronounced for theWr51.0 case
with mild crossflow. However, for the higher imposed shear~Wr
52.0 and 2.75! the deceleration of the streamwise velocity is
significant, with the deficit region extending out to ay/d of ap-
proximately 0.4. This velocity deficit is attributed to increased
turbulence and a corresponding increase in the wall shear stress
resulting in increased drag on the wall surface. This velocity defi-
cit can be further explained by considering a momentum balance
since the increased turbulence must be compensated for by a ve-

locity decrease in order to conserve momentum. Increased turbu-
lence production and an associated increase in the streamwise
drag are features reported for a fully developed shear layer in the
LES of a 3DTBL by Le et al.@8#. In the outer region of the
boundary layer (y/d.0.4) the profiles essentially collapse onto a
common curve. A strong velocity deficit is still evident for highly
sheared cases at subsequent downstream locations~Kiesow and
Plesniak@13#!. However, the magnitude of the streamwise veloc-
ity deficit begins to decrease, indicating a relaxation of the 3-D
flow.

Profiles of the normal Reynolds stressu82 are shown in Fig. 9
for Wr50, 1.0, 2.0, and 2.75 at a streamwise location ofx8/d
50.5. These profiles were obtained from the ensemble average of
three columns of PIV velocity vectors to reduce the scatter, i.e.,
spatially averaged over 1.7 mm, or 0.04d. For the 2-D base case,
the peak in theu82 profile occurs near the wall, at approximately
the same location as the benchmark@15#, but with higher intensity.
Weak spanwise shear (Wr51.0) causes an initial decrease in the
magnitude of theu82 normal stress in the near-wall region, com-
pared to the 2-D case. However, the more highly sheared cases

Fig. 5 Contour plots of instantaneous transverse vorticity, vy , at belt trailing edge for velocity ratios
„a… WrÄ0 and „b… WrÄ2.75
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(Wr52.0 and 2.75! experience an increase inu82 out to y/d
'0.4 with an associated monotonic shift in the peak value away
from the wall as spanwise shear increases. For the most highly
sheared case (Wr52.75) the peak has shifted out toy/d'0.2. In
the outer region of the boundary layer (y/d.0.4) the profiles are
similar and collapse onto a common curve.

Corresponding profiles for thev82 normal Reynolds stress at
x8/d50.5 for all four belt velocity ratios are presented in Fig. 10.
The effect of increasing spanwise shear is a monotonic increase of
the v82 normal stress away from the wall. For the most highly
sheared case (Wr52.75) the magnitude ofv82 is almost an order
of magnitude higher compared to the 2-D base case. A second
effect of increased spanwise shear is to shift the peak in thev82

stress away from the wall. For the mildly sheared case (Wr
51.0) the peak value occurs aty/d'0.1 while for the most
strongly sheared case (Wr52.75) the peak value has shifted out to
y/d'0.2. However, in the outer region of the boundary layer
(y/d.0.4) the profiles again collapse onto a common curve.

Profiles of the primary Reynolds shear stress2u8v8 are shown
in Fig. 11 forWr50, 1.0, 2.0, and 2.75 at a streamwise location of

x8/d50.5. These profiles were also obtained from the ensemble
average of three columns of PIV velocity vectors to reduce the
scatter in the shear stress profiles. The effect of imposed spanwise
shear appears to be twofold. First, with increasing spanwise shear,
the magnitude of the2u8v8 Reynolds stress steadily increases
below y/d,0.5. For the most strongly sheared case (Wr52.75)
the peak magnitude in2u8v8 is 130% greater than the 2-D case.
Second, the crossflow causes a shift of the peak in the2u8v8
stress away from the wall with increased spanwise shear. For the
2-D base case, the peak in the2u8v8 stress is located aty/d
'0.10 while for the most highly sheared case ofWr52.75 the
peak has shifted out to ay/d'0.25. Although three-
dimensionality generally results in a reduction of the Reynolds
stresses and a1 parameter, the regions where the boundary layer is
initially skewed exhibit an overshoot of2u8v8. This trend has
been reported in other studies e.g., Flack and Johnston@16# and
Compton and Eaton@17#. At subsequent downstream locations the
peak in the2u8v8 stress continues to shift further into the outer
region of the boundary layer. However, the magnitude of the

Fig. 6 Secondary velocity fields in the xy -plane at belt trailing edge for belt velocity ratios „a… WrÄ0 and
„b… WrÄ2.75
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2u8v8 stress begins to decrease, showing signs of a relaxing flow
field ~Kiesow and Plesniak@13#!.

Conclusions
A specialized facility for generating a shear-driven 3DTBL al-

lowed the near-wall turbulence structure to be examined for vary-
ing degrees of crossflow. LIF flow visualization reveals a modifi-
cation of the near-wall streak structure when the turbulent
boundary layer is subjected to spanwise shear. A reduction of
mean streak length with increasing spanwise shear was measured,
while streak spacing remained relatively constant. Histograms of
streak length show a reduction of approximately 50% in mean
streak length for a belt-to-freestream velocity ratio ofWr52.0.
Power spectra of the streamwise velocity downstream of the belt
confirm this shift toward smaller streamwise length scales, or
higher temporal frequencies. The imposition of spanwise shear
causes a shift of the peak energy to higher frequencies, or smaller
scales. PIV measurements in thexz-plane andxy-plane, at the
trailing edge of the translating wall, revealed modifications of the
inner region of the boundary layer due to the crossflow. Instanta-

neous velocity fields in thexz-plane exhibit significant disruption
of flow structures at higher imposed shear compared to the 2-D
base case. This distortion of the near-wall velocity field is also
evidenced by the marked disruption of the transverse vorticity,
particularly at the most highly sheared case,Wr52.75. Secondary
velocity fields in thexy-plane exhibit an increase in magnitude
and stronger regions of recirculation throughout the inner region
of the boundary layer with increasing spanwise shear. Another
observed effect of the crossflow is the breakup of the spanwise
vorticity layer in the near-wall region compared to that in the 2-D
base case. With increasing spanwise shear, the spanwise vorticity
is distributed into smaller pockets that extend throughout the inner
region of the boundary layer with both positive and negative
signs. The interaction of secondary flow structures and increased
levels and distortion of both spanwise and transverse vorticity
disrupt the usual alignment of near-wall vortical structures~e.g.,
legs of hairpins! which are associated with elongated streak struc-
tures. Instead, the disruption of near-wall vorticity~by the second-
ary structures! results in the breakup of the near-wall streaks and
lifts them into the inner region of the boundary layer at an ad-
vanced stage compared to the 2-D case.

Boundary layer profiles show a significant velocity deficit at

Fig. 7 Contour plots of instantaneous spanwise vorticity, vz , at belt trailing edge for belt velocity ratios
„a… WrÄ0 and „b… WrÄ2.75
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y/d,0.4 for the higher spanwise shear cases~Wr52.0 and 2.75!.
Profiles of turbulence quantities also exhibit significant changes of
the turbulence in the inner region of the boundary layer. Profiles
of the normal Reynolds stresses indicate increased levels ofu82

andv82 out toy/d,0.4 with increasing spanwise shear. However,
an initial decrease inu82 is observed in the near-wall region for
the most weakly sheared case. The2u8v8 stress exhibits an over-
shoot of approximately 130% for the most highly sheared case
(Wr52.75) and its peak shifts away from the wall with increasing
spanwise shear. The overall effect of the crossflow in this planar,
shear-driven 3DTBL is to disrupt near-wall coherent structures,
resulting in a shift to smaller length scales and an increase of the
u82 and v82 normal Reynolds stresses, and of the2u8v8 Rey-
nolds shear stress in the inner region of the boundary layer.

Nomenclature

Reu 5 momentum thickness Reynolds number
Dt 5 laser pulse separation time
U 5 streamwise mean velocity

U` 5 edge velocity of boundary layer
u82 5 streamwise normal shear stress component

2u8v8 5 primary Reynolds shear stress
V 5 wall-normal mean velocity

v82 5 transverse normal shear stress component
W 5 spanwise mean velocity

Wb 5 translating wall velocity
Wr 5 velocity ratio,Wb /U`

x 5 streamwise coordinate
x8 5 distance downstream of trailing edge of belt
y 5 wall-normal coordinate

y1 5 wall-normal coordinate in viscous units
z 5 spanwise coordinate

Fig. 8 Boundary layer profiles of streamwise velocity at x 8Õd
Ä0.5 downstream of belt trailing edge for velocity ratios of
WrÄ0, 1.0, 2.0, and 2.75

Fig. 9 Profiles of u 2 Reynolds stress at x 8ÕdÄ0.5 downstream
of belt trailing edge for velocity ratios of W rÄ0, 1.0, 2.0, and
2.75

Fig. 10 Profiles of v 2 Reynolds stress at x 8ÕdÄ0.5 down-
stream of belt trailing edge for velocity ratios of W rÄ0, 1.0, 2.0,
and 2.75

Fig. 11 Profiles of Àuv Reynolds stress at x 8ÕdÄ0.5 down-
stream of belt trailing edge for velocity ratios of W rÄ0, 1.0, 2.0,
and 2.75
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d 5 boundary layer thickness,U/U`50.99
vy 5 transverse vorticity
vz 5 spanwise vorticity
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Laboratoire de Mécanique et d’Energétique,
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Surface Roughness Effects on
Turbulent Boundary Layer
Structures
A turbulent boundary layer structure which develop over a k-type rough wall displays
several differences with those found on a smooth surface. The magnitude of the wake
strength depends on the wall roughness. In the near-wall region, the contribution to the
Reynolds shear stress fraction, corresponding to each event, strongly depends on the wall
roughness. In the wall region, the diffusion factors are influenced by the wall roughness
where the sweep events largely dominate the ejection events. This trend is reversed for the
smooth-wall. Particle Image Velocimetry technique (PIV) is used to obtain the fluctuating
flow field in the turbulent boundary layer in order to confirm this behavior. The energy
budget analysis shows that the main difference between rough- and smooth-walls appears
near the wall where the transport terms are larger for smooth-wall. Vertical and longitu-
dinal turbulent flux of the shear stress on both smooth and rough surfaces is compared to
those predicted by a turbulence model. The present results confirm that any turbulence
model must take into account the effects of the surface roughness.
@DOI: 10.1115/1.1445141#

1 Introduction
Experimental investigations into a turbulent boundary layer

over rough-wall have shown that the turbulence structure depends
on the roughness surface and differ from that in smooth-wall
boundary layers~Bandyopadhyay and Watson@1#, Krogstad and
Antonia @2#, Krogstad et al.@3#, Krogstad and Antonia@4#, Anto-
nia @5#, Shafi and Antonia@6#, Shafi et al.@7#, Shafi and Antonia
@8#.

The principal effect on a rough surface is to alter the structure
of the boundary layer near the wall thereby increasing the surface
skin friction. This is felt in the roughness sublayer of the order of
a few roughness heights away from the wall~Rotta @9#, Raupach
@10#!. In the remainder of the inner layer and in the outer layer, the
flow obeys a familiar similarity law with respect to roughness
surface. In a recent experimental investigation, Krogstad et al.@3#
have shown that the strength of the rough-wall outer region
‘‘wake’’ is larger than that of a smooth-wall. The wake strengthP
was found to be 0.51 for the smooth-wall and 0.70 for the rough-
wall. Krogstad et al.@3# have underlined that the larger value ofP
on the rough-wall was linked to a greater entertainment of irrota-
tional fluid. This rather high value ofP is nearly the same as the
value obtained by Osaka and Mochizuki@11# and Tani et al.@12#
for d-type roughness. For thek-type roughness, the values of the
wake strengthP evaluated by Tani@13# range from 0.4 to 0.7. The
results of Raupach@10# on the smooth-wall and rough-wall
boundary layers indicate that normalized second moments of the
velocity are independent of the roughness. This similarity was
questioned by other authors. Krogstad et al.@3# found that the
longitudinal turbulence intensity distribution is essentially the
same for both surfaces, but there is a significant increase in the
normal intensityv and a moderate increase in the Reynolds stress
over the rough-wall. For the same nominal velocity, the mean
velocity profiles on the rough-wall are not as full as those ob-
tained on a smooth-wall. The data available of higher-order mo-
ments of the fluctuating component of the velocity are scared.
However, Antonia and Luxton@14#, found that the flatness factors
of u and v are the same on both rough- and smooth-walls. The

latter authors showed that the effect of increasing the Reynolds
number results in small changes in the distributions of the skew-
ness and the flatness factors of theu andv fluctuating components
of the velocity. Krogstad and Antonia@4# have shown that the
major effect of the roughness is to tilt the inclination of the struc-
tures toward the wall-normal direction and that the roughness
tends to reduce the overall anisotropy of the large-scale motion.

In light of the studies above, the main aim of the present work
is to investigate the effects of a rough surface on the statistics of
the turbulent boundary layer at Reynolds numbers sufficiently
large to satisfy the Reynolds number similarity. Measurements on
rough-wall boundary layers have been compared with correspond-
ing measurements in smooth-wall boundary layers. For a rough-
wall, we consider one surface characterized by spanwise two-
dimensional square grooves regularly spaced. This type of
roughness, referred to as ‘‘k-type,’’ has been largely investigated
but the physics of this flow, especially the effect of roughness on
the higher-order statistics, is not clearly understood. The diffusion
of the turbulent energy is strongly affected by the wall roughness.
The turbulence production mechanisms in the near-wall region
also depend on the wall roughness. The roughness classification
scheme based solely on the mean velocity profiles may be re-
viewed using structural considerations. The energy transfer
mechanism between the turbulence and the mean flow is strongly
dependent on the wall roughness. These results confirm the wall
similarity hypothesis; ‘‘that outside the roughness sublayer, the
turbulent motions are independent from the wall roughness’’
~Perry et al.@15#, Raupach@10#, and Raupach et al.@16#!. The
mean velocity and the turbulence characteristics on smooth and
rough walls were obtained using single hot wire and X-wire
probes.

2 Experimental Details
The experiments were carried out in an open wind tunnel with

a 0.630.6 m2 square test section and with a 5 mlong. The work-
ing section is made up of five plates each 1 m long with a width of
0.6 m. The boundary layer develops on one of the walls of the test
section, thus the opposite wall is used to maintain a zero pressure
gradient for all the values of the free-stream velocityU` . The
transition of the flow is tripped to obtain a fully developed turbu-
lent boundary layer at the measuring location. For experiments on
the rough-wall, thek-type roughness consisted of two-dimensional
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bars of square cross-section normally placed in the flow direction.
The transversely grooved surface is illustrated in Fig. 1. The gap
between consecutive elements wasp57 mm. Thek-type rough-
ness elements have ak(5a)53 mm height and spanned the entire
section. Note that, in thek-type roughness,p/k.1. Most of the
measurements were taken at a distance ofx54.5 m from the end
of the tunnel contraction. At this position, the boundary layer be-
haved accordingly to the criteria for self-similarity of the turbulent
boundary layers. The values ofU` for smooth-wall and rough-
wall boundary layers are 21.5 m/s and 11.83 m/s, respectively.
The free-stream turbulence of the wind tunnel was 0.5 percent.
Mean flow integral parameters for both smooth-wall and rough-
wall, inferred from the velocity profiles, are summarized in Table
1. Mean and fluctuating velocities were measured using hot-wire
anemometry with single and X-probes. The sensing wire had a 2.5
mm diameter and was made of platinum-tungsten. The lengthl of
the sensing wire was 0.5 mm. This corresponds to a ratiol /d
5200, large enough for end conduction effects. Table 1 also
shows the values of the sampling frequency and active lengthl 1

of a hot-wire probe in inner scaling for different experiments. The
1 superscript denotes nondimensionalization with friction veloc-
ity Ut and kinematic viscosityn. The hot wire probes were oper-
ated with a DANTEC CTA 90C10 constant temperature anemom-
eters at a overheat ratio of 0.8. The outputs were linearized and
digitized at an appropriate sampling rate. The signal from the
wires were filtered at a cut-off frequency (Fc) to minimize the
contamination from high-frequency electronic noise. The value of
Fc was identified, after examining the spectra of the differentiated
signals. Hence, the cut off frequency was evaluated. The sampling
frequency used isFs52Fc . The hot-wire probes were always
calibrated within the free stream of the wind tunnel with a com-
pensating temperature system. The wind tunnel was run at 10
different free-stream velocities, but only two of them~same Rey-
nolds number for smooth and rough case! were analyzed. The
free-stream velocities were measured using a Pitot tube and a
differential transducer with a 0.01 mm H2O resolution. A typical
record duration of nearly 25 s was used. This total time was found
to be sufficient to ensure a good statistic convergence. Digital data
files were stored and processed on a computer. The system used
for PIV measurements is a TSI device, which allows two-
dimensional basic planar measurements. A double-pulsed laser
~SpectraPhysics Nd: YAG/2.5 J/8 ns! produces light pulses in a
sheet from an articulated arm and the optical system. The fre-

quency of the double-pulse is 15 Hz. The camera~PIVCAM 10-
30! with a CCD matrix ~10003968 pixels! records images by
pairs and transmits them to a computer. The synchronization be-
tween the laser and the camera is ensured by the synchronizer
~Laser Pulse synchronizer!. In view of improving the accuracy of
the measurements, the cross-correlation between images is carried
out on a 32332 pixels zone. An optimal time intervalDt between
pulses was chosen. The fluctuating velocity fields is then deter-
mined by subtracting the mean velocity field from the instanta-
neous velocity fields.

3 Boundary-Layer Profiles
For both smooth-wall and rough-wall, the mean streamwise ve-

locity distribution across the entire region is given by

U15
1

k
ln y11A2DU11

2P

k
v~h! (1)

y15(y1«)Ut /n andh5(y1«)/d ~Krogstad et al.@3#!. « is the
shift at the origin for the rough-wall~zero for smooth-wall! andy
is measured from the top of the roughness.k and A are presumed
to be constant and are empirically determined for both rough-wall
and smooth-wall boundary layers to be 0.41 and 5, respectively.
DU15(Ur2Us)/Ut is the roughness function~zero for smooth-
wall! and parameterP determines the strength of the wake func-
tion v~h!. The description of the measured mean velocity requires
the determination of the four parametersUt , «, DU1, andP. For
smooth-wall, Hama’s decomposition@17# proposed that the wake
gives a universal value of strength wakeP50.52. Many authors
have shown that the value thus obtained is not optimal for a
rough-wall boundary layer~Osaka and Mochizuki@11#, Tani @13#,
Tani et al. @12#, Krogstad et al.@3# and Antonia and Krogstad
@18#!. Hama’s formulation may be applied with confidence for
rough-wall boundary layers. A formulation proposed by Finley
et al.@19# and later by Granville@20# is used to fit the profiles and
to give values of these parameters presented in Table 1. It is
shown that the magnitude of the strength of the wake for the
rough-wall ~>0.7! is higher that the universal value~>0.51! for
the smooth-wall. The much higherCf in rough-wall boundary
layers implies a faster growth rate of the layer. Because of the
positioning error that will be reflected in the shift of the origin in
rough-wall, a large scatter was found in«. The shift obtained from
the fit is «>0.37 k. Figure 2 shows the mean velocity profiles in
wall coordinates for both smooth-wall and rough-wall boundary

Fig. 1 Two-dimensional roughness geometry

Fig. 2 Mean velocity profiles. Smooth-wall: n, ReuÄ8405.
Rough-wall: m, ReuÄ8549.

Table 1
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layers. Therefore, the main effect of the roughness results in an
increase of both the skin friction~shown in Fig. 2! and the
strength of the wake~P values in Table 1!.

4 Higher-Order Statistics of the Velocity Fluctuations

4.1 Second-Order Moments. Figures 3~a! and 3~b! show
the profiles of the normalized turbulence intensities of the fluctu-
ating streamwiseu812 and verticalv812 components. Differences
are observed near the wall region where turbulence intensityu812

is higher for smooth-wall. Raupach@10# found that outside the
roughness sublayer~a region extending to about two times the
roughness height! the normalized second-order moments of the
velocity are universal. The present results indicate that in the inner
region, the turbulent motions strongly depend on the wall rough-
ness. Figures 3~a! and 3~b! show that the results obtained in the
present study agree well with the data of Krogstad et al.@3# in
both smooth- and rough-walls boundary layers. The normal stress
v812 is affected in the region (y/d<0.4) and remains unaffected
outside this region. The present results foru812 are slightly higher
for smooth wall than for rough wall in the inner regionsy/d
.0.8. The results found by Krogstad et al.@3# are lower than
those of the present study. This difference was possibly attributed
to a higher free-stream turbulence in the present wind tunnel. The
Reynolds shear stress as shown in Fig. 3~c!, is more important in

the case of smooth wall than in the case of rough wall. It is worth
noting that these distributions appear to have a peak value at dif-
ferent locations~Antonia and Luxton@14#!.

4.2 Third-Order Moments. The distributions of the skew-
ness factors,Su5u3/(u8)3 and Sv5v3/(v8)3 are shown in Figs.
4~a! and 4~b! for both smooth and rough walls~a prime denotes an
rms value!. In the near-wall region, high positive values ofSu are
observed indicating the dominance of sweep events. This shows
the occurrence of high-speed fluids from regions distant from the
wall. The higher values on rough-wall compared to smooth-wall
underline a strong activity of the sweep events on rough surfaces.
Further away from the wall, the value ofSu is negative, consistent
with the arrival of low-speed fluids from the wall~ejection
events!. For y/d.0.5, the distribution ofSu in the two layers as
shown in Fig. 4~a! appears to be similar. In the 0<y/d,0.5
range, the distribution ofSu is significantly different over the two
layers. The influence of the roughness is emphasized as the dis-
tance from the wall decreases. In the inner regions, for rough-
wall, there is a higher probability of finding large positiveu fluc-
tuation, consistent with strong sweep events already observed by
Grass @21# using flow visualizations. For the rough-wall,Su
changes sign far from the wall comparing to the smooth-wall and
increases abruptly as the distance from the wall decreases. Figure
4~b! shows that the values ofSv are lower on rough-wall than on
smooth-wall everywhere in the boundary layer. The present results

Fig. 3 Reynolds stresses distributions on smooth and rough walls boundary layers. The
same symbols as Fig. 2 for the present measurements. Smooth-wall: h, ReuÄ9630 „Krogstad
et al. †3‡…. Rough-wall: j, ReuÄ13040 „Antonia and Krogstad †18‡….
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are in good agreement with those found by Bandyopadhyay and
Watson@1#. They observed that theSu distributions are much the
same in the smooth- and rough-walls, but theSv values tend to be
lower all over the rough surfaces. They concluded that the hairpin
vortices shape induces different vertical motions and different ver-
tical diffusions of turbulence in the rough case compared to the
smooth case.

Figure 5 shows the distribution of the turbulent diffusionDu

5(uv2)/(ut)
3 andDv5(vu2)/(ut)

3 in the x andy directions com-
pared with those obtained by HL model~Hanjalic and Launder
@22#!. Note, that the relations betweenDu and Dv resemble that
betweenSu andSv . Figures 5~a! and 5~b! show that, in the outer
region (y/d.0.8). In the wall region, the effect of the wall-
roughness is remarkable withDu.0 andDv,0 which underlines
the importance of sweep events for the rough-wall. Like the dis-
tributions ofSu , the point of cross-over from the sweep to ejec-
tion events occurs aty/d'0.2 over the rough-wall. The smooth-
wall shows an opposite tendency in the turbulent energy transport.
For the smooth-wall,Du remains negative in this region and sig-
nificantly decreases aty/d,0.1. These distributions show that for
the smooth-wall, the flux is outward and is associated with a
streamwise deceleration~corresponding to a negative sign of theu
component!. For the rough-wall, the flow is wallward and is as-
sociated with a streamwise acceleration~corresponding to a posi-
tive sign of theu component! in the inner region. These results are
in good agreement with those reported by Bandyopadhyay and

Watson @1#. Dv distributions are similar for both smooth and
rough walls.Dv distribution is positive in the overall boundary
layer for the smooth wall. In the inner region,Dv is negative for
y/d,0.1. Large positive values ofDv are consistent with a pre-
dominance of ejection, which is in agreement with results given
by Su . Negative values ofDv are related to the predominance of
sweeps which are more intense in the case of the rough wall.
These results are compared to those obtained by a turbulent model
suggested by Hanjalic and Launder@22# for the diffusion by tur-
bulent velocity fluctuation. One of the contribution to the diffusive
transport of the Reynolds stress has been approximated as fol-
lows:

uiujuk520,113
k

«
Fuiul

]ujuk

]xl
1ujul

]uiuk

]xl
1ukul

]ujui

]xl
G

wherek is the average kinetic energy and« is the dissipation rate
of turbulence kinetic energy obtained by using«5 f (E11,u8, f r)
where E11 is the longitudinal spectrum andf r is the frequency
taken in the inertial range. Taylor’s hypothesis and local isotropy
are assumed. The expressions for the diffusive transport ofu and
v reduce to:

~uv2!152cs3F k

«
3F23v23

]uv
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Fig. 4 Profiles of skewness of u and v in outer-law scaling for both smooth and rough walls’
boundary layers. Symbols are same as that of Fig. 2.

Fig. 5 Vertical and longitudinal turbulent flux of the shear stress for both smooth-wall and
rough-wall boundary layers. Symbols are same as that of Fig. 2. L Smooth-wall; Solid line
ReuÄ4750 „Bandyopadhyay and Watson †1‡…. l Rough-wall „Bandyopadhyay and Watson †1‡…
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with a value ofcs51.1 proposed by Hanjalic and Launder.
The comparison of prediction suggested by HL model with the

present experiments are reported on Fig. 5 for the vertical and
longitudinal turbulent fluxes of the shear stress on smooth and
rough walls. Figure 5~a! shows that, except for a narrow region
0.3<y/d<0.5,Du exhibits a consistent disagreement between the
measurements on the smooth wall and the prediction. A better
agreement forDu between predictions and measurements is ob-
served in the case of the rough wall throughout the boundary
layer. Figure 5~b! shows that, except in the outer regions, the
prediction of Dv distributions display large departure from the
measured values on the smooth wall. As for the rough wall, the
agreement between predicted and measured values ofDv is excel-
lent for y/d>0.1. The reason for the rather poor prediction ofDu
andDv on smooth wall and a good prediction of these quantities
on rough wall can be attributed to a more isotropic behavior of the
large scale structure in the rough wall layer~Shafi and Antonia
@8#!. An efficient way to evaluate the anisotropy degree of the
turbulent flow is to use the anisotropy Reynolds stress map invari-

ant suggested by Lumley and Newman. The results, not reported
here, confirm a tendency towards isotropy of the Reynolds stress
tensor for the rough wall.

5 Turbulent Kinetic Energy Transport
Equations of the turbulent kinetic energy transport may be writ-

ten in the following form:
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The first and the second terms are the advection, the third and
the fourth terms are, respectively, the production and dissipation
of mean turbulent energy and the last term is diffusion. Note that
the gradient ofDv is the primary diffusion term in the transport
equation foru2 and its distribution appears to be very sensitive to
the surface condition~Fig. 5!. The diffusion due to the pressure-

Fig. 6 Production and dissipation on smooth- and rough-wall. Smooth-wall: open symbols;
rough-wall: filled symbols.

Fig. 7 Turbulent kinetic energy budget. Smooth-wall: open symbols; rough-wall: filled symbol.
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strain term and the advection in thex direction could not be mea-
sured using the present techniques. The diffusion term
](w2v)1/](y/d) was approximated by 3/4](u2v1v3)1/](y/d).
In Figs. 6~a! and 6~b! the rate of production and dissipation of the
mean turbulent energy normalized with the inner variables is plot-
ted as a function ofy/d and appear to be unaffected by the surface
type. The approximate turbulent kinetic energy for the both sur-
faces are plotted on Figs. 7~a! and 7~b!. The production and dis-
sipation of the turbulent kinetic energy are nearly balanced
throughout the layer in both cases. It appears, from Fig. 7, that the
transport terms are larger in the inner region than in the outer part
of the log region. The advection, viscous transport and turbulent
transport terms are much smaller than the production and dissipa-

tion terms for both smooth and rough-walls. The main difference
between smooth and rough-wall is observed in the inner region.
These terms decrease, reaching negative values within the inner
region close to the wall. This trend is emphasized for the turbulent
diffusion. This behavior corresponds to a loss or a gain of kinetic
energy near the smooth wall due to ejection motions and is quan-
tified by using a quadrant analysis. From these observations, it
appears once more that the turbulent transport mechanisms near
the wall strongly depend on the surface geometry.

6 Quadrant Decomposition
On the basis of the qualitative results obtained by the flow

visualization on the Reynolds shear stress production~Corino and
Bordkey @23#, Grass@21#! some researchers have attempted to
obtain more quantitative knowledge about the structure of the
Reynolds shear stress, using the quadrant decomposition~Wallace
et al.@24#, Brodkey et al.@25#, Willmarth and Lu@26#, and Lu and
Willmarth @27#!. This method consists in dividing the plane of the
streamwise and normal fluctuating velocity componentsu and v
into four quadrants, as shown in Fig. 8, in order to evaluate the
contributions of the ejections and sweeps to the Reynolds shear
stress production.

Figures 9~a! and 9~b! exhibit the contributions of the outward
and inward interactions forH50 on smooth-wall and rough-wall
turbulent boundary layers. It is interesting to note that the rough-
ness surface significantly increases the relative intensity of each
event atH50 in inner and outer region of the flow. Figures 9~c!

Fig. 8 Schematic of quadrant decomposition

Fig. 9 Shear stress contributions from quadrants Q 2 and Q4 for HÄ0 on smooth- and rough-
wall. Symbols are same as in Fig. 2.
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and 9~d! show the profiles of the intensities of ejection and sweep
events normalized by inner scaling. For both walls, the sweeps
and ejections decrease while increasingy/d. The data of Krogstad
et al.@3# on smooth and rough walls agree with the present results
except for the ejection values on smooth-wall which show some
differences fory/d.0.6. This difference is probably linked to a
relatively high free-stream turbulence for the present measure-
ments. Figures 9~c! and 9~d! show that both ejection and sweep
events are affected by the wall-roughness. The conditional analy-
sis allows us to underline that the effect of the wall-roughness is
not confined only in the sublayer.

In the wall region (y/d,0.2), Fig. 10~a! shows that the mag-
nitude of (u1v1)Q2

is significantly larger for the smooth-wall
than the rough-wall for strong events (H55) confirming the pre-
dominance of strong ejection events on the smooth wall. In the
same region, Fig. 10~b! shows that sweep events are stronger on
the rough wall. However, for (y/d>0.2) the distributions of these
contributions on smooth-wall and rough-wall are nearly the same.
The difference between the present results and the data of
Krogstad et al.@3# for (H54), however, suggest that the strong
events decrease whileH increases.

Figures 11~a! and 11~b! indicate the distributions of the ratio
a5(uv)Q2,H

/(uv)Q4,H
on smooth and rough walls forH50 and

H55, respectively. This ratio is useful because it highlights the

importance of sweeps and ejections on smooth and rough walls.
Figure 12 shows that fory/d<0.2, a is larger in the smooth wall
layer reflecting the importance of the ejection motion. The lower
values ofa on the rough wall confirm the importance of the sweep
events. The distributions ofa for H50 measured in smooth and
rough walls boundary layers by Krogstad et al.@3# are also shown
in Fig. 11~a!. The present data on the smooth wall agree well with
their results.

7 PIV Results
Qualitative measurements have been achieved using the PIV

technique. Figure 12 shows a typical fluctuating velocity field for
smooth- and rough-walls inxy-plane. In the case of the smooth-
wall, ejections are predominant in the near wall regions~Fig.
12~a!! and opposite to that, for the rough-wall case, sweeps are
predominant in the near wall regions~Fig. 12~b!!. This behavior is
in good agreement with the quadrant’s results. This may be inter-
preted by the fact that near roughness elements, viscous sublayer
becomes thinner or completely disappears. Moreover the cavities
between the roughness elements lead to fewer severe constraints
for the v-component as it has been suggested by Krogstad et al.
@3#. In the same way, Krogstad and Antonia@2#, concluded that the
v-component of the velocity was more sensitive to the roughness
effect than theu-component, especially in the near wall regions.

Fig. 10 Shear stress contribution from quadrants Q 2 and Q4 for HÄ5 on smooth and rough
wall

Fig. 11 Ratio of contributions to uv from quadrants Q 2 and Q4 for HÄ0 and HÄ5
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The results found by PIV measurements did not permit to under-
line the ejection of low speed fluid between roughness elements
away from the wall as it has been suggested by Grass@21#.

8 Conclusion
The present results on smooth- and rough-walls turbulent

boundary layers indicate considerable effects of surface condition
in the inner layers. In the inner region, the Reynolds stress shows
a significant increase on smooth-wall foru812. The present re-
sults show that the effects of thek-type roughness on the Reynolds
stressesu812, v812 and (uv)1 are mainly confined to the near
wall region. The distribution of the triple velocity correlation and
the quadrant analysis indicate that the ejection events represent
the major contribution to the turbulent diffusion for the Reynolds
stress. The distributions of these quantities over the k-type rough-
ness highlight the presence of violent ejections and sweeps. The
prediction by a turbulent model of vertical and longitudinal turbu-
lent fluxes is in better agreement with the results on the rough wall
than those on the smooth wall. This is probably due to the more
isotropic character of the large scale structure on the rough wall.
This feature suggests that modeling higher-order moments should
be considered. The PIV velocity fields confirm the behavior of the
structures predicted by the quadrant analysis in the wall regions. It
seems that the v-component of the velocity is more sensitive to
the roughness effect than the u-component, especially in the near
wall regions as it has been observed earlier by other authors. It is
most likely due to the less severe constraints for thev-component
in the case of rough-wall than in the case of smooth-wall.

Nomenclature

A 5 constant in the logarithm law
Cf 5 local skin friction coefficient

Du , Dv 5 turbulent diffusion in thex andy directions
Fc 5 cut off frequency
Fs 5 sampling frequency
H 5 threshold level required for the Quadrant method
P 5 turbulent energy production

Reu 5 Reynolds-number based on the free-stream or cen-
terline velocityU0 and momentum thicknessu

Su , Sv 5 skewness factor of the longitudinal and vertical
velocity fluctuations

t 5 time
x,y,z 5 Cartesian coordinates
U` 5 free-stream or centerline velocity
ut 5 skin friction velocity

u, v 5 velocity components respectively in the longitudi-
nal and normal direction

(uv)Qi 5 contribution touv from a particular quadranti ( i
51 . . . 4)

Greek

a 5 ratio of contributions to Reynolds shear stress from
quadrants 2 and 4

d 5 boundary layer thickness
« 5 dissipation rate or roughness parameter
k 5 Von Karman’s constant~50.41!
n 5 kinematic viscosity
v 5 wake function
r 5 density
u 5 momentum thickness

t0 5 mean wall shear stress
P 5 wake parameter

DU 5 roughness function

Superscripts

1 5 made dimensionless with inner variables
8 5 rms value
¯ 5 mean value

References
@1# Bandyopadhyay, P. R., and Watson, R. D., 1987, ‘‘Structure of Rough-Wall

Turbulent Boundary Layers,’’ Phys. Fluids,31, pp. 1877–1883.
@2# Krogstad, P.-A˚ ., and Antonia, R. A., 1999, ‘‘Surface Roughness Effects in

Turbulent Boundary Layers,’’ Exp. Fluids,27, pp. 450–460.
@3# Krogstad, P.-A˚ ., Antonia, R. A., and Browne, L. W. B., 1992, ‘‘Comparison

between Rough- and Smooth-wall Turbulent Boundary Layers,’’ J. Fluid
Mech.,245, pp. 599–617.

@4# Krogstad, P.-A˚ ., and Antonia, R. A., 1994, ‘‘Structure of Turbulent Boundary
Layers on Smooth and Rough Walls,’’ J. Fluid Mech.,277, pp. 1–21.

@5# Antonia, R. A., 1994, ‘‘The Effect of Different Types of Surfaces Conditions
on a Turbulent Boundary Layer,’’1st International Conference on Flow Inter-
action cum Exhibition on Interaction of Science & Art, Hong Kong, pp. 64–
79.

@6# Shafi, H. S., and Antonia, R. A., 1995, ‘‘Anisotropy of the Reynolds Stress in
a Turbulent Boundary Layer on a Rough Wall,’’ Exp. Fluids,18, pp. 213–215.

@7# Shafi, H. S., Antonia, R. A., and Krogstad, P-A˚ ., 1995, ‘‘Influence of Surface
Roughness on the Turbulence Characteristics of a Boundary Layer,’’Proc.
Tenth Symposium on Turbulent Shear Flows, J. C. Wyngaard, F. Durst, R. M.
So, and J. H. Whitelaw, eds., pp. 5.13–5.18.

@8# Shafi, H. S., and Antonia, R. A., 1997, ‘‘Small-scale Characteristics of a Tur-
bulent Boundary Layers over a Rough Wall,’’ J. Fluid Mech.,342, pp. 263–
293.

@9# Rotta, J. C., 1962, ‘‘Turbulent Boundary Layers in Incompressible Flow,’’
Progress in Aeronautical Science, A. Feric, D. Kucheman, and L. H. G. Stone,
eds., Pergamon, 2, pp. 1–20.

Fig. 12 Fluctuating velocity field on smooth and rough walls

134 Õ Vol. 124, MARCH 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



@10# Raupach, M. R., 1981, ‘‘Conditional Statistics of Reynolds Stresses in Rough-
wall and Smooth-wall Turbulent Boundary Layers,’’ J. Fluid Mech.,108, pp.
363–382.

@11# Osaka, H., and Mochizuki, S., 1988, ‘‘Coherent Structures of a d-type Rough
Wall Boundary Layer,’’Transport Phenomena in Turbulent Flows: Theory,
Experimental and Numerical Simulation, M. Hirata and N. Kasagi, eds., Hemi-
sphere, pp. 199–211.

@12# Tani, I., Munakata, H., Matsumoto, A., and Abe, K., 1988, ‘‘Turbulence Man-
agement by Groove Roughness,’’Turbulence Management and Relaminarisa-
tion, H. W. Liepman, and R. Narasimha, eds., Springer, pp. 161–172.

@13# Tani, I., 1988, ‘‘Turbulent Boundary Layer Development over Rough Sur-
faces,’’Perspectives in Turbulence Studies, H. U. Meier and P. Bradshaw, eds.,
Springer, pp. 223–249.

@14# Antonia, R. A., and Luxton, R. E., 1971, ‘‘Some Statistical Properties of Tur-
bulence in Smooth and Rough Wall Boundary Layers,’’Charles Kolling Re-
search Laboratory, T.N F31, University of Sydney.

@15# Perry, A. E., Schofield, W. H., and Joubert, P. N., 1969, ‘‘Rough Wall Turbu-
lent Boundary Layer,’’ J. Fluid Mech.,177, pp. 383–413.

@16# Raupach, M. R., Antonia, R. A., and Rajagopalan, S., 1991, ‘‘Rough-wall
Turbulent Boundary Layers,’’ Appl. Mech. Rev.,44, pp. 1–25.

@17# Hama, F. R., 1954, ‘‘Boundary Layer Characteristics for Smooth and Rough
Surfaces,’’ Trans. Soc. Naval Archit. Mar. Engrs.,62, pp. 233–255.

@18# Antonia, R. A., and Krogstad, P-A˚ ., 1993, ‘‘Scaling of the Bursting Period in

Turbulent Rough Wall Boundary Layers,’’ T.N. in Exp. Fluids,15, pp. 82–84.
@19# Finley, P. J., Khoo, Chong Phoe, and Chin, Jeck Poh., 1966, ‘‘Velocity Mea-

surements in a Thin Turbulent Wake Layer,’’ La Houille Blanche,21, pp.
713–721.

@20# Granville, P. S., 1976, ‘‘A Modified Law of the Wake for Turbulent Shear
Layers,’’ ASME J. Fluids Eng.,98, pp. 578–580.

@21# Grass, A. J., 1971, ‘‘Structural Features of Turbulent Flow over Smooth and
Rough Boundaries,’’ J. Fluid Mech.,50, pp. 233–255.

@22# Hanjalic, K., and Launder, B. E., 1972, ‘‘Asymmetric Flow in Plane Channel,’’
J. Fluid Mech.,51, p. 301.

@23# Corino, E. R., and Brodkey, R. S., 1969, ‘‘A Visual Investigation of the Wall
Region in Turbulent Flow,’’ J. Fluid Mech.,37, pp. 1–30.

@24# Wallace, J. M., Eckelmann, H., and Brodkey, R. S., 1972, ‘‘The Wall Region in
Turbulent Flow,’’ J. Fluid Mech.,54, pp. 39–48.

@25# Brodkey, R. S., Wallace, J. M., and Eckelmann, H., 1974, ‘‘Some Properties of
Truncated Turbulence Signals in Bounded Shear Flows,’’ J. Fluid Mech.,63,
pp. 209–224.

@26# Willmarth, W. W., and Lu, S. S., 1972, ‘‘Structure of the Reynolds Stress Near
the Wall,’’ J. Fluid Mech.,55, pp. 65–92.

@27# Lu, S. S., and Willmarth, W. W., 1973, ‘‘Measurements of the Structure of the
Reynolds Stress in a Turbulent Boundary Layer,’’ J. Fluid Mech.,60, pp.
481–571.

Journal of Fluids Engineering MARCH 2002, Vol. 124 Õ 135

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



R. K. Sullerey
Professor,

Department of Aerospace Engineering,
Indian Institute of Technology,

Kanpur-208 016, India
e-mail: suller@iitk.ac.in

Sourabh Mishra
Former Graduate Student

A. M. Pradeep
Graduate Student

Department of Aerospace Engineering,
Indian Institute of Technology, Kanpur, India

Application of Boundary Layer
Fences and Vortex Generators
in Improving Performance
of S-Duct Diffusers
An experimental investigation was undertaken to study the effect of various fences and
vortex generator configurations in reducing the exit flow distortion and improving total
pressure recovery in two-dimensional S-duct diffusers of different radius ratios. Detailed
measurements including total pressure and velocity distribution, surface static pressure,
skin friction, and boundary layer measurements were taken in a uniform inlet flow at a
Reynolds number of 7.83105. These measurements are presented here along with static
pressure rise, distortion coefficient, and the transverse velocity vectors at the duct exit
determined from the measured data. The results indicate that substantial improvement in
static pressure rise and flow quality is possible with judicious deployment of fences and
vortex generators.@DOI: 10.1115/1.1436096#

Introduction

Combat aircrafts have one or two engines, which are generally
integrated with the fuselage. Supplying them with the necessary
quantity of air for generating thrust takes place by means of spe-
cially designed inlets, through which air is taken from the external
flow and supplied to the engines. Numerous modern combat air-
craft designs are equipped with inlets that act as two dimensional
air intakes. The inlets are attached to the side of the fuselage as
two dimensional air intakes with basically horizontal orientation.
Connecting the inlet to the engine compressor face is a subsonic
diffuser that converts rectangular cross section to a circular cross
section ~for a twin engine aircraft! or to a semi-circular cross
section in the case of a single engine aircraft. As the shift in the
axis is required between the inlet and the engine, the subsonic
diffuser is generally an S-duct. Due to space limitations, a short
duct is desired, resulting in high degrees of centerline curvature.
Due to centerline curvature, there are cross-stream pressure gra-
dients giving rise to secondary flows. Within the boundary layer
this imparts cross-flow velocities creating non-uniform total pres-
sure profiles. In addition, there is a stream-wise pressure gradient
resulting from increasing cross-sectional area. The combined ef-
fect may result in an increased total pressure nonuniformity~i.e.,
distortion! and total pressure loss at the duct exit. The engine
response to the flow delivered by the intake depends not only on
the total pressure provided but also, more significantly, on the
quality of the flow at the compressor face.

Guo and Seddon@1# investigated the swirl in an S-shaped duct
of typical aircraft intake proportions at different incidences and
through flow ratios. In order to reduce the magnitude of swirl at
high angles of incidences, two methods were studied. One, to
change the distortion of the pressure by means of a spoiler and
two, to re-energize the separated flow and inflow of free stream air
through auxiliary inlets. Of the anti-swirl devices, the spoiler was
found to be more powerful and could be sized to either reverse the
swirl direction or to eliminate the swirl completely. Weng and
Guo @2# presented a new approach of swirl control in an S-shaped

diffuser called automatic adjustable blade~AAB ! method that of-
fered an effective swirl control at the expense of an acceptable
total pressure loss.

Taylor et al.@3# have reported measurements of flow in circular
and square cross-section S-ducts using a Laser Doppler Anemom-
eter for both laminar and turbulent flows. The results of this study
have been used for comparison with computational studies by
McConnaughey et al.@4#.

Majumdar et al.@5# have reported experimental measurements
in a diffusing S-duct having an area ratio of two. The duct was
fabricated by joining two 90-degree identical diffusing ducts with
an offset. A small pocket of flow reversal at the inflection plane
was observed in their measurements. Secondary motions were
present throughout the diffuser passage. The curvature and area
ratios of the diffusers were too high for aircraft intakes.

Benchmark aerodynamic data for compressible flow through a
representative S-duct were presented by Wellborn et al.@6#. De-
tails of separated flow region, including the mechanism, which
drives complicated flow phenomenon, were discussed. The
measurements indicated that the duct curvature induces strong
pressure driven secondary flows, evolving into counter-rotating
vortices.

Wendt and Reichert@7# have experimentally studied the effect
of nonuniform upstream flow arising due to vortex ingestion in a
diffusing S-duct inlet with and without an array of surface
mounted vortex generators. The ingested vortex was observed to
have a strong influence on duct flow field, but only when the
vortex trajectory was near the region of separation that existed in
the baseline S-duct.

Seddon@8# investigated the effect of wall fences of various
sizes and combinations in reducing the swirl in an S-duct arising
due to high angles of attack. It was concluded that large swirl
reduction with an improvement of the total pressure distortion at
high incidence was possible with modest size fences and a small
effect on mean pressure recovery at low incidence. In contrast,
Sullerey and Mishra@9# have studied the effectiveness of bound-
ary layer fences in improving the performance of S-duct diffusers
of rectangular cross-section in a uniform inlet flow. Significant
improvement in performance of the diffusers was observed with
top and bottom wall fences. Various fence heights were tried to
achieve optimum performance of the duct.

Reichert and Wendt@10# could improve the total pressure dis-
tortion and recovery performance of a diffusing S-duct using low-
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profile vortex generators~so-called wishbone types!. In a further
study, Reichert and Wendt@11# used tapered-fin type vortex gen-
erators with an objective of controlling the development of sec-
ondary flows. The application of vortex generators here differed
from conventional point of view of vortex generators as devices
that re-energize the boundary layer by mixing free stream and
boundary layer fluids, rather the objective was to control the de-
velopment of secondary flows. Later Reichert and Wendt@12#
presented the compilation of previous two studies with additional
data on the effectiveness of various vortex generator configura-
tions in reducing exit flow distribution of circular S-ducts. Foster
et al. @13# conducted measurements in flow through rectangular-
to-semi annular transition duct to demonstrate the effectiveness
of vortex generators to reduce the circumferential total pressure
distortion.

Wendt and Dudek@14# described the development of an effec-
tive design strategy for surface-mounted vortex generator arrays
in a subsonic diffuser using both computational and experimental
analysis for transitioning high-speed inlet flow. While, a substan-
tial reduction in circumferential total pressure distortion was ob-
tained by proper placement of vortex generators using computa-
tional results, experimental measurements were used to determine
proper vortex generator sizing to minimize total pressure recovery
losses associated with vortex generator device drag.

The objective of the present investigations was to study the
effect of fences@9# and vortex generators in controlling secondary
flows in an S-duct diffuser with a uniform inlet flow for radius and
area ratios that are typical of combat aircraft intakes. Two S-duct
diffusers of rectangular cross-section were studied. Both the dif-
fusers had the same centerline arc length and area ratio thereby
keeping the streamwise pressure gradient nearly constant. How-
ever, the radius of curvature of the centerline arc was different in
the two cases. The diffuser with greater radius of curvature of the
centerline arc was subject to increased secondary flows. In both
the diffuser configurations, fences and vortex generators were
used to assess the improvement in pressure recovery and exit flow
distortion.

Earlier Reichert and Wendt@11,12# had conducted tests on cir-
cular S-ducts of radius ratio 10 with tapered-fin vortex generators.
Significant improvement in performance of the diffuser with
proper placement of tapered-fin vortex generators was observed as
a result of reduced secondary flows. Usually, aircraft intakes have
radius ratios between 4 and 6. In the present investigations, a
series of tests was undertaken to investigate the effectiveness of
tapered-fin vortex generators in diffusers with rectangular cross
sections of lower radius ratios~increased curvatures!. The tapered-
fin vortex generators were employed such that each vortex gen-
erator produced a single trailing axial vortex in the direction op-
posing the naturally occurring secondary flows thus reducing
secondary flow effects.

The height of the boundary layer fences was varied to obtain an
optimum performance in fence alone configurations. Two types of
vortex generators were tried, namely, wishbone type and tapered-
fin type. The wishbone type vortex generators were used on the
curved walls for the purpose of energizing the boundary layer in
regions of high adverse pressure gradients. The tapered-fin vortex
generators were used with a primary intention to control second-
ary flows. These were deployed on top and bottom walls. The
tapered-fin vortex generator angles~refer Fig. 2~a!! were varied
for best performance.

Experimental Setup and Procedure
The measurements were carried out in an open-circuit wind

tunnel. A blower discharged air through a diffuser into a large
settling chamber having a honeycomb and three sets of wire mesh
screens. A contraction section of an area ratio of 17 accelerated
the flow into the test section entrance of cross-section area of
380 mm (width)3305 mm (height). A large contraction ratio en-
sured a uniform flow at the inlet. The measured free stream tur-

bulence level of the inlet flow was less than 0.5 percent. Between
the contraction and the S-duct diffuser, a straight duct of 300 mm
length was provided to obtain fully developed, zero pressure gra-
dient turbulent boundary layer at the diffuser inlet. Detailed ve-
locity measurements were carried out across the diffuser inlet
~free-stream! and in the inlet boundary layers. The diffuser inlet
flow was uniform with an average wall boundary layer momen-
tum thickness equal to 0.2 percent of the inlet width. The tests
were carried out at a Reynolds number of 7.83105 based on the
diffuser inlet width. A constant area duct extension of 300 mm
length was also placed at the diffuser exit to provide smooth,
continuos flow exiting the duct.

Diffusing S-Duct. The diffusers investigated had a rectangu-
lar cross-section with an aspect ratio~diffuser inlet height to width
ratio! of 0.8. The area ratio~diffuser exit to inlet area ratio! for
both the diffusers was 1.35. The diffuser geometries are shown in
Fig. 1 and Fig. 2. The two diffusers were designed for radius
ratios 4 and 6 and so experienced different curvature effects.
However as the area ratio and the centerline arc lengths were
same in the two cases, the streamwise pressure gradient was simi-
lar. The centerline arc length of both the diffusers corresponded to
a 6-degree semi-divergence angle of an equivalent straight dif-
fuser of same area ratio. To increase the duct area, the diffuser
width was linearly varied along the duct centerline while keeping
the height constant. The width was equally distributed normal to
the centerline. The top and bottom duct walls were made of ply-
wood and the curved sidewalls were of Perspex sheets. For the
first diffuser ~Fig. 1!, the centerline radius of curvature to half
width ratio was 6 and for the second diffuser~Figs. 2~a! and 2~b!!
it was 4. Two planar circular arcs with identical radii defined the
duct centerline. However, as the arc radius was different in two
cases, the two diffusing ducts subtended different angles~16 and
24 degrees, respectively!.

Fences and Vortex Generators. The different fence configu-
rations with which S-duct diffuser flow measurements have been
taken are shown in Fig. 1. The fences were made of 1.5 mm thick
aluminum sheet. The edges of the fences were rounded off. Based
on initial observations in the S-duct diffuser (R/r 56), the fence
height was kept uniform at 120 percent of the measured boundary
layer thickness in the bare duct~diffuser without any flow control
devices! at the inflection plane. This choice of fence height was
based on detailed preliminary measurements. From these mea-
surements, it was concluded that this fence height gave the best
performance improvement. The fences were inserted through slots
along the top and bottom wall centerlines. Four different fence

Fig. 1 Layout of S-duct diffuser 1 and fence configurations
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configurations used were B, C, D, and E. The configuration A was
the diffuser without any wall-mounted fences. For the second dif-
fuser (R/r 54), the fence height was further increased~based on
measurements with different fence heights! and only configuration
E was tested. Experimental measurements with fences on the
curved walls did not result in any improvement in diffuser perfor-
mance. Therefore, detailed measurements were made only with
fences on top and bottom walls.

The vortex generator designs are shown in Figs. 2~a! and 2~b!
alongside the diffuser geometry. The wishbone type vortex gen-
erator geometry chosen was similar to the one given by Wendt and
Hingst@15#. The height of the wishbone type vortex generator was
about 60 percent of the boundary layer thickness~of the bare duct!
at the point where the vortex generator~tip! was fitted. The base
of the vortex generator was curved in accordance with the wall
profile. The locations of the vortex generators were selected on the
basis of wall pressure distribution. The most appropriate location
was considered to be just prior to the region of high adverse
pressure gradients~the boundary layer grows rapidly in this re-
gion!. At each location, a pair of vortex generators was used~de-
tails of flow structure in the wake of such vortex generators given
in @15#!.

The tapered-fin vortex generators were designed as given by
Wendt and Reichert@11#. The height of the vortex generators was
about 50 percent of the boundary layer thickness at the inflection
plane. The vortex generators were made from 1.5 mm thick alu-
minum sheet and were fixed firmly on the top and bottom walls of
the diffusers. The location of the vortex generators was decided
based on the wall static pressure distribution~maximum pressure
difference between the inner and outer walls! in the bare duct. The

vortex generators were fixed in such a way that the tip of the
trailing edge pointed towards the high-pressure side so that the
vortices shed by the vortex generators opposed the naturally oc-
curring secondary flows and thus aiding in control of secondary
flow losses. At each location a set of three vortex generators were
used. The vortex generator angle~ref. Fig. 2~b!! was varied so as
to achieve optimum performance.

Instrumentation and Measurement Techniques. The mea-
surements included diffuser wall static pressure distributions,
mean velocities, boundary layer and skin friction measurements
and flow angularity measurements. A Furness~FC012 model!
digital multi-channel micro-manometer was used for all pressure
measurements. The static pressure measurements were taken with
wall pressure tappings at eight stations on each diffuser. Each
station had nine pressure taps of 0.8 mm diameter~three on each
curved walls and three on the top wall!. There were thirteen pres-
sure taps at the inflection plane. The last station was at some
distance from the diffuser exit on the straight duct attached at
diffuser exit. TheCp values were expected to be within one per-
cent accuracy~on the basis of multiple measurements at a given
station!.

The skin friction measurements were made using wall mounted
Preston tubes of 0.8 mm diameter. These tubes were fitted along
the centerline of inner and outer walls at eight stations. The skin
friction coefficient was estimated based on the procedure given by
Patel @16#. The skin friction measurements were expected to be
within 2 percent accuracy. More than the skin friction measure-
ments, the basic purpose of using Preston tubes in the present
experiments was to detect regions of flow separation. The bound-

Fig. 2 Diffuser 2 geometry with wishbone and tapered-fin vortex
generators
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ary layer measurements were made on all four walls at inlet, in-
flection and the exit planes of the S-duct diffuser. A 0.8 mm di-
ameter pitot probe was used for this purpose.

The total pressure and velocity measurements~including flow
angularity! were made using a five-hole conical probe of diameter
6.4 mm. For probe traverse, an accurate three-dimensional
traverse system~least count 0.5 mm! was used. The five-hole
probe was calibrated~using a three dimensional calibration rig as
in @17#! with one-degree interval and hence the accuracy in flow
angularity was expected to be within one degree. Detailed flow
measurements using five-hole probe were made at the inflection
and the diffuser exit plane for different fence and vortex generator
configurations tested. The total pressure measurements were ex-
pected to be within one percent accuracy.

Results and Discussions
The first set of tests was carried out on bare S-duct diffusers.

The boundary layer measurements at the inflection plane and the
duct exit did not indicate flow separation in either of the diffusers.
These measurements along with the wall static pressure distribu-
tion provided an estimate of the boundary layer thickness and the
severity of adverse pressure gradients in the diffusers. The selec-
tion of particular fence configurations and the location of the vor-
tex generators were based on these measurements.

Tapered-fin vortex generators and boundary layer fences were
tried on both the diffusers as devices for control of secondary
flows. However wishbone type vortex generators find application
more as devices to energize the boundary layer. Hence, it was
considered appropriate to use wishbone type vortex generators
only for the diffuser 2(R/r 54) as it had a much greater adverse
pressure gradient on the curved surfaces compared to diffuser
1(R/r 56). Presented below are the results of the two diffusers of
radius ratio 6 and 4 in that order.

Diffuser 1 „RÕrÄ6…. The Cp distribution on the inner and
outer walls for the diffuser is shown in Fig. 3 for all five cases
with and without fences. The inner and outer wall pressures at a
particular station can be seen to differ considerably. This pressure
distribution is typical of S-duct diffusers@8#. In the first bend, the
inner wall pressure was considerably higher than the outer. How-
ever, after the inflection plane~where there was change of curva-
ture!, outer wall pressures became higher than those on inner wall.
The wall pressure differentials between the inner and outer wall
created secondary flows by causing slow moving boundary layer
fluid to move from high pressure to low-pressure region. Except
near the inflection plane, everywhere else the wall pressure differ-
entials were high. The fences were placed in regions of high-
pressure differentials. It was observed that the pressure recovery
improved significantly both on the inner and outer walls, espe-
cially with fence configurationsD andE. The fences are expected
to prevent secondary motion and this is confirmed by these
results.

On the basis of average static pressure at the exit of the duct, an
18.6 percent improvement in theCp value was obtained for the
configurationE as compared with the bare duct. A fence height
120 percent of the inflection plane boundary layer thickness was
found to be optimum for this diffuser based on measurements
carried out for various fence heights. It was the migration of low
energy boundary layer fluid towards the low-pressure wall~re-
sponsible for increased losses! that was prevented by the fences
~by physically blocking the cross flow!. However, fences add to
the wetted surface of the duct, so any increase in fence height
beyond what is necessary would give rise to additional frictional
losses.

It may be mentioned that the measurements of Seddon@8# were
confined to application of fences for countering swirl in S-ducts at
high angle of attacks and fences were used only in the first bend.
The fences extended almost to the mid-section of the duct. How-
ever, the present application of fences was to improve the S-duct
performance by reducing secondary flows and fence heights were
of the order of the boundary layer thickness.

The bare diffuser exit momentum thickness~as percentage of
inlet width! was 2.2 percent on outer wall and 1.0 percent on the
inner wall. Both these measurements were at the midsections. For
configuration E the corresponding values are 1.9 percent and 0.4
percent. The reduced momentum thickness is indicative of lower
losses when the fences are employed.

The exit total pressure nonuniformity was measured in terms of
distortion coefficient,DC , which reduces from a value of 0.662
for the bare duct to 0.588 for the diffuser with fences. The total

Fig. 3 Cp distribution of diffuser 1 for different fence
configurations

Fig. 4 Transverse velocity distribution at the diffuser 1 exit. „a… Without
fences, „b… with fences „Configuration E ….
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pressure loses were expressed in terms of average total pressure
loss coefficient,Ã ~mass average of 25 point measurements at
duct exit!. The exit pressure loss coefficient was 0.16 for the bare
duct and 0.1 for the diffuser with fence configuration E. The ex-
pected accuracy of loss coefficient values was within 2 percent.

Figures 4~a! and 4~b! show the transverse velocity vectors at
the exit of the bare duct and diffuser with fences~configuration
E). The angles of the velocity vectors were in the range 2 to 8
degrees. The magnitude of the transverse velocity vectors reduced
with the employment of fences as is clear from these figures.

The vortex generators were placed on the top and bottom walls
of the diffuser. Their exact location was chosen from theCp dis-
tribution of the bare duct. The vortex generators were placed at
locations where the difference between the inner and outer wall
Cp was maximum. The vortex generators were placed at two
planes with three vortex generators~the number of vortex genera-
tor and their spacing to chord ratio was based on@10,11#! in each
plane ~Fig. 2~b!!. The vortex generator angle was varied~in the
range 2 to 8 degrees as obtained from transverse velocity distri-
bution! so as to achieve optimum performance improvement.
There was a modest improvement in performance,~as measured
by static pressure rise, total pressure loss coefficient,Ã and dis-
tortion coefficient,DC) but to a lesser extent as compared to
fences. The optimum angle of the vortex generators was observed
to be three degrees on both planes where they were placed.

The consolidated results for the bare diffuser, diffuser with
fences for configurationE and diffuser with tapered-fin vortex
generators at three degrees chord angle are given in Table 1. Sig-
nificant improvement in performance of the diffuser with fences
can be observed. Tapered-fin vortex generators also lead to im-
provement in all the parameters measured but to a lesser extent in
comparison to fences.

Diffuser 2 „RÕrÄ4…. This diffuser had a higher centerline
curvature than diffuser1. Secondary flows in curved ducts arise
due to the pressure difference between the inner and outer wall.
Hence diffuser 2 experienced increased cross flows and conse-
quently more losses. After initial measurements on the bare duct,
measurements were carried out with fence configuration E for
varying fence heights. In addition, as a steep adverse pressure
gradient was observed on the curved sidewalls, it was considered
appropriate to use wishbone type vortex generators on the curved
walls so as to energize the boundary layers. The wishbone type
vortex generators were used with and without top and bottom wall
fences.

Figure 5~a! presents the inner and outer wallCp distribution
with and without fences. A fence height of 130 percent of bound-
ary layer thickness~50 mm fence height! at inflection plane gave
an optimum performance. Fence heights greater than this value
did not result in any further performance improvement. Hence the
results of this configuration have not been included in Fig. 5~a!.
Measurements with wishbone type vortex generators gave aCp
value of 0.269 at the exit of the duct. TheCp value of the bare
duct was 0.267. The average total pressure loss coefficient was
0.147 and the distortion coefficient was found to be 0.744. On
comparing these values to those with fences, it was observed that
the wishbone type vortex generators did not lead to much im-
provement in performance, as flow control by mixing was inef-
fective in an S-duct diffuser. For bare diffuser 2, the momentum
thickness~as percentage of inlet width! was 2.50 percent on the

outer wall and 1.20 percent on the inner wall. For the diffuser with
fences of height 50 mm the corresponding values were 2.0 per-
cent, and 0.60 percent respectively.

Next, measurements were carried out using tapered fin vortex
generators. The tapered fin vortex generators were placed in a
similar manner as for the diffuser 1. The exact location was ob-
tained from theCp distribution of the bare diffuser 2. TheCp
distribution for the diffuser 2 with various tapered fin vortex gen-
erators configurations is given in Fig. 5~b!. The vortex generator
angle was varied on both the planes so as to obtain optimum
performance. Vortex generator angle of 4.5 degrees on both the
planes gave the most optimum performance. Comparing 5~a! and
5~b!, it can be noted that for diffuser 2, the performance improve-
ment with tapered fin vortex generators is better than with fences.

In Fig. 6, centerlineCp distributions of bare diffuser1 and 2 are
presented together with their most optimum configurations of
fences and vortex generators. There is significantly higher-
pressure recovery for diffuser 1 as compared to diffuser 2. As both
were of same area ratio and semi-divergence angle, reduced per-
formance of diffuser 2 was due to increased centerline curvature.
It was observed from these results that fences were more effective
in improving performance for diffuser 1 where centerline curva-
ture was less and tapered-fin vortex generators in the case of dif-
fuser 2 where centerline curvature was more.

The total pressure loss coefficient contours are given in Figs.
7~a! and 7~b! without and with tapered-fin vortex generators re-

Table 1 Summary of results for diffuser 1 „RÕrÄ6…

Exit flow property Bare duct With fences
With tapered-fin
vortex generators

CP 0.343 0.407 0.372
Ã 0.16 0.10 0.142
DC 0.662 0.588 0.602

Fig. 5 Inner and outer wall Cp distribution with angle of mea-
surement plane for diffuser 2. „a… With boundary layer fences,
„b… with tapered-fin vortex generators „VG….
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spectively. The extent of low loss regions~0.1,v,0.2! is more
extensive in Fig. 7~b! as compared to Fig. 7~a!. In Figs. 8~a! and
8~b!, the skin friction measurements for the two diffusers are
shown. The outer wallCf for diffuser 2 approached zero toward

the exit of the duct. Comparing with diffuser 1,Cf values were
lower for diffuser 2. The skin friction coefficients were observed
to increase with the use of fences on diffuser 1 and tapered-fin
vortex generator on diffuser 2.

The summary of results for the bare diffuser 2, diffuser with
fences at 50 mm height and with tapered-fin vortex generators at
4.5 degrees chord angle are listed in Table 2. Significant improve-
ment in performance of the diffuser can be observed with the
employment of tapered-fin vortex generators. The improvement in
performance with fences is less as compared to the tapered-fin
vortex generators.

Conclusions
In diffuser 1 (R/r 56) the use of fences significantly improved

the diffuser performance for the entire fence configurations tested.
The best configuration,E, having fences along both top and bot-
tom wall centerlines, gave an increase of 18.6 percent in the static
pressure recovery, improved the total pressure loss coefficient

Fig. 7 Total pressure loss coefficient distribution at the dif-
fuser 2 exit. „a… Bare duct, „b… with tapered-fin vortex
generators.

Fig. 8 Variation of skin fraction coefficient along the side-
walls. „a… Diffuser 1, „b… Diffuser 2.

Table 2 Summary of results for diffuser 2 „RÕrÄ4…

Exit flow property Bare duct
With tapered-fin
vortex generators With fences

CP 0.267 0.322 0.30
Ã 0.17 0.104 0.121
DC 0.786 0.651 0.707

Fig. 6 Comparison of centerline Cp distribution for the two
diffusers
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from 0.16 to 0.10 and decreased the flow distortion coefficient at
the duct exit from 0.662 to 0.588. A fence height equal to 120
percent of boundary layer thickness at the inflection plane resulted
in best diffuser performance. The improvement in the diffuser
performance was brought about by the reduction in the secondary
flows by the fences. The employment of tapered-fin vortex gen-
erators~a set of three vortex generators in two planes! in the same
diffuser resulted in an increase in static pressure by 8.4 percent,
reduction in total pressure loss coefficient from 0.16 to 0.142 and
improvement in the flow distortion coefficient from 0.662 to
0.602. Thus it is observed that tapered-fin vortex generators are
less effective as compared to fences for the diffuser 1.

In diffuser 2 (R/r 54), the maximum improvement in static
pressure recovery was obtained with the configuration employing
tapered fin vortex generators. An improvement of 20.6 percent in
Cp value at the diffuser exit was obtained with this configuration.
The distortion coefficient decreased from 0.786 to 0.651. The em-
ployment of fences~most optimum fence height being 130 percent
of boundary layer thickness at inflection plane! on diffuser 2 re-
sulted in a modest improvement in performance. A static pressure
rise of 12.3 percent was obtained with fences. The reduction in
total pressure loss coefficient and distortion coefficient was also
by a lesser factor as compared to that of tapered-fin vortex gen-
erators. The wishbone type vortex generators that were employed
with diffuser 2 gave only marginal improvement in all the param-
eters as compared to the fences or tapered-fin vortex generators. A
reason for these results seems to be that the improvement in the
case of fences and tapered-fin vortex generators arises due to re-
duction in secondary flows. While the wishbone type vortex gen-
erators created their own losses, the fences and tapered fin vortex
generators being very thin in cross section generate very less
losses.

It was observed that the fence height and tapered fin vortex
generators orientation giving the best performance would vary
depending upon the centerline curvature. The present experimen-
tal investigation reveals that fences perform better when used with
diffusers of greater radius ratio while tapered-fin vortex generators
would perform better when used with diffusers of lesser radius
ratio.

Nomenclature

AR5 area ratio of the diffuser
Cp 5 pressure coefficient5(p2pref)/(1/2rV`

2 )
Cf 5 skin fiction coefficient
Dc 5 distortion coefficient5(poav2pomin)/qav2
R 5 duct centerline radius of curvature

Re 5 Reynolds number based on inlet diffuser width
V 5 fluid velocity
Y 5 distance along duct centerline radius from inner wall of

the diffuser
Z 5 distance along diffuser height from the bottom of the

diffuser
h 5 diffuser height~constant!

l 5 duct centerline length
p 5 static pressure

po 5 total pressure
q 5 dynamic head
r 5 inlet half width
s 5 distance along the duct centerline from diffuser inlet
r 5 fluid density

Ã 5 average total pressure loss coefficient5(po12po2av)/
(1/2r V`

2 )

Subscript

av 5 average value
max 5 maximum value
min 5 minimum value
ref 5 inlet plane~reference!
1,2 5 notations for inlet and exit planes

` 5 free stream value
o 5 total pressure
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Universität Erlangen-Nürnberg,

Cauerstrasse 4, 91058 Erlangen, Germany

Measurement of the
Instantaneous Velocity Gradients
in Plane and Axisymmetric
Turbulent Wake Flows
All first-order spatial derivatives of the turbulent velocity fluctuations were measured
using a pair of X hot-wire probes. Measurements were performed in the self-preserving
region of a turbulent plane wake downstream of a cylinder and in an axisymmetric wake
behind the sphere. Good spatial resolution of the measurements was ensured by choosing
small values for the cylinder/sphere diameter and a low flow speed. Errors due to the
finite hot-wire length and the wire and probe separation were analyzed using Wyngaard’s
correction method. The derived corrections were verified experimentally. The measuring
technique and the experimental results were systematically checked and compared with
the results available in the literature. The assumptions of local isotropy and local axisym-
metry were examined. Both investigated flows deviate only moderately from local isotropy
and local axisymmetry. Support for the measured results is provided by plotting the data
on an anisotropy invariant map. The budgets of the turbulent kinetic energy were com-
puted from the measured data. In contrast to the results obtained in the plane wake, where
the pressure transport is nearly negligible, in the axisymmetric wake it was found to play
an important role and closely follows the estimate made by Lumley,uip/r'20.2q2ui .
@DOI: 10.1115/1.1428330#

1 Introduction
The dissipation correlationse i j 5n]ui /]xk ]uj /]xk play an im-

portant role in turbulence modeling, since these represent a sink
term in the Reynolds stress equations. The trace of the dissipation
tensore1 appears in nearly all turbulent models. Modeling of the
dissipation rate correlations is the weakest part of the turbulence
closures since the dynamics ofe i j are extremely complicated. Of-
ten they are modeled assuming local isotropy, as proposed by
Kolmogorov@1#. An exception is the near-wall region where em-
pirical wall functions are used to recast the data. One of many
difficulties also originates from an insufficient amount of numeri-
cal or experimental data that can be of some use for direct vali-
dation of the closure assumptions used to construct a transport
equation for the dissipation rate. Although direct numerical simu-
lations have been available for almost 20 years, only very few
data sets contain useful information about terms in the transport
equation of the turbulent dissipation rate. In this respect, two-
point statistics would be extremely useful but are not available.
Experimental data are also rare, since measurements of the rel-
evant terms are very difficult or even impossible.

The first dissipation measurements were made by Simmons and
Salter@2# using hot-wire probes together with Taylor’s frozen flow
hypothesis and assuming isotropy in the dissipation range. In a
similar way, the turbulent dissipation rate was measured in a tur-
bulent jet by Corrsin@3# and Corrsin and Uberoi@4# and in a plane
wake by Townsend@5,6#. Townsend measured statistics of the
streamwise derivatives which provided support for the applicabil-

ity of the assumption of local isotropy. Laufer@7# and Klebanoff
@8# measured five of the nine terms of the turbulent dissipation
rate in a turbulent pipe flow and in a flat plate boundary layer,
respectively. For the determination of the remaining terms they
applied isotropic relationships. All three components of the tem-
perature dissipation rate were measured in a turbulent wake flow
by Uberoi and Freymuth@9# and Antonia and Browne@10#. The
same quantities were also measured by Tavoularis and Corrsin
@11,12# in a homogeneous shear flow and by Krishnamoorthy and
Antonia @13# in a turbulent boundary layer.

Using a pair of X hot-wire probes, Browne et al.@14# measured
all nine terms of the turbulent dissipation rate. Instead ofe the
authors determined the dissipation fromē and assumed local isot-
ropy for the three remaining terms. George and Hussein@15# and
Hussein et al.@16# used the flying hot-wire technique for measur-
ing five of the nine dissipation terms in a round jet at high Rey-
nolds numbers. A similar experiment was performed by Hussein
@17#, who measured seven of nine terms ofe in a plane jet. The
results obtained in this study showed that local axisymmetry is a
better approximation than local isotropy.

Ye @18# measured all nine terms of the turbulent dissipation rate
and three components of the dissipation tensor in a turbulent plane
wake using the same technique as Browne et al.@14#. The mea-
surements described in this paper are an extension of the work of
Browne et al.@14# and Ye @18#. Instead of a fixed X hot-wire
configuration, two probes with variable separation were em-
ployed, allowing precise relative alignment and the possibility of
performing various test measurements. The paper focuses mainly
on experimental aspects such as corrections and accuracy tests. At
the end of the paper we provide distributions of the individual
terms involved in the transport equation for turbulent kinetic en-
ergy. A detailed investigation and validation turbulence closure of
the dissipation correlations using the experimental data will be the
subject of a future paper.

1e and the total average turbulent dissipation rateē are related as follows:

ē5n
]ui

]xk
S]ui

]xk
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]uk

]xi
D5n

]ui

]xk
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]xk
1n

]2uiuk

]xi]xk
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The second term on the right-hand side is negligible in the wake flows under con-
sideration.
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2 Experimental Technique for Measuring Velocity
Derivatives

Spatial derivatives of the fluctuating velocities can be obtained
experimentally by measuring the velocity difference at two
closely spaced points,ui , j5]ui /]xj'Dui /Dxj . This technique,
known as the finite-difference method, was used in several studies
by Browne et al.@14#, Ye @18#, and Zhu and Antonia@19#. Using
a pair of X hot-wire probes of different configurations all nine
components of the turbulent dissipation ratee can be measured, as
shown in Fig. 1, which provide details of a wind-tunnel arrange-
ment of two closely separated X hot-wire probes used for the
velocity derivative measurements. The sketch shows probe hold-
ers, the device used for calibration of hot wires at known yaw
angles in the wind tunnel~top! and different configurations of X
hot-wire probes~bottom!. Here, the coordinatesx2 and x3 lie in
the plane peperdicular to the flow which is along thex1 direction.

In the analysis of the data measured by different hot-wire con-
figurations shown in Fig. 1, it was necessary to account for the
spatial filtering arising from the finite length~l! of the hot wires
and also for the wire~d! and probe~s! separation. For this pur-
pose, the correction procedure suggested by Wyngaard@20,21#,
and extended by Zhu and Antonia@19#, was applied. Here we
provide a brief summary of the correction method used to evaluate
the data.

Assuming that turbulence is homogeneous, the derivative
(]u1 /]x2)2 can be expressed by

S ]u1

]x2
D 2

5E
2`

` E
2`

` E
2`

`

k2
2f11~k!dk1dk2dk3 , (1)

wherek is the wavenumber vector,k5(k1 ,k2 ,k3), andf11 is the
energy spectral tensor. The measured velocity derivative spectrum
fu1,2

m for the hot-wire configuration~a! shown in Fig. 1 and 2 can
be represented by

fu1,2

m ~k!51/s2 sin2~k2s/2!$f11@~Xa
21Xb

2!12XaXb cos~k3d!#

12 cotqf12~Xb
22Xa

2!1cot2qf22@~Xa
21Xb

2!

22XaXb cos~k3d!#%, (2)

whereXa5sin(kla)/(kla) originate from the filtering effect due to
the finite length of the hot wire~Zhu and Antonia,@19#!. The use
of the above equation assumes homogeneity of turbulence, unifor-

mity of the mean velocity field across the hot wire and small
turbulence intensity. With Eqs.~1! and ~2! one can estimate the
ratio

r 125
~]u1 /]x2!2m

~]u1 /]x2!2 5
***2`

` fu1,2
m ~k!dk1dk2dk3

***2`
` k2

2f11~k!dk1dk2dk3
, (3)

by integrating Eq.~3! numerically with the assumed isotropic
form for f i j :

f i j ~k!5
E~k!

4pk4 ~k2d i j 2kikj !, (4)

whereE(k) is the three-dimensional energy spectrum. In the same
way, corrections for all other gradients can be defined.

Zhu and Antonia@19# used E(k) from the DNS data for a
turbulent channel flow to evaluate the data. In the present study
the form ofE(k) suggested by Pao@22# was used to estimate the
influence of the wire length and the wire and probe separation on
measured statistics of the velocity derivatives. Because of the im-
plied isotropy assumption involved in approximation of the en-
ergy spectrum,E(k) corrections must be verified before they can
be applied.

2.1 Wind Tunnel Setup and Instrumentation. The experi-
ments were carried out in the closed test section of a return-type
wind tunnel at the Lehrstuhl fu¨r Strömungsmechanik, Erlangen.
Its test section is 1.87 m wide, 1.40 m high, and 2.0 m long. The
flow uniformity in the wind tunnel and two-dimensionality of the
plane wake were systematically investigated before performing
the measurements. The free stream turbulence level in the empty
test section was approximately 0.07% in the streamwise direction
and 0.04% in the normal and lateral directions. Since the free
stream turbulence level was very low, no interference with the
wake turbulence was expected.

The plane wake was generated by a steel tube of diameterD
53 mm which was installed in the middle of the tunnel test sec-
tion. The velocityU` in the free stream was 6.6 m/s, correspond-
ing to a Reynolds number based on the cylinder diameter ofRD
51340. For generating the axisymmetric wake a sphere of diam-
eterD516 mm was suspended using four thin wires. In order to
avoid vortex shedding from the suspending wires, their diameter
was only 50mm. With a free stream velocity of 6.1 m/s the wire
Reynolds number was 20, which is well below Recrit'50. The
Reynolds number based on the sphere diameter was 6550.

The axisymmetry of the mean flow field was measured using a
single hot-wire probe. Figure 3 shows distributions of turbulence
intensity, skewness and flatness factors of the streamwise velocity
component. Data from the contour plots shown in this figure dis-
play small radial asymmetries in the narrow region of the upper

Fig. 1 Different configurations of X hot-wire probes employed
for measurements of the instantaneous velocity derivatives. „a…
u 1,1 , u 1,2 , u 2,1 , u 2,2 ; „b… u 1,1 , u 1,3 , u 3,1 , u 3,3 ; „c… u 1,1 , u 1,3 , u 2,1 ,
u 2,3 ; „d… u 1,1 , u 1,2 , u 3,1 , u 3,2 .

Fig. 2 Schematic of the X hot-wire configuration shown in Fig.
1„a…. Here d is the distance between the hot wires, l is the hot-
wire length, s is the distance between two probes and c is the
effective wire angle.
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part of the wake which originate from disturbances caused by the
suspending wires. Detailed profiles of mean velocity and turbu-
lence quantities taken by horizontal and vertical traverses across
the wake showed very small deviations and nearly perfect sym-
metry in the measured data~Schenck@23#!. It was decided, there-
fore, that data obtained from vertical traverses are good represen-
tatives to quantify turbulence in the axisymmetric wake flow.

Detailed experimental investigations reported here were per-
formed in the self-preserving region: 400 diameters downstream
from the circular cylinder and 75 diameters behind the sphere. The
self-similarity in the wake was checked by comparing mean ve-
locity profiles, second- and third-order moments and statistics of
the longitudinal gradient of the fluctuatingu1 velocity component
taken at different streamwise locations.

All measurements were made using standard DANTEC hot-
wire probes operated with Dantec StreamLine constant tempera-
ture anemometers at an overheat ratio of 0.6. The output signals
from the anemometers were passed through back-up amplifiers,
low-pass filtered and then digitized and stored on a PC for further
processing. For measurements of the mean velocity and turbu-
lence intensities, single and X hot -wire probes~DANTEC 55P11
and 55P612! were used.

To ensure the statistical independence of the sampled data, the
integral time-scale was measured from the autocorrelation func-
tion at various positions across the wake. This information was
used to set the sampling interval to about two integral time-scales
of the flow. The sample size at each measuring point was 25,000
data taken at rate of 250 Hz. This sample size corresponds to a
sampling error of 0.03% for the mean velocity and 2.3% for the
second-order moments calculated on the basis of a 99% confi-
dence level.

Hot wires were calibratedin situ in the wind tunnel by fitting
the anemometer output voltage~E! to the effective cooling law
E25A1BUeff

0.45. The coefficientsA andB, that were determined
from the linear regression of the calibration data taken over the

relatively small speed range, provided high accuracy~0.2%! of the
voltage to velocity conversion. Owing to the small turbulence
levels encountered in the investigated wake flows, the cosine law
for the effective cooling velocityUeff was used for splitting the
signals from cross wires into the velocity components. For yaw
calibration, the method proposed by Bradshaw@24# was utilized.
The cross wires were employed for measurements of the normal
and lateral intensity components, shear stress and triple velocity
correlations, which contribute to the balance of the turbulent ki-
netic energy. Townsend’s@6# method for measuring the triple cor-

relationm3
2u2 was employed~see Wygnanski and Fiedler@25# and

Ye @18#!.
The gradients of fluctuating velocities in the normal and lateral

directions, which contribute to the dissipation rate correlations,
were measured using a pair of either single or cross hot-wire
probes~see Fig. 4!. The two cross hot wires were each yawed by
5 deg to allow a small separation between the probes~' 1.6 mm!.
The inclination of the probes to the flow was accounted for during
the data processing by adding the yaw angle to the effective wire
angle to compute the effective cooling velocity using the stored
calibration data. Taylor’s hypothesis was used to determine the
derivatives in the streamwise direction from recorded time traces
of the measured fluctuations. The outputs of the hot-wire an-
emometers were first low-pass filtered at 5 kHz and then digitized
at a sampling frequencyf S of 12 kHz. Prior to computing time
derivatives, the data were additionally digitally low-pass filtered
at the Kolmogorov frequencyf k5U1/2pLk @Lk5(n3/e)1/4# using
the NERD filter routines described by Kaiser and Reed@26#. The
derivatives were then evaluated usingDt52/f S and subsequently
corrected for the effects of finite hotwire length, probe and wire
separation.

2The hot-wire probes employed were made from Pt-plated tungsten wire, diameter
5 mm, length l 51.1660.02 mm and the separation between the wires wasd50.4
60.05 mm.

Fig. 3 Contour plot of relative turbulence intensity u 18ÕU1 „top
left …, the skewness factor „top right … and the flatness factor
„bottom … of the streamwise velocity component in the axisym-
metric wake at x 1 ÕDÄ101

Fig. 4 Photograph of the hot-wire mounting and the micro-
scope for probe positioning in the wind tunnel „top …. Enlarged
front view of the hot-wire probes „bottom ….
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3 Experimental Results

3.1 Mean Flow Field. In order to ensure high reliability of
the measured data, a number of qualifying tests were made. Sev-

eral profiles ofu185Au1
2,u28 ,u38 were compared to check the re-

peatability of the measurements. For the plane wake flow most of
the measured profiles are shown in Fig. 5. This figure shows com-
plete profiles, i.e., both sides of the wake, and includes the data
measured by all hot-wire configurations shown in Fig. 1. Note that
for measurements of the instantaneous velocity derivatives it is
important that both probes give nearly identical responses. The
deviations between the individual curves are within a few percent
and the agreement between single and cross-wire measurements is
seen to be very good. The data for the axisymmetric wake~not
presented here! show nearly the same degree of agreement.

An additional check of the measured data can be made from the
mean momentum equation. For the two-dimensional small-deficit
wake this equation is

U`

]U1

]x1
1

]u1u2

]x2
50, (5)

which can be rearranged in the form

u1u2

US
2 52

AL

2AU
h f , (6)

whereAL and AU are the similarity constants. These can be ex-
pressed as

US

U`
5AU S x12x1,0

D D 21/2

,
L

D
5AL S x12x1,0

D D 1/2

, (7)

whereUS is the centerline mean-velocity defect, which measures
the difference between the free stream and local mean velocities,
x1,0 is the virtual flow origin,h is the nondimensional normal
coordinateh5x2 /L, L is the half-width of the wake~whereUS

Fig. 5 Comparisons of the intensity and shear stress distributions across the
plane wake measured using single wire „denoted single …, cross wire „denoted
X400… and configurations „a…, „b…, „c…, and „d… shown in Fig. 1. Displayed data
includes both side of the wake which cannot be distinguished owing to perfect
symmetry of the flow.

Fig. 6 Normalized distributions of measured and calculated
shear stress „top …. Momentum thickness in the plane wake
computed at different locations behind the cylinder „bottom ….
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50.5! and f (h) is the normalized mean velocity distribution
f (h)5(U`2U1)/US . Figure 6 shows the comparison between
the measured data and values computed from Eq.~6!. At the po-
sition of maximum shear stress the deviation is about 10% and
originates from uncertainties in the determination of the similarity
constants involved in Eq.~7!, which were obtained by fitting the
measured data at different streamwise positions in the wake~see
Schenck@23#!. In the case of the axisymmetric wake the maxi-
mum deviation between the measured and calculated shear stress
was 8%.

The measured mean velocity profiles were used to compute the
momentum thickness:

u5E
2`

` U1

U`
S 12

U1

U`
Ddx2 , (8)

which must be constant. Figure 6~bottom! shows the computed
values ofu at different locations behind the cylinder. The average
value u51.4260.02 mm corresponds to a drag coefficientcD
52u/D of 0.95, which is identical with the result obtained by
Wygnanski et al.@27# and is close to the value suggested in the
literature~see Hoerner@28#!. The value of drag inferred from the
measurements in the wake behind the sphere,cD50.42, is in good
agreement with the data from the literature~Hoerner @28#, cD
50.42; Schlichting and Gersten@29#, cD50.40!.

The measured data were also compared with the results avail-
able from other studies reported in the literature. Since the shape
of the self-similar profiles depends on the initial conditions, as
shown by Wygnanski et al.@27#, only the data from wake flows
behind circular cylinders from Townsend@6#, Fabris@30#, Aron-
son and Lo¨fdahl @31#, Browne et al.@14#, Uberoi and Freymuth
@32# and Ye@18# were used for comparisons. However, only in the
studies reported by Fabris@30# and Ye@18# were all stresses di-
rectly measured. Figure 7 shows comparisons of the turbulence
intensities and the shear stress in the plane wake. The data from
Browne et al.@14# are shown with error bars which indicate the
maximum deviations between their data sets. The agreement is
seen to be good, in particular with the data of Fabris@30# and Ye
@18#. The source of the deviations of the present data from those
measured by Townsend@6# could not be found. An attempt to

apply the extended similarity theory proposed by George@33# was
not successful and the data emerging from this analysis are not
shown here.

3.2 Statistics of the Velocity Derivatives. In order to test
the validity of the corrections discussed in the previous section,
measurements with variable separation between hot-wire probes
were performed. The derivatives in the streamwise direction were
computed from the recorded time traces using the Taylor hypoth-
esis. Figure 8 shows the measured and corrected derivativesu1,18

5A(]u1 /]x1)2, u3,18 andu1,38 as a function of the separation dis-
tance between the probes normalized by the Kolmogorov micros-
caleLk .3 The displayed data correspond to the centerline region
and the outer part of the wake and were obtained using the single
hot wire (u1,18 ), cross wire (u3,18 ) and a pair of single hot wires
(u1,38 ). If the corrections were exact, the corrected derivatives
would exhibit no dependence on the separation distance between
the probes. In the centerline region of the wake the correction
procedure works very well whereas in the outer part it underesti-
mates expectations. This may be attributed to larger deviations
from local isotropy in the outer part of the wake. Because the
Kolomogorov length scaleLk increases with the distance from the
wake centerline by a factor of about two, the relative separation
between the sensorsDx/Lk decreases and the poor performance of
the corrections in the outer part of the wake is not so critical.

For very small separations between the probes, the influence of
noise causes the derivatives to increase. Owing to the decreasing
signal-to-noise ratio, this effect is noticeable in the outer part of
the wake. An average separation between the probes of 1.7 mm
corresponding to'4Lk near the centerline and'2Lk near the
edge of the wake was found to be an optimal compromise be-
tween sufficient signal-to-noise ratio and a small amount of cor-
rection ~3–5%! due to spatial averaging.

The separation between the individual X hot-wire probes was
estimated from the average of the measured distances between the

3For the plane case the values ofLk were 0.44 mm near the wake centerline (h
.0) and 0.75 mm in the outer part (h.2) of the wake. The corresponding values
for the axisymmetric case were 0.55 and 1.05 mm, respectively.

Fig. 7 Comparisons of the measured intensity components and shear
stress across the plane wake with the data available in the literature
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four pairs of supporting prongs. However, it was also possible to
find an effective probe distance by shifting the statistics measured
with hot-wire configurations shown in Fig. 1~a! and~d!. Figure 9
~top! shows the measured profiles of theu18 andu28 intensities in
the plane wake. By matching the measured profiles one obtains
the effective probe distance as shown in Fig. 9~bottom!. This
method was found to be reliable and the separation distance esti-
mated in this way was always within60.08 mm of the geometri-
cal distance measured between the probes.

Figure 10 shows comparisons between the statistics ofu1,28 and
u1,38 using the probe configurations shown in Fig. 1 and the data
obtained from a pair of two single hot wires. This figure also
includes the statistics foru1,18 obtained by invoking Taylor’s hy-
pothesis. The displayed data were obtained in the axisymmetric
wake and include profiles measured across both sides of the wake.
The agreement achieved between various measurements ofu1,18 is
very good. A similar degree of agreement was obtained foru2,18
and u3,18 using differentX hot-wire configurations~not shown!.
The agreement between the data foru1,28 andu1,38 measured using
a pair of single hot wires and configurations~a! and~b! shown in
Fig. 1 is also good. However, there is some discrepancy in the
data measured with configuration~d! shown in Fig. 1. The same
observations were made in the plane wake, with the exception that
deviations of about 10% were obtained between the measured
data for configurations~b! and~c!. The origin of these deviations
cannot be explained by spatial filtering effects due to the finite
resolution of the hot wires employed. It might be associated with
the phase differences between signals related to the separation
between the wires which cannot be accounted for using the spec-
tral corrections. In general, however, the accuracy can be consid-
ered to be satisfactory.

Figure 11 shows comparisons with the results from Browne
et al. @14# and Ye @18#. Statistics of the streamwise derivatives
from Ye @18# show qualitatively the same behavior but are 5–10%

Fig. 8 Measured and corrected statistics of the velocity derivatives u 1,18 ,
u 3,18 , and u 1,38 at the centerline „x 2 ÕL¶0… and in the outer part „x 2 ÕL
¶1.8À2… of the plane wake

Fig. 9 Determination of an ‘‘effective’’ separation between the
probes from the measured single point statistics using two X
hot wires; profiles before matching „top … and after matching
„bottom …

148 Õ Vol. 124, MARCH 2002 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



higher than the present values. The reason for this can be attrib-
uted to the electronic noise, since Ye@18# used a 3 dBfilter and
computed the derivatives directly from time series sampled at 10
kHz. Browne et al.@14# did not apply any corrections to the mea-
sured data that were sampled at a frequency of 4800 Hz, which
corresponds toDx1 /Lk'3. Measured statistics for the derivatives

in the x2 and x3 directions are in good agreement with the data
from Ye @18#. Deviations from the data measured by Ye are in the
outer part of the wake and most probably originate from uncer-
tainties in the position of the centerline, since she measured only
half of the wake width. It must be mentioned, however, that Ye
@18# did not correct her data for the finite length of the hot wires

Fig. 10 Comparisons of u 1,18 , u 1,28 and u 1,38 measured with hot-wire con-
figurations „a…, „b…, „c…, and „d… shown in Fig. 1 with measurements taken
using a single wire and a pair of single hot wires „denoted N … in the axi-
symmetric wake

Fig. 11 Comparisons of the statistics of all nine derivatives u i ,j8 in the
plane wake with the data of Browne et al. †14‡ and Ye †18‡
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and probe and wire separation effects. The agreement ofu1,28 and
u1,38 with the data of Browne et al.@14# is good. The remaining
statistics for the derivativesu2,28 , u2,38 , u3,28 andu3,38 show signifi-
cant deviations. The reason for this lies in the experimental diffi-
culties associated with derivative measurements. In the next sec-
tion we provide support for our measurements based on rational
arguments.

3.3 Validation of the Assumptions of Local Isotropy and
Local Axisymmetry. The measured statistics of the velocity de-
rivatives were used to check the assumptions of local isotropy and
local axisymmetry. Local isotropy requires

S ]ui

]xk
D S ]uj

]xl
D5

1

2 S ]u1

]x1
D 2

~4d i j dkl2d i l d jk2d j l d ik!, (9)

from which it follows that in such a turbulence the ratiosKi must
be equal to unity:
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, K35

2~]u1 /]x1!2
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,
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~]u1 /]x3!2
, K55
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K75
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~]u3 /]x3!2 . (10)

In a similar way, one can derive the ratiosKai for the case of
locally axisymmetric turbulence~George and Hussein@15#!:

Ka1
5

~]u1 /]x2!2

~]u1 /]x3!2
, Ka2

5
~]u2 /]x1!2

~]u3 /]x1!2
,

Ka3
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~]u2 /]x2!2

~]u3 /]x3!2 ,

Ka4
5

~]u2 /]x3!2

~]u3 /]x2!2
, Ka5

5
3~]u2 /]x2!2

~]u1 /]x1!21~]u2 /]x3!2
. (11)

Figure 12 shows profiles of the individual ratiosK12K8 and
Ka1–Ka5 in the plane wake. According to the results reported in
the literature, the deviations from local isotropy and local axisym-
metry grow with increasing distance from the wake centerline.
Our results show relatively small deviations from local isotropy
near the wake centerline and are in agreement with measurements
of Townsend@6# and Ye @18# but at variance with the results of
Browne et al.@14#. Owing to moderate deviations from local isot-
ropy, the isotropic estimate of the dissipation ratee iso

515v(]u1 /]x1)2, shown in Fig. 13, is about 12% lower than the
true value ofe at the wake centerline.

Figure 12~bottom! suggests that local axisymmetry is a better
approximation than local isotropy. In the inner part of the wake all
ratios andKa1–Ka5 are within experimental accuracy close to
unity. In the outer part of the wake the deviations from local
axisymmetry increase. Figure 13~top! indicates that the axisym-
metric estimates ofe, which may be defined in different ways
owing to the identities~11! ~Rotta @34#!:

eaxi5n@2~]u1 /]x1!212~]u1 /]x2!212~]u2 /]x1!2

18~]u2 /]x2!2#, (12)

or

Fig. 12 Distributions of the isotropic ratios K 1ÀK 8 „top … and
the axisymmetric ratios K a1ÀK a5 „bottom … across the plane
wake

Fig. 13 Comparison of the measured dissipation rate e i i with
its isotropic and axisymmetric approximations in the plane
„top … and axisymmetric „bottom … wake
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eaxi5nF5

3
~]u1 /]x1!212~]u1 /]x3!212~]u2 /]x1!2

1
8

3
~]u2 /]x3!2G , (13)

are in good agreement with the results of direct measurements.
The data for the axisymmetric wake are displayed in Fig. 14.

Deviations from local isotropy and local axisymmetry in the cen-
terline region of the wake are even smaller than in the plane case.
Both isotropic and axisymmetric estimates fore are in very good
agreement with the true value ofe deduced from direct measure-
ments of all nine terms involved ine ~see Fig. 13, bottom!.

We may provide additional support for the results shown in Fig.
12–14 by exploring the results obtained from invariant theory.
Using this theory, Jovanovic´ and Otić@35# derived the exact rela-
tion between the anisotropies of the large and small scales in
axisymmetric turbulence:

ei j 5Aai j , (14)

whereai j andei j are defined as follows:

ai j 5
uiuj

q2 2
1

3
d i j , (15)

ei j 5
e i j

e
2

1

3
d i j , (16)

andA is a scalar function. Equation~14! shows that anisotropy of
turbulence in the dissipation range is directly proportional to the
anisotropy of turbulence at large scales. To quantify anisotropy,
Lumley @36# introduced scalar invariants ofai j :

II5ai j aji , (17)

III 5ai j ajkaki , (18)

to show that these can be interrelated analytically for two-
component turbulence:

II52/912III, (19)

and axisymmetric turbulence:

II5~2/3!@~4/3!uIII u#2/3. (20)

The cross-plot of II versus III constructed from Eqs.~19! and~20!
defines the anisotropy invariant map which bounds all physically
realizable turbulence.

By plotting the experimental data on the anisotropy invariant
map~Fig. 15!, one can clearly observe that, in the inner part of the
wake behind the sphere, turbulence is almost exactly axisymmet-
ric. Also, the data of the plane wake show only moderate devia-
tions from the axisymmetric state. Figure 15 shows that these
results are supported by the DNS data of Moser et al.@37#, who
performed direct numerical simulations of the plane wake flow.
Taking these results into account, it follows from Eq.~14! that the
anisotropy at small scales and therefore ofe i j must vanish near
the wake centerline.

3.4 The Balance of the Energy Equation. The experimen-
tal data were used to compute the budget of the turbulent kinetic
energyk5ukuk/25q2/2. For the two-dimensional wake flow the
transport equation fork is

(21)

The viscous diffusion was neglected in Eq.~21! since it was found
to be much smaller than the other terms involved in the budget of
k.

The convection term was estimated from the self-similarity of

the profiles,q2/US
25q2̃̄(h). Production and diffusion terms were

computed directly from the measured profiles of the mean veloc-
ity, shear stress and triple moments. The pressure diffusion was
deduced from the balance of Eq.~21! by difference.

Fig. 14 Distributions of the isotropic ratios K 1ÀK 8 „top … and
the axisymmetric ratios K a1ÀK a5 „bottom … across the axisym-
metric wake

Fig. 15 Traces of joint variations of the invariants across the
plane wake „top, left-right … and the axisymmetric wake „bottom,
left-right … within the anisotropy-invariant map
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The distributions of all terms involved in the balance of Eq.
~21!, normalized byL/US

3, are shown in Fig. 16~top!. At the wake
centerline convection and turbulent diffusion are balanced by the
dissipation. The pressure-diffusion is small compared with the
other terms. A similar observation was made by Ye@18# and
Browne et al.@14#. The integral constraints for the diffusion terms

E
0

` ]

]h
~q2u2!dh50 and E

0

` ]

]h
~pu2!dh50, (22)

were satisfied within 1.5% and 15%, respectively, relative to the
absolute value of the corresponding integral. One should note that
the pressure-diffusion is small compared with the turbulent diffu-

sion and therefore is strongly influenced by small measuring er-
rors of the terms dominating the balance ofk. For example, the
integral of the pressure-diffusion term tends to zero if the dissipa-
tion rate is underestimated by 2%.

The DNS data of Moser et al.@37#, which are plotted in Fig. 16
~bottom!, show nearly the same trends in the behavior of the in-
dividual terms of the energy balance~21! as our experimental
results. One should note that Moser et al.@37# simulated the time-
developing wake whereas our experimental investigations corre-
spond to the spatially developing wake.

For the axisymmetric wake the energy equation is

(23)

Figure 17 shows the distributions of the individual terms in-
volved in Eq.~23!, normalized byL/US

3. The production ofk is
seen to be much smaller than in the plane case. This observation
and the whole energy balance is in very good agreement with the
data of Uberoi and Freymuth@38#. It should be mentioned, how-
ever, that they computed the diffusion terms directly from the
balance of Eq.~23! and found that these do not satisfy the integral
constraints. An explanation for this might lie in the uncertainty of
the estimated convection term. We encountered a similar problem
and therefore decided to estimate the convection term directly by
computing the streamwise derivative from the measured longitu-
dinal intensity component assuming that the changes of the anisot-
ropy in the streamwise direction are negligible. The turbulent and
pressure diffusion which were obtained by difference from Eq.
~23! satisfy the integral constraints within 1.5% and 6%, respec-
tively. Figure 17 implies that in the axisymmetric wake the pres-
sure diffusion cannot be neglected and follows qualitatively the
suggestion made by Lumley@36#, uip/r'20.2q2ui .

4 Conclusion
Measurements of all first-order spatial derivatives of the instan-

taneous velocity fluctuations in plane and axisymmetric small-
deficit turbulent wakes were performed using a pair of X wires.
Errors due to finite length of the hot wires and due to the wire and
probe spacing effects were analyzed and accounted for in evalua-
tion of the data.

The experimental results were systematically checked and were
found to be consistent with the dynamic equations for the turbu-
lence quantities and also with the data available in the literature.
The assumptions of local isotropy and local axisymmetry were
examined. Both investigated wake flows deviate only moderately
from local isotropy and local axisymmetry.

The assumption of local axisymmetry was found to be a better
approximation than the assumption of local isotropy. The axisym-
metric estimate of the turbulent dissipation rate was found to be a
good approximation for both plane and axisymmetric wake flows.
The results presented demonstrate that the isotropic approxima-
tion of the dissipation rate underestimates the true value ofe be-
tween 10% near the wake centerline and 25% in the outer part of
the plane wake. In the case of the axisymmetric wake the isotropic
dissipation computed by assuming local isotropy gives an excel-
lent estimate in comparison with direct measurements.

The budget of the turbulent kinetic energy was computed from
the data. The individual terms of thek equation show the plausible
distributions with the diffusion terms which satisfy the integral
constraints. While the pressure transport is nearly negligible in the
plane wake, it plays an important role in the axisymmetric wake
and follows closely Lumley’s @36# suggestion, uip/r
'20.2q2ui .

Fig. 16 Budget of the turbulent kinetic energy in the plane
wake: measurements „top …; DNS of Moser et al. †37‡ „bottom …

Fig. 17 Budget of the turbulent kinetic energy in the axisym-
metric wake
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An Investigation of Flow Fields
Over Multi-Element Aerofoils
This paper presents results obtained from a combined experimental and computational
study of the flow field over a multi-element aerofoil with and without an advanced slat.
Detailed measurements of the mean flow and turbulent quantities over a multi-element
aerofoil model in a wind tunnel have been carried out using stationary and flying hot-wire
(FHW) probes. The model configuration which spans the test section~600 mm
3600 mm!, is made of three parts: 1) an advanced (heel-less) slat, 2) a NACA 4412 main
aerofoil and 3) a NACA 4415 flap. The chord lengths of the elements were 38, 250 and 83
mm, respectively. The results were obtained at a chord Reynolds number of 33105 and a
free Mach number of less than 0.1. The variations in the flow field are explained with
reference to three distinct flow field regimes: attached flow, intermittent separated flow,
and separated flow. Initial comparative results are presented for the single main aerofoil
and the main aerofoil with a nondeflected flap at angles of attacks of 5, 10, and 15 deg.
This is followed by the results for the three-element aerofoil with emphasis on the slat
performance at angles of attacka510, 15, 20, and 25 deg. Results are discussed both for
a nondeflected flap~d f50 deg! and a deflected flap~d f525 deg!. The measurements
presented are combined with other related aerofoil measurements to explain the main
interaction of the slat/main aerofoil and main aerofoil/flap both for nondeflected and
deflected flap conditions. These results are linked to numerically calculated variations in
lift and drag coefficients with angle of attack and flap deflection angle.
@DOI: 10.1115/1.1431267#

Keywords: Turbulent Flow, Flying Hot-Wire, Advanced and Conventional Slats, Multi-
Element Aerofoil

1 Introduction
High-lift systems are used on aircraft to provide adequate low

speed performance in terms of approach speed and take-off and
landing field lengths. Leading-edge devices, such as slats and the
Kruger flap, are commonly used to delay stall to higher angles of
attack and consequently increase the maximum lift performance,
Clmax . For aviation purposes, the significant features are the total
~integrated! lift and drag forces. Consequently, there are many
reported direct measurements of the lift and drag coefficients for
two- and three-element aerofoils e.g., Innes et al.@1# and Moens
and Capbern@2#. However, such integrated quantities cannot pro-
vide direct insight into the occurring velocity and pressure fields.
As the primary fluid mechanics feature is the flow field over the
aerofoil, the emphasis of this paper is on the mean and turbulent
flow fields. There are a number of other related investigations.
Two-element configurations have been studied by e.g.@3–5# and
the performance of a conventional slat in high lift systems has
been investigated e.g., Nakayama et al.@6# and Braden et al.@7#.
The slat and flap gap flows have been reported by Savory et al.@8#
and Alemdaruglu@9#. These studies confirm the presence of slat
cove separation, which has some effects on the boundary layer
development over the wing and the mean velocity and turbulence
fields over the main aerofoil, Maddah et al.@10#. The slat cove
separation is minimized for the advanced slat due to its smooth
and heel-less lower surface and it therefore produces less drag
compared to a conventional slat with lower surface discontinuity,
Jones@11#.

The majority of experiments on multi-element aerofoils have
been conducted for attached flow conditions with only limited
data at near stall conditions. Even if there was separation, it was
on the flap at low angles of attack. The work of Braden et al.@7#

appears to be the most detailed and extensive experimental data
set covering attached as well as separated flows both for single
and two-element aerofoils. However, there remains a need for
similar detailed measurements of mean velocity and turbulent
quantities of the flow field over three-element aerofoils with em-
phasis on the effect of the flap and the slat~in particular a heel-
less slat! at low to high angles of attack ranging froma55 to 25
deg. This paper presents results for a single, two-element, and
three-element aerofoil and highlights the variation in the mean
and turbulent quantities as the flow changes from attached flow to
intermittently separated flow and finally to separated flow. The
interpretation from the observed flow phenomena in this investi-
gation is combined with related flow field results and vortex con-
cepts to highlight the varying interaction between upstream/
downstream elements with angles of attack and flap deflection
angle in a high lift system, and the resulting effect on the lift and
drag of multi-element aerofoils.

2 Experimental Arrangement and Test Conditions
The experiments were conducted in a low speed wind tunnel

with a cross section of 600 mm3600 mm located at the Univer-
sity of Bradford. The model configuration spans the test section
and it is made of three parts: 1! an advanced~heel-less! slat, 2! a
NACA 4412 main aerofoil and 3! a NACA 4415 flap. The chord
lengths of the elements were 38, 250 and 83 mm, respectively.
The slat gap and overlap and the flap gap and overlap were set to
0.02%c, 20.025%c, 0.015%c, and 0.04%c, respectively. The
free-stream velocity was 18 m/s and the corresponding Reynolds
number based on the main aerofoil chord length was 33105. By
using extra screens, at the inlet to the wind tunnel, the free stream
turbulence intensity was reduced to 0.4%.

The main experimental technique of the present research was a
flying hot-wire mounted on a precise computer-controlled mecha-
nism. The technique is based on moving the probe along a pre-
scribed path with a large enough velocity to avoid hot wire signal
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rectification associated with stationary hot-wire probes in revers-
ing flow, Bruun@12#. The FHW probe was calibrated in the ‘‘sta-
tionary’’ mode as explained by e.g., Bruun@12# and Maddah@13#.
Temperature effect and calibration drift were minimized by cali-
bration checks before and after test runs.

The installation of the multi-element aerofoil in the wind tun-
nel, and the principle of the mechanical implementation for the
bean shaped curve path used at Bradford University is illustrated
in Fig. 1. Measurements were obtained from a number of points
on the lower part of the probe curve path during a single sweep,
and for the study of the slat and multi-element aerofoil perfor-
mance, 20 evenly spaced points were selected for detailed analy-
sis. Each sweep was repeated 200 times. Using the~X,Y! wind
tunnel aligned coordinate system shown in Fig. 1, ensemble aver-
aging was used to calculate the mean velocity components,Ū and
V̄, and the turbulent quantities,u2, v2, and uv. Using a plated
DANTEC X hot-wire probe, the minimum~safe! distance from
the center of the probe to the aerofoil surface was 2.5 mm. The
minimum mean velocityŪmin discussed in Sections 4 to 6 refers
to this probe path position. The maximum mean velocity obtained
within the measurement region near the front of the main aerofoil
is denoted byŪmax. The attached flow over the nose of the aero-
foil was not included in this investigation. The capability of the
FHW for acquiring high quality experimental data enabled this

technique to be used for cases with or without separation. Details
of Bradford University’s flying hot-wire system are given by
Maddah@13#.

Two-Dimensionality. The flow over the multi-element aero-
foil in the wind tunnel may deviate from two-dimensional flow.
The deviation is associated with the growth of the secondary flows
in the corners formed by the model and the side walls of the wind
tunnel and it will increase directly with angle of attack and flap
deflection angles. Aerofoil models with aspect ratios of about 2 or
less have been used@6,9,14# with consequently significant three-
dimensional effects. For the present investigation, the aspect ratio
for the main aerofoil was;2.5 which resulted in much weaker
three-dimensional effects. Comparative measurement of the mean
velocity profiles at different spanwise locations showed negligible
variation with and without the slat. For the nondeflected flap case
(d f50 deg), the two-dimensionality of the flow was validated for
about 90% of the span. However, for the highly deflected flap
(d f525 deg) cases, in particular fora>20 deg, splitter plates
were used to maintain two-dimensional flow for 80% of the span.

3 The Measurement Matrix and Flow Regime Classi-
fication

The test matrix is shown in Table 1. It includes the two-element
aerofoil ~main aerofoil and the flap! cases and the three-element
aerofoil cases incorporating the advanced slat. Four configurations
are considered for the two-element aerofoil: three cases with the
main aerofoil set at 5, 10, and 15 deg with a nondeflected flap and
one case fora510 deg with a highly deflected flap. The flow field
at each angle of attack, i.e., 5, 10, and 15 deg, is compared with
the corresponding flow field measured by Mahmood et al.@15,16#
for the same single NACA 4412 aerofoil.

The effect of the leading edge slat on the aerofoil flow field is
explained with reference to the three-element aerofoil configura-
tion at angles of attack of 10, 15, 20, and 25 deg, using both a
non-deflected flap (d f50 deg) and two deflection anglesd f510
and 25 deg~see test matrix, Table 1!.

For the description in this paper, the flow over the aerofoils will
be classified as attached flow, intermittent separated flow and
small and large scale separated flow. The notation, attached flow,
is self explanatory. Separated flow is identified as a spatially per-
manent flow region~usually toward the rear part of the main aero-
foil ! with reversed~negative! mean velocities. Intermittent sepa-
rated flow is explained below.

Intermittent Separation. If a small positive streamwise
mean velocity componentŪ and a relatively high turbulence in-
tensity occur near the trailing edge of the main aerofoil, then a
separated flow condition might exist for short periods of time in
this region. For example, with reference to the test matrix in Table
1 for case B5 ~three-element aerofoil ata525 deg andd f
50 deg!, the acquired data for the streamwise component of the
velocity, U, at a point located 90%c from the leading edge of the
main aerofoil demonstrated that no steady reverse flow situations
exist. From corresponding pdf results, it was observed that about
one sixth of the total sampling size correspond to negative values
of U. This can indicate the existence of an intermittent small sepa-

Fig. 1 Four-bar flying hot-wire mechanism, notation, and wind
tunnel measurement coordinate system. The geometry is that
which is used at the University of Bradford: rÄ60 mm, a
Ä160 mm, cÄ146 mm, bÄ468 and 548 mm for old and new
flying arm, respectively.

Table 1 Test configurations

a
Single main

aerofoil

Two-element aerofoil Three-element aerofoil

d f50 deg d f525 deg d f50 deg d f510 deg d f525 deg

5 deg S1 A1
10 deg S2 A2 AD2 B2 C2 D2
15 deg S3 A3 B3 C3 D3
20 deg B4 C4 D4
25 deg B5 C5 D5
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ration bubble which starts to grow and remain attached for a short
period of time before it is swept downstream with the flow in the
streamwise direction, temporarily creating an attached unstable
boundary layer flow in this region. That the separation region was
of a limited axial extent was demonstrated by considering a point
at 60%c from the leading edge of the main aerofoil. The related
acquired data for the same configuration showed no negative
value forU, indicating the limited spatial extent of the intermittent
separation bubble.

Consequently, it is justifiable to suggest that the flow field var-
ies between two extreme conditions: 1! an attached unstable
boundary layer flow and 2! a separation bubble containing re-
versed flow~negativeU values!. These two conditions can be
illustrated by the velocity profile curvesa ~attached! andb ~sepa-
rated! in Fig. 2. A single hot-wire probe placed in the outer part of
the boundary layer at a distancey.yR from the surface where no
negative velocities occur can be used to indicate the existence of
the two flow states corresponding to curvesa andb. ~As a single
normal hot-wire probe cannot detect negative velocities it is im-
portant that it is placed at a distancey greater than the maximum
vertical extentyR of the reverse flow region.! For such a position
the average level of the hot-wire output should change related to
the velocitiesŪ1 andŪ2 as shown in Fig. 3. Measurements were
carried out for a number of probe positions corresponding to this
flow condition, and the expected change in the output voltage
level from E1 to E2 was observed as shown in Fig. 3. These and
similar results demonstrate the existence of the two extreme con-

ditions of 1! an attached unstable boundary layer flow and 2! a
temporal intermittent separation bubble. This flow situation will
be referred to as intermittent separation.

4 Three Distinct Flow Regimes
As described above the flow field over the investigated aerofoil

combinations will be described in terms of three types of flow
regimes. Examples are given below.

4.1 Attached Flow

Single and Two-Element Aerofoils ata55 Deg (Cases S1 and
A1) Mean Velocity. Figures 4~a! and 4~b! show the mean veloc-
ity vectors for the single aerofoil and the two-element aerofoil at
an angle of attack ofa55 deg respectively. In general, the mean
velocity vectors for the single aerofoil, presented in Fig. 4~a!, are
similar to the corresponding velocity field over the main aerofoil
for the two-element case A1, depicted in Fig. 4~b!. These velocity
vector plots for both aerofoils, indicate that the flows are attached
to the model surfaces and there are no signs of separation. For
both configurations, accelerated flows over the leading edge of the
main aerofoil are responsible for creating suction and lift. The
measured maximum velocities in this region reach peak values of
;1.27U` and;1.30U` for the single and the two-element aero-
foil configurations respectively. The velocity deficits in a small
region close to the trailing edge of the main aerofoil are slightly
larger for the single aerofoil~case S1! compared to the two-
element aerofoil~case A1!. Comparing the vector plots for these
configurations, it can be concluded that introduction of the flap
creates higher velocities over the trailing edge of the main aero-
foil, thus slightly enhancing the flow field. The total lift for the
two-element aerofoil is higher than for the single aerofoil due to a
slightly enhanced flow field and the extra area of the flap.

Fig. 2 Velocity profiles for a position near the trailing edge of
the aerofoil containing an intermittent unstable separation
bubble: „i… curve a: velocity profile when the boundary layer is
attached, and „ii … curve b: velocity profile when the flow is
separated. A hot-wire probe placed at position y will detect ve-
locities U1 and U2 corresponding to the two flow states.

Fig. 3 Output signal from a single normal hot-wire probe lo-
cated just outside the edge of an intermittent unstable separa-
tion bubble, demonstrating two quasi-steady flow conditions
corresponding to „1… E1 : an attached unstable boundary layer
flow and „2… E2 : an intermittent separation bubble.

Fig. 4 Mean velocity values for: „a… Single aerofoil at a
Ä5 deg; „b… two-element aerofoil at aÄ5 deg and d fÄ0 deg
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Reynolds Stresses.The values of the Reynolds stresses for
these configurations~S1 and A1! are small. For example, the peak
values of the normalized streamwise Reynolds stresses, (u2/U`

2 )
3103 occurring over the trailing edge of the main aerofoil are of
the order of;1031023 for both the single and the two-element
aerofoils. This corresponds to a local turbulence intensity Tu
'10%. The development of (v2/U`

2 ) and (uv/U`
2 ) exhibits simi-

lar trends with smaller peak values. The small magnitudes of these
stresses are consistent with the mean velocity results indicating
the existence of an attached boundary layer for both cases S1 and
A1.

4.2 Intermittent Separation

Single and Two-Element Aerofoils ata510 Deg (Cases S2 and
A2) Mean Velocity. The mean velocity vectors for the single
aerofoil and the two-element aerofoil at an angle of attack of 10
deg are shown in Figs. 5~a! and 5~b!, respectively. Similar flow
fields are observed for both cases S2 and A2 with high velocities
over the top front and low velocities over the trailing edge of the
main aerofoil. The measured streamwise components of mean ve-
locity reach peak values of;1.38U` and;1.40U` over the front
of the main aerofoil for the single and the two-element aerofoil
respectively. The extent of the low velocity region over the trail-
ing edge of the main aerofoil is larger for the single aerofoil
compared to that of the two-element aerofoil, but the minimum
values of the measured mean velocities are as low as 10% of the
free-stream velocity for both cases. As for the attached flow case,
it can be concluded that the total lift for the two-element aerofoil
with a nondeflected flap is higher than for the single aerofoil.

Reynolds Stresses.The highest values of the normalized
streamwise Reynolds stressu2/U`

2 for the two-element case

reaches;3531023, corresponding to a local turbulence intensity
Tu'20%, located in a region over the trailing edge of the main
aerofoil and the flap. This value is about four times higher than the
corresponding values fora55 deg. The local turbulence intensity
in the low mean velocity region measured closest to the aerofoil
surface exceeds 30% which is consistent with intermittent separa-
tion. Similar trends are observed for the cross normal Reynolds
stressv2 and turbulent shear stressuv with peak values of;15
31023 and ;21631023, respectively. For the single aerofoil
~case S2!, the peak values ofu2/U`

2 are observed over the trailing
edge of the main aerofoil with almost the same magnitudes as the
corresponding values for the two-element aerofoil.

4.3 Separated Flow

4.3a Small Scale Separation

Single and Two-Element Aerofoil ata515 Deg (Cases S3 and
A3) Mean Velocity. The mean velocity vector fields for the
single and the two-element aerofoils at an angle of attacka
515 deg are shown in Fig. 6~a! and 6~b!. The experimental data
for the flow over the two-element aerofoil clearly shows a larger
region of low velocities over the main aerofoil including reversed
flow close to the surface compared to the corresponding mean
velocity field for the single aerofoil~case S3!. The commence-
ment of flow detachment is at 50%c and 35%c from the leading
edge of the main aerofoil for cases S3 and A3, respectively. The
large velocity deficits are seen to persist downstream of the aero-
foil, beyond a distance of a half chord length from the trailing
edge of the main aerofoil for the single case and twice that for the
two-element aerofoil case. For the two-element case, the flap gap
flow is observed to be responsible for a limited improvement in
the velocity field over and beyond the flap.

Fig. 5 Mean velocity values for: „a… Single aerofoil at a
Ä10 deg; „b… two-element aerofoil at aÄ10 deg and d fÄ0 deg

Fig. 6 Mean velocity values for: „a… Single aerofoil at a
Ä15 deg; „b… two-element aerofoil at aÄ15 deg and d fÄ0 deg
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Reynolds Stresses.For the two-element aerofoil at an angle of
attack of 15 deg, the spatial distribution of the turbulence field has
been changed substantially, when compared to the attached flow
case ~e.g., case A1! and to the flow with a small intermittent
separation~e.g., case A2!. The separation bubble causes the free
shear layer~surrounding the separation bubble! to move a sub-
stantial distance in the cross-stream direction away from the two-
element aerofoil surface. Consequently, the viscous-inviscid inter-
action region and the locations of the maximum stresses have also
changed. The normalized stressu2/U`

2 reaches a peak value of
;18031023 corresponding to a local turbulence intensity Tu of
;70%, while the normalizedv2 and uv have increased to;70
31023 and;25531023, respectively. These results are consis-
tent with a region of separated flow.

Similar trends are observed for the peak values of the Reynolds
stresses for the single aerofoil at the same angle of attack of 15
deg. However, the extent of the separated region is smaller and the
peak locations are closer to the aerofoil surface, which is consis-
tent with the corresponding mean velocity results.

4.3b Large Scale Separation„Stall…

Main Aerofoil at a525 Deg Slat at ds515 Deg, Flap at
df525 Deg (Case D5) Mean Velocity.The velocity vectors for
the three-element aerofoil ata525 deg with a flap deflection
angle set to 25 deg are shown in Fig. 7. Almost 80% of the main
aerofoil and the whole flap are stalled. The large region of recir-
culating flow over the main aerofoil and the flap is an indication
of a drastic loss of lift. As shown in Section 5.1b for an intermit-
tent separated flow~case B5! over the three-element aerofoil, the
mean velocityŪ reaches values as high as;1.65U` . However,
for the flow with large scale separation~case D5!, the accelerated
flow over the leading edge of the main aerofoil has been reduced
and the maximum measured mean velocity has dropped to
;1.40U` , which indicates a loss of lift over the leading edge of
the main aerofoil.

Reynolds Stresses.The normalizedu2 and v2 contour plots
for the three-element aerofoil ata525 deg with a highly deflected
flap are shown in Figs. 8~a! and 8~b!. It was found that except for
a spatially much larger separated flow~stall!, and slightly larger
Reynolds stresses the turbulence structure is similar to the small
scale separated flow observed on the two-element aerofoil ata
515 deg with a nondeflected flap, case A3. The normalized
streamwise Reynolds stressu2/U`

2 reaches a peak value of
;22031023 and it occurs towards the front end of the aerofoil.
This large value represents violent axial oscillations of the front
part of the separation bubble. The development ofv2, depicted in
Fig. 8~b! has a maximum value,;8031023 and it is located in

the free shear layer above the rear part of the flap and wake. These
high values represent vertical oscillations of the free shear layer.

5 Three-Element Aerofoil Configurations
This section presents the experimental results for the mean ve-

locity Ū and u2 Reynolds stress for the three-element aerofoil
placed with a slat atds515 deg and the main aerofoil at angles of
attacka of 10, 15, 20, 25 deg. Section 5.1 contains results for the
nondeflected flap (d f50 deg) while results for the deflected flap
at d f525 deg are described in Section 5.2. For the related at-
tached and intermittent separated flow cases, the peak values of
the other two measured Reynolds stressesv2 anduv occurred at
the same locations asu2

max, thus only the results foru2 are pre-
sented. For the separated flow case, e.g., the three-element aero-
foil at an angle of attack ofa525 deg with a highly deflected flap
(d f525 deg), as discussed in section 4.3b, the peak locations of
the Reynolds stresses are different, hence results were presented
for u2 andv2 in Figs. 8~a! and 8~b!.

5.1 Nondeflected Flap,d fÄ0 Deg

5.1a Attached Flow Cases

Main Aerofoil ata510,15, and 20 Deg With a Slat and a Flap
(Cases B2, B3, and B4) Mean Velocity.The vector plot of the
mean velocity for the three-element aerofoil at angles of attack of
a510 deg~case B2!, 15 deg~case B3! and 20 deg~case B4! are
shown in Fig. 9~a!–11~a!. For all three configurations, the flow is
attached. When the angle of attack is increased the maximum
measured velocity over the front of the main aerofoil reaches val-

Fig. 7 Mean velocity vectors for three-element aerofoil at a
Ä25 deg and d fÄ25 deg

Fig. 8 Three-element aerofoil at aÄ25 deg and d fÄ25 deg: „a…
Normalized streamwise normal Reynolds stress „u 2ÕU`

2
…Ã103;

„b… normalized cross-stream normal Reynolds stress „v 2ÕU`
2
…

Ã103
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ues of;1.41U` , ;1.47U` and;1.55U` for configurations B2,
B3, and B4, respectively. The following additional features for
each of these three cases are discussed below:

a510 deg. The introduction of a deflected advanced slat for
the three-element aerofoil ata510 deg, is observed, in general,
to have only a small effect on the flow field compared to the
corresponding two-element flow case A2, except over the trailing
edge of the main aerofoil~Fig. 9~a!!. In this region, small velocity
vectors are found to occur for case A2, as depicted in Fig. 5~b!,
while the corresponding velocity vectors for the three-element
aerofoil case B2 have improved to as high as 50% of the free-
stream velocity. However, overall the lift coefficients for the two-
and three-element aerofoils are very similar as discussed in Sec-
tion 6.

a515 deg. The introduction of a deflected slat ata515 deg, is
seen to enhance the whole flow field compared to the two-element
case A3 and to re-establish large velocity vectors over the multi-
element aerofoil and in the wake, Fig. 10~a!. The difference in the
streamwise component of the mean velocity for this case and for
the one without the slat,Ūwith-slat2Ūwithout-slat , is shown in Fig.
12. It is observed that the slat causes theŪ component of the
mean velocity at the rear of the main aerofoil to recover up to
75% of the free stream velocity with a resulting thin shear layer
and a narrow wake.

a520 deg. The three-element aerofoil ata520 deg is more
heavily loaded and consequently, the velocity deficit over the trail-
ing edge of the main aerofoil and over the flap~see Fig. 11~a!! is
larger than that of the three-element aerofoil ata515 deg with a

nondeflected flap, case B3. At this angle of attack the single and
two-element aerofoils are stalled, while an enhanced lift coeffi-
cient is observed for the three-element aerofoil.

Reynolds Stresses.The contour plot foru2 for the three-
element aerofoil at angles of attack ofa510 deg~case B2!, 15
deg ~case B3! and 20 deg~case B4! are shown in Figs. 9~b!–
11~b!. The normalized streamwise normal Reynolds stress reaches
peak values of;931023, ;1231023 and;2031023 over the
trailing edge of the main aerofoil and the flap for cases B2, B3,
and B4, respectively. Compared to the results without the slat, the
peak value foru2 has decreased significantly from;3531023 at
10 deg and;18031023 at 15 deg. Similar trends were also ob-
served from contour plots ofv2 and uv. These ‘‘slatted’’ results
indicate a thinner attached boundary layer which is consistent
with narrower wakes as observed from the velocity vectors plots,
in Figs. 9~a!–11~a!.

5.1b Intermittent Separation. As the angle of attacka is
increased further, the extent of the low velocity region increases
leading to an intermittent separated flow condition.

Main Aerofoil ata525 Deg With a Slat and a Flap (Case B5)
Mean Velocity. The mean velocity vector plot for the three-
element aerofoil ata525 deg is shown in Fig. 13~a!. Increasing
the angle of attack to 25 deg is seen to have deteriorated the flow
field over the trailing edge of the main aerofoil resulting in a
moderate intermittent separated flow region. However, due to the
general enhancement of the flow field a higher lift is achieved.

Fig. 9 Three-element aerofoil at aÄ10 deg and d fÄ0 deg: „a…
Mean velocity vectors; „b… normalized streamwise normal Rey-
nolds stress „u 2ÕU`

2
…Ã103

Fig. 10 Three-element aerofoil at aÄ15 deg and d fÄ0 deg: „a…
Mean velocity vectors; „b… normalized streamwise normal Rey-
nolds stress „u 2ÕU`

2
…Ã103
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The measured mean velocity over the front of the main aerofoil
reaches a maximum of;1.65U` which is 7% higher than the
corresponding value fora520 deg, case B4.

Reynolds Stresses.Figure 13~b! shows the normalized Rey-
nolds stressesu2 for the three-element aerofoil ata525 deg with
a nondeflected flap. The presence of intermittent separation and
small mean velocities over the rear part of the main aerofoil are
consistent with high values for the Reynolds stresses. The normal-

ized stressu2/U`
2 reaches a peak value of;13031023, corre-

sponding to a local turbulence intensity Tu'55%, which is ap-
proximately three times higher than the corresponding value for
the three-element aerofoil ata520 deg~case B4!. Similar trends
were also observed forv2 and uv. The observed trends in the
mean velocity and Reynolds stresses for the three-element aerofoil
associated with the change of the flow regime from attached flow
(a520 deg) to intermittent separation (a525 deg) are similar to
the changes that occurred for the two-element aerofoil ata
55 deg ~attached flow, case A1! and a510 deg ~intermittent
separation, case A2!.

5.2 Deflected Flap,d fÄ25 Deg

Main Aerofoil ata510,15, and 20 Deg With a Slat and a Flap
(Cases D2, D3, and D4) Mean Velocity.For the three-element
aerofoil at angles of attack ofa510 deg~case D2!, 15 deg~case
D3! and 20 deg~case D4! with a highly deflected flap (d f
525 deg), the flow is attached for cases D2~shown in Fig. 14~a!!
and D3, and is intermittently separated for case D4. Compared to
the nondeflected flap cases~B2, B3, and B4!, setting the flap
deflection to 25 deg creates larger velocities over the main aero-
foil and the flap, resulting in lift enhancement. Consequently, the
measured mean velocity over the front of the main aerofoil
reaches larger peak values of;1.5U` , ;1.55U` , and;1.63U`
for configurations D2, D3, and D4, respectively, compared with
the corresponding results for the nondeflected flap described in
Section 5.1a. The measured minimum velocity over the trailing
edge of the main aerofoil for the deflected flap cases also exhib-
ited higher values than those observed for the corresponding non-
deflected flap cases.

Fig. 11 Three-element aerofoil at aÄ20 deg and d fÄ0 deg: „a…
Mean velocity vectors; „b… normalized streamwise normal Rey-
nolds stress „u 2ÕU`

2
…Ã103

Fig. 12 The difference between streamwise mean velocity
components, Ūwith -slatÀŪwithout -slat , for multi-element aerofoil
at aÄ15 deg and d fÄ0 deg

Fig. 13 Three-element aerofoil at aÄ25 deg and d fÄ0 deg: „a…
Mean velocity vectors; „b… normalized streamwise normal Rey-
nolds stress „u 2ÕU`

2
…Ã103
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The results fora510 and 15 deg are compared with the fol-
lowing two investigations:

a510 deg. The mean velocity field over a three-element aero-
foil incorporating a conventional slat has been reported by Na-
kayama et al.@6# for a510 deg using a smaller flap deflection
angle,d f515 deg. Their results demonstrated a similar trend~as
for case D2 shown in Fig. 14~a!! in both the spatial velocity
distribution and the wake width.

a516 deg. The mean velocity field over a three-element aero-
foil reported by Braden et al.@7# at an angle of attacka
516 deg incorporating a conventional slat with a higher flap de-
flection angle,d f530 deg, demonstrated a similar overall trend
~as for case D3! in the flow field. However, the higher flap deflec-
tion angle and the conventional slat caused a small separated re-
gion commencing at the trailing edge of the main aerofoil and
extending downstream into the wake and this resulted in a wider
wake.

a520 deg. Although, for the three-element aerofoil ata
520 deg, with a highly deflected flap, higher velocities were ob-
served over the trailing edge of the main aerofoil compared to the
corresponding nondeflected flap case, the direction of the flow
indicated that the flow did not follow the surface in this region.
This boundary layer behavior is indicative of an intermittent flow
separation. It was also observed that the flow does not follow the
surface of the flap.

Reynolds Stresses.For the three-element aerofoil at angles of
attack ofa510 deg~case D2!, 15 deg~case D3! and 20 deg~case
D4! with a highly deflected flap (d f525 deg), the normalized
streamwise normal Reynolds stressu2/U`

2 reaches peak values of
;1331023, ;1631023, and;6031023, respectively, over the
trailing edge of the main aerofoil and the flap. The peak value for

u2 has increased significantly for the three-element aerofoil at 20
deg due to the change of the flow regime from attached~case B4!
to intermittently separated flow~case D4!. Similar trends were
also observed from contour plots ofv2 and uv. The results for
a510 deg are compared with the following investigation:

a510 deg. A comparison of theu2 results shown in Fig. 14~b!
with the comparative data reported by Nakayama et al.@6# dem-
onstrates similar trends regarding the spatial distribution of the
turbulence intensity and the width of the shear layer. However, the
peak values of the Reynolds stresses in their experiment are ap-
proximately 60% higher than the corresponding values in the
present research. This is most likely caused by the heel effect of
the conventional slat used.

6 Summary of Aerofoil Measurements
As has been shown, the measured mean and fluctuating velocity

fields have clearly identified three types of flow fields over the
multi-element aerofoil, i.e., attached flow, intermittent separation
over parts of the aerofoil/flap and separated flow including stall.

The following features are particularly helpful in describing the
observed flow fields:

Mean Velocities

~i! The value of the maximum mean velocityŪmax obtained
within the measurement region near the front of the aero-
foil.

~ii ! The measured minimum velocityŪmin close to the surface
of the trailing edge of the main aerofoil, as defined in
section 2.

An increase in both values will correspond to enhanced lift
conditions. In contrast, low values at the rear of the aerofoil would
indicate adverse flow conditions such as intermittent separation.
The corresponding measured values forŪmax andŪmin are plotted
in Figs. 15~a! and 15~b!, respectively, as functions of angle of
attacka and flap deflection angled f .

For the front of the aerofoil, the results forŪmax corresponding
to d f50 deg in Fig. 15~a!, show that the data for the two-element
~A1 and A2! and the three-element aerofoil~B2 to B5! lay on the
same straight line, demonstrating lift enhancement as a function of
a due to the increase inŪ on the front part of the main aerofoil.

For the same flap setting, at the rear of the aerofoil, there is a
major difference between the two-element and the three-element
results ~see Fig. 15~b!!. The two-element results show a rapid
deterioration in the flow field witha, resulting in a separated flow
region whena515 deg. In contrast, for the three-element aerofoil
substantial positive values forŪmin ~;6 m/s! are maintained for
a510– 20 deg, and even at 25 deg,Ūmin is as high as 2 m/s.
Consequently, ford f50 deg the lift will increase witha over the
complete angle range listed. Compared with a single aerofoil, the
flap has the advantage of providing an additional surface area for
creating lift and the utilization of a slat ensures that both the main
aerofoil and the flap contribute positively to the lift by maintain-
ing an attached boundary layer over both.

For a flap deflection angled f525 deg, theŪmax data in Fig.
15~a! demonstrate an enhancement in the velocity field in thea
range 10–20 deg. However fora525 deg, we notice a rapid de-
crease inŪmax and hence in the lift performance. This is consis-
tent with the minimum velocityŪmin at the rear of the aerofoil,
Fig. 15~b!, having values as high as 9 m/s fora510– 17.5 deg
and poor separated flow conditions fora525 deg. Consequently,
the aerofoil will experience an enhanced lift in the rangea510 to
20 deg and a reduction in lift ata525 deg due to virtually stall
conditions.

Turbulent Quantities. The maximum value foru2 @plotted as
(u2/U`

2 )3103# can be used to describe the occurring turbulent
flow fields. From this value the corresponding local turbulence

Fig. 14 Three-element aerofoil at aÄ10 deg and d fÄ25 deg:
„a… Mean velocity vectors; „b… normalized streamwise normal
Reynolds stress „u 2ÕU`

2
…Ã103
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intensity Tu5u8/Ū ~whereu85(u2)1/2 and Ū is the local mean
velocity! could be calculated. If the turbulent flow field has a
Gaussian distribution, a value of Tu.30% would indicate inter-
mittent flow separation.

The change in the flow conditions and related turbulence field
can be summarized using a plot of (umax

2 /U`
2)3103 as a function of

the angle of attacka for four aerofoil conditions: two-element
aerofoil and three multi-element aerofoil conditions withd f50,
10, and 25 deg. These results are shown in Fig. 15~c!.

From the Turbulence Results in Fig. 15(c), it was found in gen-
eral:

~i! Whenumax
2 /U`

2,4031023, the corresponding local turbu-
lence intensity Tu,30% and the flow over the aerofoil would be
attached. It is observed that these conditions apply to the configu-
rations A1, B2-B4, C2-C4, and D2-D3.

~ii ! When umax
2 /U`

2;(40– 60)31023, then small scale inter-
mittent separation occurred~flow cases S2, A2 and D4!. This was
observed to correspond to a relatively small intermittent separa-
tion region towards the trailing edge of the main aerofoil. As the
value of umax

2 increases, the extent of the intermittent separation
region grows, the longitudinal oscillations become more violent
andu2/U`

2 reaches values of 130–140~cases B5 and C5!.

~iii ! When the value of normalizedumax
2 reaches values of 180

31023 ~case A4!, then the flow is separated with a permanent
region of reversed flow. Forumax

2 values larger than this~case D5!,
the main aerofoil is, for all practical purposes, stalled.

7 General Discussion and Conclusion
The observed flow fields described in this paper can be related

to the interaction between the slat/main aerofoil and the main
aerofoil/flap and the consequent variations in the lift and drag. In
aerofoil theory it has been common practice to describe the circu-
lation and related lift of an aerofoil according to vortex theory. It
is therefore useful to replace the flap and slat with vortices as
shown in Figs. 16~a! and 16~b! and to consider the change in the
circulation and hence in the velocity fields for the interacting slat/
main aerofoil or main aerofoil/flap. Using a fixed aerofoil configu-
ration and a fixed angle of attacka, Smith @17# has used this
vortex concept to explain the upstream/downstream element inter-
action. However no explanation, based on vortices, has been pre-
sented for the variation of this interaction witha andd f .

First, the effect of a flap on the flow field over the main aerofoil
will be considered. Then the effect of the flap deflection angle is
ascertained. Finally, an explanation for the slat effect is provided.

Flap. The simulation of the flap by a clockwise vortex as
shown in Fig. 16~a!, will create a stronger circulation over the
main aerofoil which will attempt to create higher velocities over
its top surface. The following observations can be made from this
figure:

1. Using a flap will attempt to increase the velocity over the
whole of the upper surface of the main aerofoil;

Fig. 15 „a… Maximum mean velocity over the top front of the
main aerofoil for four aerofoil configurations: Three-element
aerofoil, aÄ10, 15, 20, 25 deg: series 1: l, d fÄ0 deg; series 2:
j, d fÄ10 deg, series 3: m, d fÄ25 deg. Series 4: Ã, Two-element
aerofoil, aÄ5, 10, 15, and d fÄ0 deg. „b… Minimum mean veloc-
ity over the trailing edge of the main aerofoil for four aerofoil
configurations: „legend as in Fig. 15 „a……. „c… „u 2

max ÕU `
2
… as a

function of angle of attack for four aerofoil configurations: „leg-
end as in Fig. 15 „a……

Fig. 16 Representation of the flap and slat by vortices: „a…
Flap representation; „b… slat representation
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2 The increase in the velocity is largest over the leading edge
of the main aerofoil.

For attached flow, the first trend is consistent with our compara-
tive experimental results for the mean velocity field over a single
aerofoil and two-element aerofoil~with a nondeflected flap!. For
example, this effect can be observed from a comparison of the
flow field over the single aerofoil~case S1! and over the two-
element aerofoil~case A1! at an angle of attack ofa55 deg. This
demonstrates an enhanced flow field for the two-element case.

The second effect causes the front of the main aerofoil to be
more heavily loaded. This effect works against the attachment of
the flow, and causes the pressure distribution over the main aero-
foil to deteriorate in terms of a more unfavorable pressure gradient
dp/dx. As a is increased and the aerofoil becomes more heavily
loaded~higher velocities on the front!, the unfavourable pressure
gradient will increase faster than for the single aerofoil, resulting
in an earlier separation at the rear of the aerofoil. This is demon-
strated by the results fora515 deg.

Flap Deflection. The above concepts also apply to the de-
flected flap. Provided that the flow remains attached then the sec-
ond effect will be dominant when the flap is deflected. The de-
flection of the flap increases the strength of the assumed vortex,
thereby creating higher velocities~particularly at the front of the
aerofoil!, a general enhancement of the flow field and an increase
in the lift.

On the other hand, if prior to the flap being deflected, a de-
tached boundary layer or an intermittent separated flow,~however
small in size! exists, then the case of the deflected flap will have a
worse flow field than the situation with a nondeflected flap. The
already unfavorable pressure distribution over the top surface of
the main aerofoil will deteriorate further when the flap is de-
flected, causing a larger low velocity/reverse flow region. For ex-
ample, the intermittently separated flow field for the three-element
aerofoil ata525 deg with a nondeflected flap~case B5! will de-
teriorate by setting the flap deflection angle to 25 deg~case D5!,
thus causing a large scale separated flow~stall! and a loss of lift.

Therefore, as long as the flow can cope with the change in the
pressure distribution over the aerofoil surface, the flow will re-
main attached and the deflected flap will enhance the flow field.

When the flow over the main aerofoil starts to deteriorate due to
the stronger adverse pressure gradient, then a pressure modifier is
needed to restore the pressure distribution, particularly over the
nose of the main aerofoil and to smooth the pressure rise in the
streamwise direction. This pressure modifier can be a slat and its
main effect is explained in the following section.

Slat. As pointed out by Smith@17#, a common misconception
of the working principle of the slat is that it blows high energy
flow into the boundary layer. However, to a large extent the slat
has the opposite effect. The effect of the slat can be demonstrated
by simulating it using a clockwise vortex as shown in Fig. 16~b!.
The resulting pressure distribution over the main aerofoil and the
related lift are functions of the strength of this vortex which is
itself a function of: Slat deflection angle, slat gap, slat overlap and
slat shape. From Fig. 16~b! it is observed that the direction of the
circulation over the slat~as represented by the vortex! and over
the main aerofoil are in opposite directions in the gap region be-
tween the slat and the main aerofoil. This causes lower velocities
over the leading edge of the main aerofoil and hence less suction
and a consequent reduction in local lift. The effect of the slat on
the pressure distribution is shown in Fig. 17 for an aerofoil ata
510 deg with and without a deflected slat, Savory et al.@8#. This
figures demonstrates three effects:

1 That the slat causes a substantial reduction in the pressure
suction and hence in the velocities over the nose of the aero-
foil.

2 More importantly, that the pressure recovery on the top front

of the aerofoil is much smoother for the slatted aerofoil,
causing a much more favorable boundary layer on the top
front of the aerofoil.

3 As a consequence, the pressure gradientdp/dx is reduced
considerably for the slatted aerofoil, enabling attached flow
to be maintained for much larger angles of attack than for the
single aerofoil.

This is consistent with the measured higher mean velocities in
the rear part of the aerofoil for the slatted case and it can be
clearly observed from the comparison of the mean velocity results
for the two- and three-element aerofoil at an angle of attack of
a510 deg, shown in Figs. 5~b! and 9~a!, respectively.

Lift and Drag. In the current experiment it was not possible to
directly measure the lift and drag and thereby evaluate the corre-
sponding lift and drag coefficientsCl andCd .

However, there is sufficient evidence to demonstrate that, pro-
vided the flow is attached, then current CFD codes will produce
adequate solutions of the mean velocity field and pressure distri-
bution. By integrating the pressure distribution the corresponding
Cl andCd coefficients can be derived.

As described in Maddah@13# such a numerical calculation was
carried out using the CFX code, for two-element and three-
element aerofoils to demonstrate the variation inCl andCd with a
in the range 10 to 25 deg andd f50, 10, and 25 deg. The experi-
mental results in this investigation, have shown that the flow is
attached for cases B2-B4 and D2-D3, and intermittently separated
for cases B5 and D4. Separated flow was identified for case D5
and hence the numerical prediction for this case is significantly
less accurate.

Prior to stall occurring for any of the investigated aerofoil con-
figurations (a,15 deg), the lift for the single- and the two- and
three-element aerofoils with a nondeflected flap is almost the
same. This can be explained by considering the interaction of
upstream and downstream elements. The circulation increases on
the upstream element, while the circulation decreases on the
downstream element. Thus, adding a nondeflected flap increases
the circulation over the main aerofoil, while the circulation around
the flap is decreased, thus, the overall effect is a slight increase in
Cl . In addition, there is a considerable increase in the lift due to
the extra area provided by the flap. Adding a slat to the single
aerofoil, results in higher circulation over the slat and the unload-
ing of the front of the main aerofoil. The overall effect is a slight

Fig. 17 Pressure distribution for aerofoils at aÄ10 deg: „a…
Aerofoil with retracted slat and flap; „b… three-element aerofoil
with extended and deflected slat and flap „from Savory et al.
†8‡…
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decrease inCl . For the three-element aerofoil, the overall effect
on the main aerofoil is a balance between the increase and de-
crease in circulation due to the flap and slat, respectively, resulting
in values forCl similar to those observed with the single aerofoil.
Figure 18~a! shows that for the nondeflected flap case,Cl in-
creases linearly toa525 deg, and the experimental results con-
firmed that the flow remained attached for all values ofa in this
range. The delay in the stall angle is caused by the presence of the
slat producing a benificial pressure modification on the main aero-
foil. The variation of Cl for the three-element aerofoil with a
deflected flap, is similar to the three-element aerofoil with a non-
deflected flap, but with a shift inCl at each angle of attack due to
the strong circulation effect of the deflected flap on the main aero-
foil. However, as the aerofoil is more heavily loaded, the flow
field was observed to have deteriorated, with stall occurring ata
525 deg and a resulting loss in lift.

The drag for a multi-element aerofoil is different from the drag
for a single element aerofoil. In multi-element aerofoil flows the
flap and slat are usually extended and often deflected. The de-
flected leading and trailing edge devices cause a considerable in-
crease in the drag. Consequently, the resulting drag for a multi-
element aerofoil, even at low angles of attack, will be higher than
the corresponding value for a single element aerofoil as has been
reported by several researchers. Deflecting the flap will increase
Cd as shown in Fig. 18~b!.
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Nomenclature

A1 to
A3 5 two-element aerofoil configurations with a non-

deflected flap
B2 to

B5 5 three-element aerofoil configurations with a non-
deflected flap

c 5 chord length of the main aerofoil
Cd 5 drag coefficient
Cl 5 lift coefficient
Cp 5 pressure coefficient

D2 to
D5 5 three-element aerofoil configurations with a highly

deflected flap
dp/dx 5 streamwise pressure gradient
E1 ,E2 5 output voltage of anemometer
S1 to

S3 5 single aerofoil configurations
Ū 5 streamwise mean velocity component

Ūmax 5 maximum measured streamwise mean velocity com-
ponent

Ūmin 5 minimum measured streamwise mean velocity com-
ponent

Tu 5 turbulence intensity defined asu8/Ū5Au2/Ū
U` 5 mean free stream velocity
u2 5 streamwise normal Reynolds stress
uv 5 Reynolds shear stress
v2 5 cross-stream normal Reynolds stress
y 5 cross-stream distance

yR 5 cross-stream extent of reversed flow region
a 5 angle of attack

d f 5 flap deflection angle
ds 5 slat deflection angle

Appendix 1-Experimental Uncertainty
The FHW traveling mechanism enabled the location of the lon-

gitudinal and vertical positions with an accuracy of60.1 mm.
Overall, taking the stiffness of the FHW system into account the
accuracy of the absolute spatial resolution of each point was esti-
mated to be within60.25 mm.
The output from a hot-wire sensor is a time varying signal typi-
cally representing a velocity component. For a turbulent flow the
anemometer signal will be of a random nature. When using digital
data analysis, the continuous signal is replaced by a digital finite
time record. Thus, errors are introduced by a time series analysis
of a finite time history record.

The uncertainty in the evaluated velocity quantitiesŪ and u2

can be estimated as

UC

Ū
516Za/2«~UC !

and

u2C

Ū
516Za/2«~u2C !

whereZa/2 is the standardized variable used in the Gaussian prob-
ability distribution described by Bruun@12#. For N independent
samples, we have

«~UC !5
1

AN

~u2!1/2

Ū
and «~u2C !5

1

AN

In the present study, the FHW data was evaluated forN5200
statistically independent sweeps with a 10 s dormant period be-
tween each sweep.

Fig. 18 Numerical prediction of: „a… Coefficient of lift Cl for
three aerofoil configurations: Three-element aerofoil, aÄ10, 15,
20, 25 deg: series 1: l, d fÄ0 deg; series 2: j, d fÄ25 deg; se-
ries 3: m, Two-element aerofoil, aÄ5, 10, 15, and d fÄ0 deg; „b…
coefficient of drag Cd for three aerofoil configurations: „legend
as in a…
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For all flow cases a large proportion of the flow field has low/
moderate turbulence intensity. For illustrative purposes consider
flow regimes with a maximum turbulence intensity of 20%~this is
the case everywhere except near or inside a separated flow re-
gion!.

SpecifyingZa/252.33 for a 98% confidence level, it therefore
follows that

UC

Ū
5162.33

1

A200
0.25163%

u2C

u2 5162.33
1

A200
51616%
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Study of Wake-Blade Interactions
in a Transonic Compressor Using
Flow Visualization and DPIV
Flow-field interactions are studied in a high-through-flow, axial-flow transonic compres-
sor using Digital Particle Image Velocimetry (DPIV). Measurement of instantaneous ve-
locities in two-dimensional (2D) planes in the main flow direction allows characterization
of the unsteadiness of spatial structures from an upstream blade row and their interaction
with the downstream rotor. The measurement system is specially designed for a large
transonic environment, which introduces conditions that differ from those generally en-
countered by traditional DPIV systems. Viewing windows on the compressor housing are
used to allow optical access, and the design of a special optical probe permits laser-sheet
delivery through one of the wake generators (WG). The system is synchronized with the
blade passage and is remotely monitored and controlled. Through flow visualization and
instantaneous and ensemble-averaged quantities, it clearly captures the interactions of
the wake with the potential field of the rotor leading edge (LE) and its bow shock, vortex
shedding, vortex-blade synchronization, wake chopping, and boundary-layer flow at the
housing for several configurations.@DOI: 10.1115/1.1429638#

1 Introduction
Turbomachines are typically designed with closely spaced and

heavily loaded blade rows to reduce weight; as a result, blade-
row/wake interactions are a common source of unsteady aerody-
namic excitation. Often-observed unsteady phenomena such as
shock-vortex and shock-surface interactions produce nonunifor-
mities and irregular flow patterns that result in blade-row vibra-
tions and high-cycle blade fatigue and influence compressor
performance.

A variety of design tools for rotating machinery are currently in
use. Some are based on steady Navier-Stokes analysis, with un-
steady interactions between blade rows being modeled as ‘‘deter-
ministic stresses.’’ Others simulate the time-resolved flow field
and analyze the time-averaged solution to avoid problems associ-
ated with models for the deterministic stresses. Experimental re-
sults for validating these design tools are needed for capturing
unsteady flow effects; however, such results are limited. These
results would also aid the understanding of the physical phenom-
ena and interaction processes involved in turbomachinery. An ex-
perimental technique for capturing the instantaneous nature of un-
steady flow structures is needed.

Advanced laser-based diagnostic techniques are very useful for
providing quantitative evidence of unsteady effects on the blade-
passage scale and identifying the relative importance of the length
and time scales of unsteady-flow phenomena in turbomachinery.
Two pointwise velocimetry techniques that have been applied to
compressor research are Laser Transit Anemometry~LTA ! ~Cal-
vert et al. @1#! and Laser Doppler Velocimetry~LDV ! ~Stratizar
et al. @2#!. However, issues associated with low data rates~long
run times!, slow mapping due to the pointwise nature of these
techniques, and measurement uncertainties associated with un-
steady flow fields make these methods difficult to apply outside
the basic-research environment. Recent advances in Particle Im-
age Velocimetry~PIV! have allowed researchers to extend this
technique to turbomachinery flow fields. This method has been
demonstrated in transonic compressors and used for accurate mea-

surements of instantaneous velocity fields~Balzani et al.@3#; Es-
tevadeordal et al.@4#; Sanders et al.@5#; Wernet @6#!. Two-color
digital PIV ~DPIV! has also been developed and implemented for
turbomachinery flows~Estevadeordal et al.@4,7#!. The advantages
of PIV as a diagnostic tool are associated with its instantaneous
nature and two-dimensionality~in its simplest form!. However, it
cannot provide temporal evolution of the flow field because of the
relatively slow repetition rate of the lasers. Therefore, statistical
analysis of flow fields and calculation of quantities such as turbu-
lence intensity must be done carefully.

In the present study a system was developed to obtain high-
resolution velocity data from a high-through-flow, axial-flow tran-
sonic compressor~Law and Wadia@8#! located in the Compressor
Aerodynamic Research Laboratory~CARL! at Wright-Patterson
AFB ~Fig. 1!. The transonic environment introduces conditions
that differ from those generally encountered by traditional DPIV
systems, including vibrations, high flow and rotational speeds,
high temperatures, compressibility, and shock systems. The DPIV
measurement system consists of two Nd:YAG lasers, transmitting
and receiving optics, seed particles, camera, and a synchronization
setup. The sytem is remotely monitored and controlled.

The main goals of this investigation were to evaluate and de-
velop a DPIV system for turbomachinery studies that could be
used to identify and investigate the flow structures from wake
generators, the wake-blade interaction, and the wake-shock inter-
action in transonic-compressor rotors. The interactions of the
wake with the potential field of the rotor LE are captured using
flow visualizations and instantaneous and ensemble averages for
various configurations. The data also characterize the bow shock,
wake chopping, and the boundary layer near the compressor
case.

2 Stage-Matching-Investigation„SMI … Rig
The SMI rig is a high-speed, highly loaded compressor consist-

ing of three blade rows--a wake generator, a rotor, and a stator
~Fig. 2!. The rig was designed such that the wake generator-to-
rotor axial spacing can be set to three values, denoted by ‘‘close,’’
‘‘mid,’’ and ‘‘far’’ ~Gorrell et al. @9#!, as shown in Fig. 2. The
spacings normalized by the WG chord are given in Table 1. This
DPIV study concentrates on WG blade counts of 24 and 40, close
and mid spacings, and no stator.
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The WGs were designed to produce wakes typical of modern,
highly loaded, low-aspect-ratio, front-stage compressor stators. To
simplify the experiment, the WGs were designed as uncambered
airfoils that do not turn the flow. Results from measurements of
stator wakes from rig tests were used as the design target~Creason
and Baghdadi@10#!. These wakes were produced in a stator that
had no bow or sweep, with a hub Mach number of 0.95, a hub
D-Factor of 0.55, and a solidity of 1.64. For simplicity and for
isolating the effects of various wake parameters, a 2D representa-
tion of the wake was desired. The airfoils have a small LE radius
and a relatively blunt trailing-edge~TE! radius, as shown in Fig.
3. In the design process this produced the optimum combination

of profile and base drag for matching the desired highly loaded
stator wake. Since the wake width and loss are strong functions of
solidity, the solidity of the WGs was held constant from hub to tip,
resulting in a tapered airfoil-chord along the radius, as seen in the
figure. Also, the ratio of WG chord to the gap between the WG TE
and rotor LE was designed to be constant from hub to tip for the
mid-spacing configuration. This required that the WG TE be
swept from hub to tip. However, slight variations in the ratio of
axial separation to WG chord occur across the span for close and
far spacing. With no diffusion in the flow path, the end-wall losses
were expected to be low. There is neither clearance and nor fillet
at either the hub or the tip.

Fig. 1 Flow path of the 2000-hp Compressor Aerodynamic Research Laboratory facility „CARL … and locations for
global and local seeding

Fig. 2 Cross section of Stage-Matching-Investigation „SMI… rig in general configuration
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The rotor and stator were designed at the CARL facility~Law
and Wennerstrom@11#!. A compressor map of the stage and rotor
pressure ratios for 40 WG configurations is shown in Fig. 4.
A summary of the aerodynamic design parameters is given in
Table 2.

3 DPIV Sytem
A DPIV system was developed for the present investigation.

Figure 5 contains photographs of the system at the rig section, and
Fig. 6 contains schematics of the optical sytem. Two frequency-
doubled Nd:YAG lasers are used for instantaneous marking of the
seed particles in the flow field. Combined by a polarizing cube,
the beams are directed through sheet-forming optics and illumi-
nate the test section with a 2D plane of thickness,1 mm. The
scattering from the seed particles is recorded on a ES1.0 Kodak
CCD sensor (100831012 pixels). The camera maximum repeti-
tion rate is 15 double exposures per second, and the rate was set to
10 Hz for synchronization with the laser repetition rate. The time
delay between the two lasers can be varied, depending on the
magnification and the flow speed, to,1 ms. A 105-mm Nikon
lens was used. Typical magnifications for the present experiments
ranged from;20 to;50 pixels/mm, which corresponds to view-
ing widths ranging from;50 to ;20 mm, respectively.

Once the PIV image has been captured and digitized, the veloc-
ity field is obtained using cross-correlation techniques. The corre-
lation function is calculated over small segments~interrogation
domains! of the PIV image. The dimensions of each interrogation
domain are dependent on particle density, estimated local velocity
gradients, particle-image size, and desired spatial resolution. For
the present study, the interrogation domain measured 64364 pix-
els; this window yielded to areas ranging from 4.5 mm2 ~40 WG/
Close-spacing! to 6 mm2 ~24 WG/Mid-spacing! in the measured
flow. The interrogation domains are overlapped by three-quarters
the domain size. This implies the use of redundant information but
yields to more vectors in the overall velocity field. The peak of the
correlation map corresponds to the average velocity displacement

Fig. 3 WG meridional profile with cross sections „flow from
left to right …

Fig. 4 Stage and rotor pressure ratios for 40 WG configura-
tions

Fig. 5 Detail of DPIV system and rig „a…; prototype of WG and
laser-sheet delivery system „b…; laser-sheet delivery and receiv-
ing window „c…

Table 1 WG axial spacing „normalized by local WG chord …

Table 2 SMI aerodynamic design parameters
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within the interrogation spot. An intensity-weighted peak-
searching routine is used to determine the exact location of the
peak to sub-pixel accuracy.

Laser-Sheet Delivery and Receiving. A compact laser-sheet
delivery system was designed, and the prototype is shown in Fig.
5~b!. This system consists of an enlarged WG, light-sheet-forming
optics, prisms, and probe holders for mounting the optics and for
protecting them from contaminated seed materials. The Nd:YAG-
laser-beam input and the laser-sheet output are also shown. The
outside diameter of the probe is 12.7 mm. The modified WG is
located two WGs below the WG that is centered at the receiving
window. Three receiving windows made of Pyrex substitute the
portion of the compressor case of interest and accommodate the
three WG-rotor spacings. Figure 5~c! shows the location of the
window and the laser-beam input. The optical path from the laser
room to the CARL test rig was;8 m long and was fully covered
to avoid exposure. The prisms were covered by specially designed
boxes that were connected through 50.8-mm-diameter pipes and
isolated from the floor vibrations by gaskets and vibration isola-
tors. Figure 6 contains schematics of the path for the laser system.
The portion of the path that directs the beam to the rotor rig is
covered by a smaller diameter pipe that matches the diameter of
the WG probe.

Although the path was relatively long, the laser power required
for laser-sheet illumination was very low (;10 mJ/pulse) because
the optical losses were minimal. The regions of interest in the
present experiments had areas from;175 mm2 ~close-spacing! to
;750 mm2 ~mid-spacing!. The F stop was 5.6 for these experi-
ments. This allowed us to use low laser power which is important
for the safety of the lenses in the optical probe when the beam
begins to focus.

The combined beam enters the rotor housing perpendicularly
through the center of the WG optical probe. The beam is then
turned 90 degrees inside the WG by a prism and directed to a
spherical lens and a cylindrical lens to form a laser sheet. A prism
at the tip of the probe turns the laser sheet 90 degrees and exits the
probe normal to the spanwise~radial! direction. The shape of the
laser sheet~thickness, width, focal distance! can be altered
through various combinations of the spherical-lens focal length,
the cylindrical-lens diameter, and the distance between them in-
side the WG as well as through external optics~e.g., a spherical
lens! located in the laser path. The spanwise location of the laser
sheet can be changed by rotating the probe. The length of probe
that is outside the WG can also be changed to provide further
flexibility for moving the laser-sheet streamwise. This probe
movement is possible by loosening two screws accessible from
outside the housing that hold the probe tight inside the WG. The
probe was set manually before each experiment. A device for
remote control of the probe motion to allow changes within the
experiment is currently being designed. Future modifications will
also include remote control of the last prism of the probe to permit
further changes in the streamwise laser-sheet extent. This will
allow, for example, more illumination between the blades.

The ES1.0 camera was aligned and focused on the laser sheet
prior to each run and was set in a tripod to minimize the effect of
rig vibrations. Mounting the camera on the rig was not desirable;
even though the rig vibration frequency does not affect the ‘‘in-
stantaneous’’ laser pulses, it could eventually loosen the camera
supports or even damage the camera. Remote control of the cam-
era position and focus is desirable for full utilization of the sys-
tem. To account for motion of the camera with respect to the laser
sheet that might occur for unknown reasons, the camera in the
present experiments was set in a translation stage that was re-
motely controlled to allow small corrections. Large changes in the
camera location with respect to the laser sheet would produce
magnification changes that would have to be taken into account.
After each experiment the laser-sheet and camera locations were
verified for possible misplacements. The present experiments did
not require major changes.

The rotor one-per-revolution signal was used for triggering the
synchronization system. A digital pulse generator~Stanford
DG535! and an ES1.0 camera interface~ISSI PIV2000! were
used. Programming and operation of the camera frame-grabber
~National Instruments PCI-1424! and the delay generator were
accomplished using drivers that were specially written for the Na-
tional Instruments LabWindows/CVI development language; this
facilitated integration with the DPIV analysis software~ISSI!
which was also written in this environment.

In addition, the experiments were monitored and recorded
throughout with a video camera to allow continuous recording and
surveillance of the system and flow.

Seeding. For seeding a high-through-flow facility efficiently,
a seeder must be capable of supplying a large number of particles
that are both small flow tracers and efficient light scatterers. Ag-
glomeration must be avoided, and assurance of uniform distribu-
tion is important. Also flammability and exposure limits should be
considered in seeder techniques, as well as cost and availability.

Several options for seeding the high-flow CARL facility
(;14 kg/s) were evaluated, including the use of various seeding
units and seed materials. Both local and global seeding were con-
sidered. The seed material used in the low-speed automotive-
cooling fan by Estevadeordal et al.@7# was sub-micron-size

Fig. 6 Schematics of optical path „a… and flow features at scale
„b… with DPIV delivery and receiving optics
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smoke particles generated from a glycerin and water mixture. This
system also produced sufficient seed particles during its use in the
CARL facility when introduced at the end of the settling chamber,
before the contraction, and at the height of the receiving window
~Fig. 1!. The machine can be remotely controlled. The seed ma-
terial was introduced through a 50.4-mm-diameter port located
under the contraction entrance through a 50.4-mm pipe. Because
of the location of the port~away from the window!, the pipe had
to be first directed to the chamber center radially and then turned
90 degrees radially to match the window height. The end of the
pipe was perforated with holes of increasing diameter toward the
end, with a honeycomb and screen for optimal uniformity and
spreading of seed. Calculations based on the flow speed at the
beginning of the contraction~which is the area of maximum di-
ameter and minimum speed!, the distance from the test area, and
the pipe diameter were performed to confirm that the wake behind
the pipe was exerting negligible perturbation on the flow.

Global seeding techniques based on particles such as alumina
powder~Al2O3! and polystyrene latex~PSL! microspheres~Wer-
net @6#! are under development. The system consists of a pressur-
ized tank with an ethanol and particle mixture, compressed air,
and six spray nozzles. Atomization of the mixture releases par-
ticles as ethanol evaporates. The system, tested with PSL micro-
spheres, was located upstream of the settling chamber~Fig. 1! in a
specially machined flange that allows the spray nozzles to be
mounted externally rather than inside the plenum~to minimize
interference with the flow!. Only the tip of the nozzles enters the
plenum, and the injection is perpendicular. Optimal atomization
for seeding can be accomplished by changing various settings to
produce the smallest possible droplets, maximum fluid injection,
and maximum PSL concentration. Although sufficient for LDV
~where these systems have been used successfully!, the amount of
seed was insufficient for PIV in preliminary tests. This low seed
level at the test section was attributed to the nature of the facility.
First, the settling chamber has many smoothing devices~tube
bundles, hollowed plates, honeycombs, and screens! that can pre-
vent the PSL material from reaching the test area. Second, the PSL
seed experiments were performed during the hot summer season
when humidity was very high, which reduces ethanol evaporation
and its positive effects. Other systems for global seeding~e.g.,
smoke machines upstream of the settling chamber! are also under
investigation.

4 Results
To characterize the unsteady flow field between the WGs and

the rotor blades, the instantaneous velocity field in the present
experiments was measured at two spanwise locations~75% and
90% span!, for two WG counts~24 and 40!, and at two axial
spacings~‘‘close’’ and ‘‘mid’’ ! over one rotor-blade period. Blade
period refers to the one-per-revolution period divided by the num-
ber of blades~33!. Since the mass flow for the 24- and 40-WG
configurations in the present experiments was not matched, the
two cases will be treated independently. Data presented here were
acquired at 100% corrected speed (;13000 rpm), which corre-
sponds to a blade period of;140ms. The synchronization system
allows study of the blade passage in front of the WG, and specific
features such as vortex-blade interaction and wake chopping can
be characterized as a function of blade location. Figure 6~b! is a
schematic of the flow-field features and the DPIV system at the
window area. Figure 7 is a schematic of the WGs, the blade pas-
sage, and the laser-sheet relative locations for the 40-WG configu-
ration. Results are discussed in terms of flow visualization and
DPIV data.

Flow Visualization. Flow visualization often provides the
first insight into the flow features. As designed, the present DPIV
system allows flow visualization in the interior of the transonic
compressor. For purposes of visualization, the amount of seeding
can be controlled to permit the marking of flow features such as
vortical structures and wake traces.

The flow behind the WG is depicted for the 24- and 40-WG
configurations for various blade positions at 20-msec intervals in
Figs. 8 and 9, respectively. The scale is;1:1 in most of the
figures presented here and emphasizes the actual size of the wake.
Because of the tilted laser sheet and the rotor curvature~Fig. 7!,
the spanwise location of the images varies as a function of image
height. This effect is less pronounced in the ‘‘75%-span’’ configu-
ration than in the ‘‘90%-span’’ configuration. In the latter, the laser
sheet is at 90% span at the position of the WG TE and at 100%
span as it intersects the viewing window. This allowed boundary-
layer data to be obtained in the ‘‘90%-span’’ configuration.

At 75% span~~a,c! in Figs. 8 and 9!, vortex shedding can be
tracked as a function of blade passage. For ease in following the
vortices, the letter ‘‘a’’ indicates one of the vortices as it is con-
vected dowstream. The vortices can be seen forming at the WG
TE, growing as they are convected downstream, and eventually
colliding with the blade LE. It can be observed in these figures
that in these 75%-span cases, one vortex interacts with the blade
LE and the next is convected downstream between the blades; this
process is repeated for every pair of vortices shed from the WG
TE. The images depict approximately a half period of the blade
passage and show the wake-blade interaction. The other half pe-
riod is of no interest here because it shows only the convection of
the second vortex through the blades and does not show the blade
LE in the viewing window. At the 24-WG count~Fig. 8~a,c!!, the
vortex interacting with the blade LE does not receive a direct hit,
whereas at the 40-WG count~Fig. 9 ~a,c!! that vortex is always
destroyed. Thus, in the present experiments, wake chopping oc-
curs by the wake braids in the 24-WG cases and by the vortex in
the 40-WG cases. A pair of vortices in the 24-WG cases and a
single vortex in the 40-WG cases pass between the blades. This
difference between the two configurations is attributed to the dif-
ference in mass flows. These features appear to be synchronized
with the blade passage. The vortices grow as they convect down-
stream; and in mid-spacing configurations~c,d!, they can be es-
timated to be 30% larger than the WG thickness~which varies as

Fig. 7 Blade, WGs, and laser-sheet spanwise locations for
40-WG configuration. Thinner WG line corresponds to WG cen-
tered at viewing window „marked by two small lines …, and
thicker portions of laser sheets „green … denote DPIV image lo-
cation. Blade-to-blade period is 140 ms. Delays relevant to pa-
per are shown.
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a function of the spanwise location! as they hit the blade LE.
These vortices are expected since they are shed from a blunt-
body-shaped WG.

At 90% span~~b,d! in the figures!, the wake has a smaller scale
and appears to be more turbulent and the shed vortices are smaller.
This is attributed to three-dimensionality and the influence of the
boundary-layer flow near the compressor case. Measurements
~Copenhaver et al.@12#! revealed that the boundary layer pen-
etrates to about 92% span. The wake trace follows a trend similar
to that of the vortex shedding and can be seen to grow and con-
vect downstream, interact with the shock, and be ‘‘chopped’’~as
shown in the last frame of each set!.

Even though the photographs in each set are non-sequential
~because of the limitation on the laser frequency!, vortex shedding
appears to be synchronized with~or forced by or locked with! the
blade passage. This vortex-blade synchronization is apparent for
both WG counts and spacings. It was observed that qualitative
flow patterns such as the number and location of the vortices were
always similar for a given blade delay. The main source of the
‘‘synchronization’’ appears to be the strong perturbation provided
by the blade passage, which induces pressure-field variations at
the blade-passage frequency. Measurements of pressure variations
at the WG surface~Koch et al. @13#! have shown that they are
significant near the WG TE~where the perturbation takes on a

hydrodynamic effect!. A velocity-field study using DPIV can
quantify the variation that exists between wakes for a given blade
position and as a function of blade position. Such a study can also
determine the amount of wake motion that occurs as the wake
approaches the shock and the blade LE. Locking of the frequency
of the vortex shedding on the blade-passing frequency in a multi-
blade row environment has been investigated numerically in a
turbine stage by Sondak and Dorney@14#.

During flow visualization the shock effect is observed as the
vortices and wake become predominantly smaller and random
motion increases@e.g., Fig. 9~a,b! at 140ms#. Only those vortices
that move downtream between two blades without colliding with
the LE preserve their large-scale structure and evolution@e.g., the
farther dowstream vortex in Fig. 9~a!#. They avoid not only the
blade-LE interaction but also the strongest portion of the shock.

DPIV. Typical instantaneous velocity fields in the absolute
reference frame are shown for 75% and 90% span, 24-WG/Mid-
spacing and 40-WG/Close-spacing in Figs. 10 and 11. Various
blade positions at 20-msec intervals are depicted. A common fea-
ture is the sharp change in velocity and flow direction at the bow-
shock location, which is clearly discernible. The passage of the
shock is clearly visible from the vector fields at the various blade
positions. The flow-velocity increase observed after the shock at

Fig. 8 Flow visualization for half period of blade passage in front of the WG at 20- ms intervals
for 24-WG configuration at 75% span „a,c… and 90% span „b,d… for close-spacing „a,b… and mid-
spacing „c,d…. Scale is 1:1, except for b „2:1…. Percentages at top and bottom of last frames of
each set indicate span of laser sheet. Letter ‘‘a’’ above vortices indicates their location and
convection.
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the passage between blades is typical for transonic compressors.
Areas with missing vectors in the wake correspond mainly to the
vortices. It is difficult to entrain seed particles inside the vortex by
seeding the main flow only. Seeding the vortex using local injec-
tion of particles through the WG is under investigation. At 90%
span the wake turbulence has entrained more seed particles into
the wake. The lower speed area on top of the frames at 90% span
is due to the boundary layer. Other areas with missing vectors
~especially in Fig. 11~a!! resulted from a lack of particles or poor
correlation due to noise during that particular experimental run;
this problem is addressed later in the paper.

Wake-shock interactions are observed where low velocity from
the wake crosses the shock front, which appears to be broken as a
result of the wake passage. Boundary layer-shock interactions are
observed in the 90% spans where the shock appears to be less
sharp in the wall region as a result of the interaction with the
curved wall and boundary-layer flow. Another feature captured by
the velocity field is the upward direction of the velocity immedi-
ately below the WG, especially when the blade LE is above the
WG. This feature is attributed to the angle of incidence of the flow
to the WG row.

The wake-blade interaction can be further analyzed by drawing
streamtraces, as shown in Fig. 12~40WG, close-spacing, and 90%
span configuration!. An example is shown for three delays, 10ms
apart, as the blade LE passes in front of the WG while the wake is

being chopped. These streamtraces indicate the direction of the
flow during wake chopping. They are overlayed on vorticity,
which is highest in the wake, in the boundary layer, and also at the
shock~a consequence of the sharp gradient!.

The repeatibility of the wake features and turbulence quantities
can be analyzed by comparing several images and their velocity
fields and averages. Averaging the instantaneous velocity fields for
a given blade delay has the effect of smoothing the wake flow
while still revealing a sharp shock location. Averaging was also
used to complete the vector map in areas without vectors, such as
those of Fig. 11~a!; Figure 13~a! and (b) provide a comparison of
the mean and the median over 50 realizations for the flow of Fig.
11~a! at a blade delay of 120ms. The median is a more robust
statistic for removal of outliers~points with ‘‘bad’’ vectors or
‘‘no’’ vectors! and produces a cleaner map. The most common
reasons for ‘‘bad’’ vectors are lack of particles~e.g., center of
vortices!, three-dimensionality~e.g., in the wake and tip regions!,
and loss of correlation~e.g., as a result of excessive glare, blurri-
ness, and sharp local gradients!. The mean also produces a clean
map ~and more similar to the median map! when the number of
realizations is increased, and it is used in Fig. 13~c! and ~d! with
150 realizations. Five transversal velocity profiles are included.
An estimate of turbulence intensity is calculated through the stan-
dard deviation of velocity~Fig. 13~d!! and indicates that the larg-

Fig. 9 Flow visualization of half period of blade passage through WG in 20- msec intervals „ex-
cept last frame … for 40-WG, close-spacing „a,b… and mid-spacing „c,d… at 75% „a,c… and 90% span
„b,d…. Scales are 1:1 „a,b… and 3:4 „c,d…. Percentages at the top and bottom of the last frames of
each set indicate span of laser sheet.
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est variation occurs at the wake boundaries--a place of higher
unsteadiness. The shock-location variation is small.

Other techniques were used for removing outlier vectors; these
included filtering values that fell beyond two standard deviations
in the mean distribution and using the Chauvenet’s criterion
~Coleman and Steele@15#! which employs a filter statistic that
depends on the number of realizations. Both techniques assume a
normal or Gaussian parent population. The two produced similar
mean distributions. In highly unsteady flows filtering must be per-
formed with caution to avoid removing vectors that are real. This
constitutes a minor problem in the present experiments because of
the synchronization between the vortex shedding and blade pas-
sage, which produces high flow repeatibility for a given blade
location. This natural synchronization acts as a ‘‘phase-lock,’’ and

averaging produces results similar to those obtained from ‘‘phase-
averaging’’ techniques~Estevadeordal and Kleis@16#!. This syn-
chronization is best for close spacing because of the proximity
between the blade and the WG.

5 Conclusions
A DPIV system was developed for transonic turbomachinery

studies and applied to investigation of the unsteady phenomena in
the wake region and the interaction of the wake with the blade LE.

The system captures vortex shedding, vortex-blade synchroni-
zation, wake chopping, wake-shock interaction, and boundary-

Fig. 10 DPIV instantaneous velocity fields for blade passage at 20- ms intervals for 24-WG and
mid-spacing configuration at 75% „a… and 90% „b… spans. More detailed color maps are available
in the online version.

Fig. 11 DPIV instantaneous velocity fields for blade passage at 20- ms intervals for 40-WG and
close-spacing configuration at 75% „a… and 90% „b… spans. More detailed color maps are avail-
able in the online version.
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layer flow near the housing. The interactions of the wake with the
potential field of the rotor LE and its bow shock were shown using
instantaneous and ensemble-averaged quantities.

The system will be improved and used for further study of flow
interactions in transonic compressors of various configurations.
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Fluid Flow Equations for
Rotordynamic Flows in Seals
and Leakage Paths
Fluid-induced rotordynamic forces produced by the fluid in an annular seal or in the
leakage passage surrounding the shroud of a pump or turbine, are known to contribute
substantially to the potential excitation forces acting on the rotor. The present research
explores some of the important features of the equations governing bulk-flow models of
these flows. This in turn suggests methods which might be used to solve these bulk-flow
equations in circumstances where the linearized solutions may not be accurate. This
paper presents a numerical method for these equations and discusses comparison of the
computed results with experimental measurements for annular seals and pump leakage
paths. @DOI: 10.1115/1.1436093#

Introduction
Over the last few years a substantial body of experimental data

has been gathered on fluid-induced rotordynamic forces@1# gen-
erated in narrow, fluidfilled annuli such as occur in turbulent an-
nular seals~for example, Childs and Dressman@2#, Nordmann and
Massmann@3#! or in the leakage flows surrounding the shrouded
impellers of pumps or turbines~for example, Guinzburg et al.
@4#!. To allow for greater understanding of the underlying fluid
mechanics of such flows, it is clearly valuable to view this data in
the context of an accurate analytical model and, if necessary, to
tune the frictional and other parameters in the model to provide a
reliable tool for the designer.

The problem with this strategy is that the available analytical
models have not yet shown themselves capable of accurate and
reliable predictions. Perhaps the most promising approach has
been the bulk flow model developed by Childs@5,6# and subse-
quently used by others@7#. This linearized model appears to give
reasonable results in some cases and unreasonable, even bizarre
results, in others. Nevertheless, it represents a coherent and ratio-
nal starting point from which to begin. Some of the inherent prob-
lems with this model are summarized in the following section.

Bulkflow Models of Rotordynamic Flows
Based on Hirs@8# lubrication equations, the bulk flow model of

Childs @6# uses simple correlations for the shear stresses based on
the gap averaged flow velocities. This model, in its perturbation
solution form, is widely regarded as a useful rotordynamic analy-
sis tool for problems with relatively simple computational do-
mains. As presented by Childs, the bulk flow model assumes that
the three-dimensional, unsteady, turbulent flow in an annulus can
be accurately approximated by reducing the dimensions of the
flow from three to two, by using a simple correlation between the
shear stresses and gap averaged velocities, and by treating the
rotordynamic flow as a linear perturbation on the mean flow. Each
of these assumptions should be carefully considered when using
this approach to model the flow in a more complex computational
domain such as a centrifugal pump leakage annulus.

The assumption that the dimensions of the flow can be reduced
from three to two implies that the velocity profiles within the
annulus are self-similar and therefore, that the equations of the
flow can be averaged over the gap without excessive error. This
may have limitations under certain conditions noted in experi-

ments in which flow reversals and recirculation zones occur in the
leakage path~Sivo et al.@9#, Guelich et al.@10#!. These changes
in flow direction may lead to frictional stresses which are acting in
a direction different from that predicted by the gap averaged ve-
locity. Certain 3-D computational analyses, such as Baskharone
and Hensel@11#, have observed these flow reversals.

The Reynolds number of most leakage flows is very high. This
means the bulk flow model requires expressions which relate the
turbulent shear stresses to the averaged velocities in the gap. In
the current form of the bulk flow model, the shear stresses on the
rotor and the stator are calculated using friction coefficients@8#.
These are defined by:

t
1
2 ru2

5nS ruh

h D m

(1)

whereu is the gap-averaged velocity relative to the surface under
consideration, and them andn are denoted bymS andnS for the
stator andmR andnR for the rotor. These expressions, which are a
simple and heuristic extrapolation from the correlations for turbu-
lent flow in a pipe, are taken from the work of Hirs who recom-
mends that the coefficientsm and n be ‘‘fitted to individual ex-
periments.’’ The frictional coefficients are dependent on six
physical parameters, including the curvature of the surface, iner-
tial effects, and roughness. Thus, the coefficients may not fully
account for the curvature of the flow path in a particular leakage
geometry. As stated previously any reversal in flow direction near
the impeller implies a serious error in the correlation of Eq.~1!.
The sign of the wall-shear stress term for the rotor should change
in a region of reverse flow.

In addition, the use of the above expressions for the turbulent
shear stresses are subject to an even more general criticism. They
are correlations for steady turbulent flows based, primarily, on
experimental observations of steady flows. In contrast, the rotor-
dynamic flows of concern here are fundamentally unsteady. The
problem is that very little is known about turbulent flows which
are unsteady in the sense that the flow is being externally excited.
Therefore, correlations such as that given above are only useful
because there are no alternatives, and it must be recognized that
the unsteady flows of the present context may lead to substantial
deviations from these correlations. At present, this issue can only
be resolved by careful comparison of the experimental and model
results.

Finally, Childs treats the rotordynamic flow as a linear pertur-
bation on the mean flow in the annulus. While this may be an
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accurate assumption for very small eccentricities, there is cur-
rently no way to know at what eccentricity this linearization be-
gins to lose accuracy. This paper will present a solution method
that will solve the full bulk flow flow equations and will provide
some idea as to the contribution of the nonlinear terms.

The Bulk Flow Model Equations
Black and his co-workers@12,13# were the first to attempt to

identify and model the rotordynamics of turbulent annular seals.
Bulk flow models~similar to those of Reynolds lubrication equa-
tions! were used. Several deficiencies in this early work caused
Childs @14,15# to publish a revised version of the bulk flow model
for turbulent annular seals@16# and, later, to extend this model
@5,6# to examine the rotordynamic characteristics of discharge-to-
suction leakage flows around shrouded centrifugal pump impel-
lers. A general geometry is sketched in Fig. 1, and is described by
coordinates of the meridian of the gap as given byZ(s) andR(s),
0,s,S, where the coordinate,s, is measured along that merid-
ian. The clearance is denoted byH(s,Q,t) where the mean, non-
whirling clearance is given byH̄(s).

The equations governing the bulk flow are averaged over the
gap. This leads to a continuity equation of the form

]H

]t
1

]

]s
~Hus!1

1

R
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]Q
~HuQ!1

Hus

R

]R
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50 (2)

whereus and uQ are gap-averaged velocities in thes and Q di-
rections. The meridional and circumferential momentum equa-
tions are
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These are the equations used by Childs@5,6#. Note that they in-
clude not only the viscous terms commonly included in Reynolds
lubrication equations~see for example Pinkus and Sternlicht@17#!
but also the inertial terms~see Fritz@18#! which are necessary for
the evaluation of the rotordynamic coefficients.

Using Hirs’ @8# approach, the turbulent shear stresses,tSs and
tSQ , applied to the stator by the fluid in thes andQ directions are
given by:

tSs

rus
5

tSQ

ruQ
5

nS

2
@us

21uQ
2 #mS11/2~H/n!mS (5)

and the stresses,tRs andtRQ , applied to the rotor by the fluid in
the same directions:

tRs

rus
5

tRQ

r~uQ2VR!
5

nR

2
@us

21~uQ2VR!2#mR11/2~H/n!mR

(6)

where the constantsnS , nR , mS and mR are chosen to fit the
available data on turbulent shear stresses. Childs@14# uses typical
values of these constants from simple pipe flow correlations:

nS5nR50.079; mS5mR520.25 (7)

Childs then proceeds to linearize the equations by dividing the
clearance, pressure, and velocities into mean components~sub-
script 0! that would pertain in the absence of whirl, and small,
linear perturbations~subscript 1! due to an eccentric motion of the
rotor at an eccentricitye and a whirl frequency ofv. He develops
differential equations for the coefficients which are functions ofr
only, with the perturbation velocities restrained to simple har-
monic functions ofQ.

For a case with a steady whirl of frequencyv, and constant
eccentricitye, superimposed on the shaft rotation of radian fre-
quencyV, a method of solving the bulk flow equations using a
stream function and vorticity will now be formulated. With this
set of assumptions, the fluid flow in a frame of reference rotating
at v is steady and it is appropriate to rewrite the equations and
solve them in this rotating frame. Defining, therefore, a new an-
gular variable,u, and a new angular velocity,u0 , in this rotating
frame such that

u5Q2vt; uu5uQ2vR (8)

it follows that the continuity equation, Eq.~2! can be written as

]

]u
$Huu%1

]

]s
$RHus%50 (9)

and this is most easily satisfied by defining a stream function,
c(s,u) such that

Fig. 1 Sketch of fluid filled annulus between a rotor and a stator for turbulent lubrication analysis
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It follows that the total volume flow rate,Q, at any meridional
location,s, is given by

Q5c~s,2p!2c~s,0! (11)

and this provides a periodic boundary condition onc in the u
direction.

In the rotating frame of reference, the equations of motion are
usefully written using an appropriate total pressure,P, instead of
the static pressure,p, where

P

r
5

p

r
1

1

2
~us

21uu
22R2v2! (12)

and the equations of motion, Eqs.~3! and ~4!, then become
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where the functions,gS andgR , are the shear stress terms for the
stator and rotor respectively. Using correlations~5! and ~6!
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The quantity,G, given by
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~Rus!G (17)

plays a crucial role both in understanding the fluid mechanics of
these flows and in the solution methodology. This quantity,G, can
be termed an ‘‘effective vorticity’’, and the existence of such a
quantity has led to the development of the current methodology.

The vorticity,G, is a fundamental property of the flow; this can
be discerned by eliminatingP from Eqs.~13! and ~14! to obtain
the basic convection equation forG:
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which demonstrates that, in the absence of viscous effects (gS
5gR50), the vorticity is invariant along any streamline. Con-
versely, the shear stresses are alone responsible for any change in
G along a streamline. The total pressure is obtained by integration
similar to that for the vorticity,G. From Eqs.~13! and ~14! it
follows that
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which demonstrates that the total pressure~or energy in the flow!
is constant along a streamline in the absence of viscous effects.
Furthermore, when written in the above manner, the governing
equations,~18! and ~19!, indicate a physically reasonable ap-
proach to their numerical solution by iterative means.

Boundary Conditions and Numerical Methods
It follows from the above that one method for the numerical

solution of the equations for a rotordynamic flow would be to
proceed as follows:

~1! First, for given or guessed values of the vorticity,G(s,u),
the Poisson-like Eq.~17!, rewritten as

]

]s H R

H

]c

]s
2vR2J 1

1

R

]

]u H 1

H

]c

]u J 5RHG (20)

must be solved to obtain the stream function,c(s,u). From this
solution new values forc(s,u), us(s,u) anduu(s,u) can then be
calculated. Appropriate boundary conditions onc for use in the
solution of Eq.~20! are:

~i! Along s50, we specify an inlet swirl velocity,uu(0,u),
which, in order to satisfy conservation of angular momentum,
should normally be put equal to the swirl velocity in the reservoir
upstream of the inlet.

~ii ! An appropriate boundary condition at discharge,s5S,
would be that the pressure in the flow exiting the annulus should
be uniform for allu,

]

]u
~p1zus

2!s5S50 (21)

for a given exit loss coefficient,z. This parameter,z, can also be
used to simulate an exit seal.

~iii ! The periodic conditions on boundaries atu50 andu52p
such that

c~s,2p!2c~s,0!5Q (22)

~2! Second, given the new values ofc(s,u), us(s,u) and
uu(s,u), we can integrate to find new values forG(s,u) using Eq.
~18!. This requires evaluation of the shear stress functions,gR and
gS and values ofG at inlet, G~0,u!. Clearly this becomes more
cumbersome when there is reverse flow either at inlet or at dis-
charge. Here, we restrict our attention to the simpler circum-

Fig. 2 Force diagram in plane normal to the shaft axis
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stances in which there is no flow reversal at the inlet. Then, as-
suming that the viscous stresses upstream of the inlet are
negligible and that the inlet flow is circumferentially uniform, Eq.
~14! provides an initial value forG,

G~0,u!5
1

Hus
@~uu1vR!~gS1gR!1VRgR# (23)

given the results from step 1.
These two steps are then repeated to convergence.

As the viscous terms were found to be small, Eq.~19! can be
integrated in parallel to theG integration to obtain the total pres-
sure throughout the domain. If entrance losses are neglected be-
tween the upstream reservoir and the inlet plane (s50), then the
integration begins with a uniform value ofP(0,u) equal to the
total pressure in the reservoir,Pres , and this can conveniently be
chosen to be zero without loss of generality. On the other hand if
entrance losses are to be included thenP(0,u) can be set to a
value smaller thanPres by an amount equal to the entrance loss at
that particularu position. Other complications which could be
incorporated include a non-uniform upstream reservoir~such as
the volute of a pump operating off-design! which would imply a
circumferentially varyingP(0,u).

Having obtained the pressure~and the viscous shear stresses!, it
only remains to integrate these to obtain the normal and tangential
forces acting on the rotor. With the sign convention as defined in
Fig. 2, it follows that:

Fn5E
0

SH 12S dR

dsD 2J 1/2E
0

2p

~p cosu1tRu sinu!Rduds

(24)

Ft5E
0

SH 12S dR

dsD 2J 1/2E
0

2p

~p sinu2tRu cosu!Rduds

(25)

In the results quoted in this paper the contributions from thetR0
parts of these integrals are very small and can often be neglected.
Finally, the rotordynamic coefficients are obtained by fitting qua-
dratics to the functions,Fn(v/V) andFt(v/V),

Fn5M S v

V D 2

2cS v

V D2K (26)

Ft52CS v

V D1k (27)

The coefficients are termed the direct added mass~M!, direct
damping~C!, cross-coupled damping~c!, direct stiffness~K!, and
cross-coupled stiffness~k!. The forces and coefficients are nondi-
mensionalized as described by Brennen@1#.

Results
The computational model was tested on two sets of geometries

for which reliable experimental data is available. One comparison
was with the seal tests conducted by Marquette and Childs@19#.
This seal had an axially uniform radius, with a length to radius
ratio of 0.914 and an average clearance of 0.0029 of the radius.
Rotor speed varied from 10400 rpm to 41600 rpm and pressure
drops from 4 MPa to 12 MPa. The other comparison is with the
conical dummy pump impeller tested by Uy@20# whose eye-to-tip
ratio is 0.474 and its average leakage path clearance is 0.03 times
the tip radius. One difference between the two flows is the pres-
ence of the exit seal for the impeller tests. About half of the total
pressure drop in the leakage path for the conical impeller occurs
in the exit seal. Another difference is that the clearance is about an
order of magnitude smaller for the seal experiments than for the
impeller experiments. This will affect the acceleration ofuu .

Using the same parameter values as Marquette and Childs,ns
5nr50.079 and complete exit loss~z50!, the rotordynamic force
for the seal in the tangential direction is predicted very well by the
current model as shown in Fig. 3. The normal force, however,
exhibits a large but uniform offset from the experimental data as
manifested by the discrepancy inK. The predictions are similar to
those using the Childs’ perturbation approach, suggesting domi-
nance of the primary mode in this simple geometry.

Adjusting the exit loss coefficient,z, can mostly eliminate the
discrepancy in the normal forces. Indeed the forces seem very
sensitive to small changes in the exit condition. Whether the
source of the large offset between theory and experiment can be
appropriately attributed to the exit conditions remains unknown.

An examination of the accuracy of the calculated results from
the bulk flow model was also carried out by comparing the rotor-
dynamic forces for the conical impeller to the experimental data.
As a result of direct measurements of inlet swirl@21#, an inlet
swirl velocity of uu(0,u)50.26 was used for calculations of ro-
tordynamic forces with the conical pump impeller geometry. Nu-

Fig. 3 Comparison of rotordynamic coefficients versus flow
coefficient f between experiment „h…, and current model „s…,
and Childs’ perturbation model „Ã… for the seal, with eccentric-
ity equaling 10 percent of average clearance

Fig. 4 Comparison of rotordynamic coefficients versus flow
coefficient f between experiment „h…, and current model „s…,
and Childs’ perturbation model „Ã… for the conical impeller
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merical results for flow coefficients of 0.04 and 0.053 are com-
pared with experimental measurements in Fig. 4. This data uses
ns5nr50.079 for the shear stress coefficients and no pressure
recovery at exit~z50!. The tangential forces agree reasonably
well with the experimental data. The calculated normal forces,
however, exhibit added mass,M, and cross-coupled damping,c,
coefficients that are much smaller than the experimental results.
The direct stiffness,K, agrees well with the experiments.1

Figure 4 also shows the calculated rotordynamic coefficients
using Childs’ perturbation model. Compared with the Childs’
model, the current model gives better predictions for the direct
stiffness and cross-coupled stiffness coefficients as well as the
whirl ratio, k/C. The direct damping coefficient,C, is well pre-
dicted by both, while both underpredict the added mass term sig-
nificantly. Childs’ model gives more accurate results for the cross-
coupled damping coefficient. Calculations of the rotordynamic
coefficients for two other contoured dummy impellers tested by
Uy @20# yielded similar comparisons.

Conclusions
This paper has explored some of the basic characteristics of the

bulkflow model equations for the turbulent flow in a fluid-filled
annulus generated by a combination of rotational and whirling
motions. The analysis unveils the definition of the appropriate
vorticity for these flows and develops evolutionary equations both
for the vorticity and for the total pressure, without resorting to
linearization. Among other features demonstrated by these equa-
tions is the fact that the changes in vorticity and total pressure
along a streamline are entirely due to the shear stresses imposed
on the flow.

This equation structure naturally suggests a way in which nu-
merical solutions to these equations might be sought, by iterating
between a Poisson-like equation for the streamfunction using a
preliminary vorticity distribution and forward integration to revise
that distribution. Several sample calculations are used to illustrate
this technique.

The numerical solutions are compared to experimental results
for a seal geometry in addition to discharge-to-inlet leakage ge-
ometries. Results for the seal show very good agreement for the
tangential forces. Predictions for the normal forces, however, ex-
hibited a large offset to the experimental results, which can be
reduced by changing the exit loss coefficient. Questions remain as
to the reason for this discrepancy.

For leakage path geometries, good agreement with experimen-
tal results for the conical impeller was found with the exception of
the added mass term. Compared to the Childs’ perturbation solu-
tion method, the current method is more computationally inten-
sive, though still relatively fast. It also provided better predictions
for most of the rotordynamic coefficients with the exception of
cross-coupled damping term.

Nomenclature

C 5 direct damping coefficient, normalized by
rpVR2

2L«
c 5 cross-coupled damping coefficient, normalized by

rpVR2
2L«

Fn 5 force normal to whirl orbit, normalized by
rpV2R2

2L«
Ft 5 force tangent to whirl orbit, normalized by

rpV2R2
2L«

H 5 clearance between impeller shroud and housing

K 5 direct stiffness coefficient, normalized by
rpV2R2

2L«
k 5 cross-coupled stiffness coefficient, normalized by

rpV2R2
2L«

L 5 axial length of the impeller
M 5 direct added mass coefficient, normalized by

rpR2
2L«

mr ,ms 5 empirical exponent for rotor and stator respectively
nr ,ns 5 empirical constants for rotor and stator respectively

P 5 total pressure
p 5 static pressure
Q 5 volumetric leakage flow rate
R 5 radius of rotor

R2 5 tip radius of the rotor
us 5 meridional velocity of fluid
uu 5 circumferential velocity of fluid, nondimensional-

ized byVR2
G 5 effective vorticity defined by Eq.~17!
h 5 fluid viscosity
« 5 eccentricity of whirl orbit
z 5 exit loss coefficient
r 5 fluid density
f 5 leakage flow coefficient,Q/2pHVR2

2

c 5 stream function, defined by Eq.~10!
v 5 whirl radian frequency
V 5 main shaft radian frequency
t 5 wall shear stress
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On the Theoretical Prediction of
Fuel Droplet Size Distribution in
Nonreactive Diesel Sprays
Droplet size distribution function and mean diameter formulas are derived using infor-
mation theory. The effects of fuel droplet evaporation and coalescence within combustion
chamber on the droplet size are emphasized in nonreactive diesel sprays. The size distri-
bution function expressions at various spray axial cross sections are also formulated. The
computations are compared with experimental data and KIVA-II code. A good agreement
is obtained between numerical and experimental results. Droplet size distribution and
mean diameter at various locations from injector exit and at various temperature condi-
tions are predicted. The decreases of droplet number and variations of mean diameter are
computed at downstream and higher temperature.@DOI: 10.1115/1.1445140#

1 Introduction
The characteristics of fuel injection and atomization have been

known to influence diesel engine performance, such as fuel
economy and pollutant emissions. The theoretical modeling of
droplet size probability distribution and mean diameter is very
important in the analysis of the atomization and combustion pro-
cesses in diesel engines. Due to the complexities involved in the
spray process, there still remains a paucity of systematic math-
ematical descriptions of the droplet size distributions and their
evolutions in the diesel spray. Sellens and Brzustowski@1#, Li and
Tankin @2# obtained expressions for droplet size distribution in
sprays by using the maximum entropy formalism. In these studies,
the conservation laws of mass, momentum and energy were ap-
plied. However, they did not consider evaporation and coales-
cence of the droplets within an engine combustion chamber, and
their model results were not compared with experimental mea-
sured in practical diesel engines.

In practical internal combustion engines, the droplet evolution
is controlled not only by liquid bulk break-up, but also by evapo-
ration of the droplets and coalescence resulting from droplet col-
lisions. Droplet evaporation and coalescence will cause a decrease
in the droplet number, the variations ofD30 andD32 as well as a
redistribution of droplet sizes. In this paper, some droplet size
distribution expressions in a closed form by using information
theory and the mass conservation law are obtained, Sauter mean
diameter,D32 or SMD, is also derived. In these derivations, the
effects of droplet evaporation and coalescence are incorporated
into the model, and the droplet size distribution at various axial
cross sections is formulated. The numerical results agree well with
the experimental correlation of Levy and Amara@3#. The droplet
size distribution predicted by the KIVA-II code@4# is also pre-
sented.

2 Model Formulation
In the present study, the constraint imposed for the atomization

process is the conservation of liquid mass. Consider a spray pro-
duced by an orifice atomizer, a liquid jet is produced at the nozzle
exit. As the liquid proceeds downstream, oscillations cause jet
breakup into ligaments and finally droplets. When the liquid ve-
locity exceeds a certain value, the atomization process starts al-
most at the nozzle exit and no observable solid jet develops. Since
the droplets in a spray are usually small, surface tension will cause

them to be spherical. Thus,v5pD3/6, dv5(pD2/2)dD. If liquid
density is constant (r i5r), thenv t5m/r. Assuming droplets are
uniform distributed within the spray cone, the droplet volume flux
at an axial cross section in a spray per cycle isvs53v tD30/H and
droplet number in a spray per cycle isnj56v j /pD30

3 . Then the
initial droplet size distribution following the spray formation can
be obtained by maximizing the information entropy, subject to the
normalization requirement of the probability distribution function
and the mass conservation law as follows

Information entropyS52K(
i

Pi ln Pi (1)

Greatest probability(
i

Pi ln Pi5Extremum (2)

Mass conservation(
i

Piv inj5v j (3)

Normalization (
i

Pi51 (4)

For the conditional extremum problem, we can use the method
of Lagrangian multipliers. If the minimum diameter of droplets
can be taken as zero, the number fraction of the droplet size can
be obtained in a closed form

dNj

dD
5

3a jnj
2

12exp~2a jnjDmax
3 !

D2 exp~2a jnjD
3! (5)

wherea denotes Lagrangian multiplier. It can be determined by

mj5
p

6 F 1

a j
2

Dmax
3 exp~2a jnjDmax

3 !

12exp~2a jnjDmax
3 !

•nj G (6)

If integrate over droplet size space from the droplet diameter of
(D2DD/2) to (D1DD/2), Eq.~5! yields the number distribution
of droplet size as following closed form

ND, j5

expF2a jnj S D2
DD

2 D 3G2expF2a jnj S D1
DD

2 D 3G
12exp~2a jnjDmax

3 !
•nj

(7)

Then a number percentage of the total droplets in the droplets that
diameters are between (D2DD/2) and (D1DD/2) must be
evaluated as
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pi , j5
ND, j

nj

5

expF2a jnj S D2
DD

2 D 3G2expF2a jnj S D1
DD

2 D 3G
12exp~2a jnjDmax

3 !
(8)

The volume fraction of the droplet size is

dVD, j

dD
5

pD2

2
•ND, j (9)

Droplet volume between (D2DD/2) and (D1DD/2), the vol-
ume distribution of droplet size, can also be expressed as

VD, j5
pD3

6
•ND, j (10)

Sauter mean diameter can be expressed as

D325
*0

DmaxD3dNj

*0
DmaxD2dNj

5
*0

DmaxD5 exp~2a jnjD
3!dD

*0
DmaxD4 exp~2a jnjD

3!dD

5
12~11a jnjDmax

3 !exp~2a jnjDmax
3 !

~a jnj !
1/3g~5/3,a jnjDmax

3 !
(11)

For a practical engine spray, effects of evaporation and coales-
cence of the fuel drops within combustion chamber on droplet size
are of fundamental importance. Evaporation will promote large
droplets to be reduced and small droplets to be vanished. Coales-
cence is due to collisions: several small drops can gather to create
a large droplet. Either of them will cause decrease of the droplet
number, variation of the mean diameters and redistribution of the
droplet size.

According to the conservations of mass and energy and mass
diffusion equation, a relation between a droplet diameter after
evaporation and an initial droplet diameter can be obtained as
follows @5#

D5Ad22Kvt (12)

whered is an initial droplet diameter for calculating droplet diam-
eter, D, after evaporation and collisions coalesce. The range is
from zero to maximum andKv is an evaporation coefficient in
nonreactive sprays which determined by fuel property and tem-
perature difference between gas within combustion chamber and
environment.

Kv5
8l

rCp
lnF11

Cp

L
~ t f2t0!G (13)

Following procedures present the formulas of the collision in-
fluence. Assuming droplets are uniform distributed within the
spray cone, a relation between droplet number at a generatrix of
the conical liquid jet and total droplet number is

nl

nt
5

3

pRH sin
u

2

(14)

A relation between droplet number at a generatrix of the spray
cone and at an axial cross section is

nl

ns
5

1

pR sin
u

2

(15)

In the conical liquid jet, since there is a distinct deference on
droplet diameters along radial direction and a smaller deference

along droplet track, we could assume an efficient distance be-
tween a larger droplet and a smaller droplet in a collision to be
equal to a droplet diameter. Due to the extremely high fuel con-
centration in the diesel spray, we could assume that almost all
droplets are affected by collision coalescence. According to the
collision theory, the collision times of a liquid droplet in an in-
jected duration can be presented as

Z5
pd2Rnl

t0
5

3nt

t0H sin
u

2

d25
ns

t0 sin
u

2

d2 (16)

Thus, relation between a droplet diameter after collisions and an
initial droplet diameter is

D5Kcd
5/3 (17)

whereKc could be called collision coefficient. It can be presented
by collision times to multiply penetrated duration

Kc5A3
t

t0

3nt

H sin
u

2

5A3
t

t0

ns

sin
u

2

(18)

Because evaporation takes place immediately at the beginning
of the fuel discharged from nozzle exit, evaporation is earlier than
coalescence. Thus

D5Kc~d22Kvt!5/6 (19)

Substituting Eq.~19! into Eqs.~5! through~11!, we have formulas
of the size redistribution and mean diameters then.

3 Results and Discussion
The main goals of this study are to calculate thepi , j , D30, and

D32 for sprays produced by pressure hole nozzle of the diesel
engines and to compare with experimental results. The calcula-
tions have been conducted by using a computer program. The
calculation step of the initial droplet diameter,d, is 1mm. Integral
calculus applies rectangle integral method and integral calculation
step is 0.01mm. Initial guess parameter isD30. When difference
of D30 or D32 between two continual calculations is within 0.01
mm and sum ofpi , j in all droplet sizes is 100 percent61026, the
computation will be stopped. First, we computed an initial total
droplet number,nt , and initial droplet numbers,ns , at three lo-
cations underDmax550mm, and gotpi , j , D30, and D32. The
reduced droplet numbers at various axial locations and tempera-
tures were computed according to evaporation and coalescence.
Second, we recalculated these parameters under reduced droplet
numbers. It should be pointed out that penetrated duration,t, is a
very important parameter. Penetrated duration means the time that
spray jet reaches the axial position. It affects thens , DL , mean
diameter and droplet size distribution after evaporation and coa-
lescence of droplets significantly. The penetrated duration shown
in Table 1 is gotten by empirical relation of Chiu et al.@6# and
validation of this law was achieved in Levy and Amara’ experi-
ments. It can be seen thatns decreases,DL and mean diameter
increase in Table 1 and peak of size distribution moves toward
lager size in Fig. 1 ast increases according to our computations.
However, the effects of the penetrated duration will reduce as
temperature increases gradually because of influences of evapora-
tion. It should be explained that we also conducted the calcula-

Table 1 Prediction parameters at various axial cross sections
and temperatures
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tions underDmax5200mm for validating the sensitivity of the
initial value of Dmax to the calculation results and no notable
differences from results underDmax550mm. The initial guess
value of Dmax5200mm is good enough for the common diesel
engine sprays.

Levy and Amara performed experiments and predictions of
KIVA-II. In their paper, droplet sizes were measured by using
Particle Doppler Analyzer instrument. The mean diameter was
observed downstream of the break up region. In those tests, diesel
fuel was introduced in a cylindrical chamber with two glass win-
dows by using a Bosch type rotative injection pump and a single
hole injector. Injected fuel mass in a spray per cycle was 4 mg and
injected duration continued 1.1 ms. Experimental conditions are
given in Table 2. The KIVA-II code was used to achieve spray
computations. This computer program solves the three-
dimensional time-dependent conservation equations of the gas-
eous phase with a finite volume method.

Figure 1 illustrates a comparison with experimental data and
results of KIVA-II code. It is clear that a good agreement is ob-
tained between our numerical and experimental results. As can be
seen in this figure, the theoretical curves almost coincide with
experimental points. In thet f520°C, H530 mm case, The com-
putation of KIVA-II code shows a large difference. The disagree-

ment shows that the predicted droplet sizes are quite large than the
measured ones. However our numerical prediction is suitable.

The comparisons of the SMD evolution versus spray axial dis-
tance are represented in Fig. 2. It can be seen that our computa-
tions fit these experimental data points well. There exists a differ-
ence in thet f520°C case. The growth of the computed SMD with
increase of the axial distance is less than growth of the experi-
mental data, the KIVA-II code large than that of test. Because that
case is only due to collision modeling, it substantiates that our
estimated value for influence of coalescence is smaller than ex-
perimental value, that KIVA-II the larger. In other cases, Sauter
mean diameters are almost coincide except fort f5170°C, H
510 mm. The tested SMD in that case is larger than SMD atH
520 mm unexpectedly.

The calculated initial total droplet number is about 2.173107.
The droplet numbers of three axial cross sections at various tem-
peratures are represented in Table 1. The computation indicates in
Fig. 1 that peak of size distribution slightly moves toward large
size, andD30 and SMD increase as increase of axial distance in
the cold case~20°C!, but the small drops are still existence. The
decrease of the droplet number is entirely depended on the coa-
lescence. With temperature growth, the influence of the evapora-
tion is to be apparent gradually. Evaporation makes completely
vanished droplet diameter, limited droplet diameter, increase
quickly as time evolution. Hence, the droplet number will be rap-
idly reduced by joint influence of the evaporation and coales-
cence. The peak of size distribution moves toward small size ver-
sus temperature, andD30 and SMD are reduced. It can be also
observed in Fig. 2. As temperature grows, SMD changes are very
small with increase of the axial distance because of the droplet

Fig. 1 Droplet size distributions at various locations and temperatures

Table 2 Test conditions
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evaporation. It seems that evaporative influence on the droplet
sizes is almost as much as collision coalescent effect under a
higher temperature and a more far away position.

It can be imagined that because fuel burned as it delivered
within the combustion chamber of engines, the penetration dis-
tance of the fuel jet is going to decrease much more with com-
bustion. The smaller drops at a little far from nozzle exit will be
almost fully vanished by vaporization. Perhaps, only few drops
due to larger initial diameter of several hundred micrometers or
coalesced larger diameter are existence@7#. Because the longer the
held up time of the droplets, the more the particles pollution due
to splitting fuel, the droplet number and diameter will directly
effect economy and emissions of the engines.

4 Conclusions
The droplet size distribution functions, droplet numbers,D30

and SMD expressions considered evaporation and coalescence
have been derived mathematically to atomization processes. The
results exhibit a good agreement between numerical and experi-
mental data for the nonreactive diesel sprays. Simulations have
shown that droplet size can be predicted downstream of the atomi-
zation region. A diesel spray can thus be modeled, when we apply
the appropriate initial droplet conditions to the complex processes.

Nomenclature

Cp 5 specific heat of fuel-air mixture~kJ/kg•°C!
dNj /dD 5 number fraction of the droplet size~percent!
dVj /dD 5 volume fraction of the droplet size~percent!

d 5 initial droplet diameter~cm!
D 5 droplet diameter~cm!

D30 5 volume mean diameter of the droplets~cm!
D32 5 Sauter mean diameter of the droplets~cm!
DL 5 limited droplet diameter~cm!

Dmax 5 maximum droplet diameter~cm!
H 5 axial distance from nozzle exit~cm!

Kc 5 collision coefficient
Kv 5 evaporation coefficient of the droplets~m2/s!

L 5 vaporization heat of the fuel~kJ/kg!
m 5 injected fuel mass in a spray per cycle~mg/cycle!
nj 5 droplet number produced in a spray per cycle
nl 5 droplet number at a generatrix within the spray

cone
ND, j 5 droplet number between (D2DD/2) and

(D1DD/2)

pi , j 5 a number percentage of the total droplets in the
droplets between (D2DD/2) and (D1DD/2)

Pi 5 number-based droplet probability
R 5 radius at the bottom within the spray cone~cm!
S 5 information entropy
t0 5 environment temperature~°C!
t f 5 gas temperature within combustion chamber~°C!
v i 5 a droplet volume@ml#
v j 5 droplet volume in a spray per cycle~ml/cycle!

VD, j 5 droplet volume between (D2DD/2)
and (D1DD/2) ~ml!

Z 5 collision times
a j 5 Lagrangian multiplier

DD 5 increment of the droplet diameter~cm!
u 5 spray cone angle
l 5 heat conduct coefficient of the fuel~kW/m•°C!
r 5 fuel density~kg/m3!

r i 5 a droplet density~kg/m3!
t 5 penetrated duration~s!

t0 5 injected duration~s!

Subscripts

i 5 a droplet property
j 5 t,s
t 5 property of the total droplets
s 5 property of the droplets at an axial cross section

within the spray field
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Scale Effect of Cavitation
Inception on a 2D Eppler Hydrofoil
Cavitation inception on an E817 hydrofoil issued from an inverse calculus for ideal fluid
has been numerically analyzed for speeds and scales inherent to both model test and
full-scale marine conditions. The computations have been carried out with account to the
Reynolds number effect on hydrofoil lift and combined effect of the Reynolds number and
Weber number on the equilibrium of sheet cavities in the hydrofoil boundary layer. Dif-
ferent levels of scale effects for cavitation inception on suction and pressure sides of E817
hydrofoil are shown. Comparison with the scale effect of cavitation inception on conven-
tional NACA-0012 hydrofoil has helped to explain this difference. Issues in blade design
with sections similar to E817 are discussed.@DOI: 10.1115/1.1427689#

1 Introduction

Design of a new hydrofoil with improved performances must
include three phases. First, solving an inverse hydrodynamic prob-
lem to determine the hydrofoil shape. Such a problem is usually
formulated for ideal fluid. Second, model tests that take place in a
water tunnel of a relatively small size, where the Reynolds num-
ber is not high enough. The third one is an extrapolation of the test
results for full-scale conditions in unbounded flows. This phase
demands both a theoretical concept of extrapolation and appropri-
ate data of model tests.

For the E817 hydrofoil~designed by Eppler@1# to suppress
cavitation inception!, the first phase gave a hydrofoil that gener-
ates an ordered lift with the minimal value ofK in 2D uniform
steady incoming flow of ideal fluid. According to@2#, such a hy-
drofoil must have an arc of constant minimal pressureCp5
2K. One can see the shape of this hydrofoil in Fig. 1. The value
of K has usually been considered as the upper limit for the cavi-
tation number inherent to the hydrofoil at a fixeda, ands1 must
be smaller thanK at any real value of Reynolds number. Eppler’s
design was carried out for ideal fluid, but the attendant estimations
of s1 are less favorable than reality.

At a real value of Re, the difference betweenK ands1 depends
on many parameters and it is an issue of theoretical estimation of
this difference, as well as for an optimal use of hydrofoils in blade
design. Because of this, the model test is currently the main basis
to predicts1 for novel hydrofoils. For E817 hydrofoil, recently
Astolfi et al. @3,4# measureds1 , lift coefficient and other charac-
teristics at Re,53105 in a water tunnel. This research gave useful
initial information about singularities of cavitation inception on
E817 that significantly differ from an earlier described@5,6# cavi-
tation inception on conventional hydrofoils of the same thickness
~like NACA-4412 or NACA-0012!. Particularly, the difference
betweenK and s1 for E817 is much higher in a large range of
angles of attack~lift coefficients!.

For full-scale conditions~usually, for cavitating marine propel-
ler blades, Re;33107!, there is neither measured data nor ex-
trapolation results in the quoted papers. The goal of the present
paper is to predict the full-scale value ofs1 for E817, emphasiz-
ing special properties of such hydrofoils. An analysis of scale
effects on cavitation is done with use of a numerical method de-
veloped for sheet cavitation in viscous fluid~Amromin @7,8#!. This
method allows a comparison of numerical results and model test
data@3,4# taking into account the relevant scales.

2 Two Modeling Concepts for Cavitation Inception
Traditionally, cavitation inception number has been defined as

an upper limit of an increasing succession ofs related to cavities
on a hydrofoil/body in stable conditions~a decreasing succession
is usually less accurate because of the random appearance of a
nuclei!. This definition is accepted in both experimenting and
modeling. Nevertheless, there are two diverse concepts of model-
ing cavitation inception. The first concept assumes no influence of
the appearing cavity on the pressure on the hydrofoil. Besides,
there is no influence of surface tension ons. According to this
concept, the value ofs1 is completely predetermined by the pres-
sure distribution over the cavitation-free body. Locating cavities
in regions of the lowest pressure, one must obtain in the frame-
work of this concept the evident result:s15K for L5B50. Ex-
amples of such dependenciess1(a) for hydrofoils E817 and
NACA-0012 are shown in Fig. 2~the thickness of E817 is 11.4%;
so, it is close to NACA-0012 thickness!, ands15K there. Con-
temporary improvements in hydrofoil/blade design@9,10# are re-
ally assigned to minimizeK. The value ofs1 tends to coincide
with K at the angle of attack selected for design of such hydro-
foils, but hydrofoils usually operate in quite wide ranges ofa, and
a problem is to predicts1 for the whole range of operations. A
significant difference betweenK and s1 often appears in such a
range. Its values depend on the hydrofoil/body shape and size, as
well as on the speed and quality of water. The concept of negli-
gibly small appearing cavities cannot explain such dependencies.

It is evident that there are physically based down limits on
cavity sizes, and the second concept includes determination of
these sizes and inverse influence of appearing cavities on sur-
rounding flow. The Laplace formula shows that for fixed pressure
in the region of cavity location and cavitation number, the cavity
surface curvature cannot be higher than

x52C21~Cp1s!We (1)

Contributed by the Fluids Engineering Division for publication in the JOURNAL
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division
November 9, 2000; revised manuscript received September 13, 2001. Associate Edi-
tor: J. Katz. Fig. 1 Shape of hydrofoil E817
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This formula defines a lower limit of cavity size. Such a cavity
affects whole flow and, particularly,Cp. It is possible to findCp
and s for a succession of decreasing cavities in the traditional
framework of theory of ideal fluid by solving the following prob-
lem for velocity potentialF:

DF50 (2)

~¹F,N! us50 (3)

¹F~`!5$1,a% (4)

~¹F,¹F!uS* 511s (5)

Here the surfaceS includesS* , the hydrofoil wetted surface, a
surface of fictitious body that is used for cavity closing, and walls
of tunnel/channel~if it exists!. A condition for lift determination
must be added to Eqs.~2!–~5!; usually, it is Kutta-Joukovski con-
dition. It is possible to find a corresponding value ofs for any pair
of L and XL by solving the problem~2!–~5! that is nonlinear
because the shape ofS* is initially unknown. There are several
contemporary numerical techniques for such solving@11,12#.

The author has used a modification of a perturbation method
@11# to solve such problems. The method is based on subsequent
corrections ofS* by small steps. It is assumed that a tried surface
of a lengthL is close to the initially unknown cavity surfaceS*
that satisfies to Eq.~5!. Let U is a solution of the linear problem
~2!–~4! out of a contourSo that includes the tried surface, and
there is no any special condition. According to the above assump-
tion, the velocityU over this part ofSo is close to a constant, and
u12U/(11s)1/2u!1; besides, a distanceh betweenSo andS* is
much smaller thanL. Consequently, it is possible to determine this
small distance with use of an auxiliary potentialw of a small
density in perturbed Eqs.~3! and ~5!:

]w

]N
1

]

]T
Uh50; (6)

]w

]T
5U2A11s (7)

The distanceh has also to satisfy conditions

h~XL!50, (8)

dh/dT~L1XL!50 (9)

For the selectedL, s must be found during computations.
For the initial iteration,S can coincide with the hydrofoil sur-

face, and for relatively thin cavities the solely iteration may be
sufficient ~like in @13#!. Generally,S is the known flow boundary

that is the result of previous iteration. Thus,N and T generally
relate toS that undergoes changes during iterations, as well asU.
Although the auxiliary problem~6!–~9! is linear, iterations cer-
tainly go to a solution of the nonlinear problem~2!–~5! becauseU
comes closer to (11s)1/2. In the addition,U is always a solution
of the linear problem~2!–~4! outside of the known boundary.
Such a solution can be determined with a high accuracy for both
unbounded flow and flows in channels/tunnels.

First validation of this perturbation method was performed for
axissymmetric cavities with the Riabushinsky scheme of closure
~see Fig. 3! because axissymmetric flows are simpler for model-
ing. Nevertheless, this flow is a hard exam for methods to solve
nonlinear problems, and one can see a satisfactory accordance
with result of @14# in this figure.

For thin cavities on hydrofoil, a possibility to select its contour
as the tried surface makes formulas shorter~it is possible even to
supposeB5h!, with keeping all mathematical singularities inher-
ent to the general case. Letw is the potential of sources. The
problem~6!–~9! has then the following solution@15#:

h~x!5
1

U~x! EXL

X R~x!

p E
XL

X1XL A11s2U~z!

R~z!~x2z!
dzdx (10)

Here R(x)5@(x2XL)(XL1L2x)#1/2. This formula allows
smooth corrections ofS, and solutions weakly depend on discreti-
zation, but the following condition must be satisfied:

A11s5
1

p E
XL

L1XL U~z!

R~z!
dz (11)

One cannot find the maximals by using minimalL or B in Eqs.
~10!–~11! because there is no possibility to determineXL . Deter-
mination ofXL is a key issue for attempts to study the inception of
attached cavitation. It is sometimes possible to satisfactorily pre-
dict s1 with an appropriate selection ofXL in ideal fluid @5#, but
small changes ofXL significantly affect the dependenciess(L)
for the hydrofoils@16#.

However, it is possible to determineXL with consideration of
cavitation as a special case of viscous separation. As was shown
@17#, the minimal cavity thickness and the boundary layer thick-
ness are comparable. Thereby a small cavity induces viscous sepa-
ration, like an obstacle embedded in the boundary layer. Location
of appearing cavities depends on the pressure distribution over a
cavitation-free foil, as well as on thickness of both boundary layer
and cavity head. Consequently, both the Reynolds number and
the Weber number must be considered as significant parameters
for sheet cavitation in viscous fluid. Thens15max$s(Re,We)%.
The definitions of Re and We show thatC5const3Re2/We,
andU`5const3We/Re, where constants are known. Thus, a pair
$Re, We% predetermines the pair$C,U`%, and scale effects can be
analyzed.

Fig. 2 Minimal pressure on E817 „l… and NACA0012 „j… in
ideal fluid as function of a-a0 „a0ÄÀ4 degree for E817 … Fig. 3 Computed cavitation number as function of cavity

length past disk. Author’s result „solid curve … is compared with
Brennen’s †14‡ results „dashed curve …
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It is important to emphasize the main aspects of relevant mod-
eling cavitation in viscous fluid. A sketch in Fig. 4 helps to un-
derstand differences in cavitation schemes for ideal and viscous
fluid. First, the cavity surface is not a free boundary of inviscid
flow, but the surface of the body of displacement is the free
boundary. A distance betweenS* and this boundary equalsd* .
Second, a tangent to the fluid surface is broken in the cavity
detachment pointx5XL . An angleb describes this break. Finally,
the velocity over the mentioned free boundary is not constant, but
decreases along this boundary. Moreover,U is an implicit function
of Re, because its derivative depends on thed* values in two
zones of viscous separation~upstream of the cavity and down-
stream from the cavity!.

Looking for the relevant mathematical technique, the author
found no possibility to use custom CFD codes for this complex,
viscous, unsteady, two-phase flow with a high pressure gradient in
a very small zone@17# between boundary layer detachment up-
stream of the cavity and with significant capillary effect on a part
of the free boundary. Several attempts to study viscous effects on
cavitation ~@18,19#, etc! have shown that such codes are not
adapted to examine this very complex flow. There is, however, a
possibility to use the basic equations of ideal cavitation with cer-
tain modifications and supplementary conditions.

In order of these modifications,S in Eq. ~3! becomes the sur-
face of the displacement body, and the surfaceS* in Eq. ~5!
includes boundaries of viscous separation zones upstream of the
cavity and downstream from it~where separation is caused by
reentry jet!. Further, a constant in the right-hand side of Eq.~5!
must be replaced by a more complex functionU* 2 that decreases
near the edges ofS* . Fixing values ofL and XL , one does not
define the whole length of the free surface, because this length
~and values ofXo andXr! has to be determined. The leading edge
of this surface~the curve in 3D flows! is not attached to the
hydrofoil, but placed on the distanced* (XL) from the hydrofoil
surface.

A key innovation in this modeling is consideration of equilib-
rium conditions in a zone between cavity detachment and bound-
ary layer separation upstream of the cavity. This consideration
makes it possible to representXo andXL as implicit functions of
Re and We for a fixedL.

The separation time-averaged criterion in a pointXo can be
written asF f /]P/]x5const, where the constant values are differ-
ent for laminar and turbulent boundary layers, andF f has to be
differently represented in these layers. As a result, there are two
kinds of condition with two different empirical coefficients in
their right-hand sides:

d* 2

mU
•

]P

]x
5ALAM (12)

d*

rU2 •
]P

]x
5ATURB (13)

These conditions have the same general form for both cavitat-
ing and cavitation-free flows, and it is acceptable to use the same
right-hand sides in Eqs.~12!-~13!. A singularity of cavitating
flows is the dependency of pressure derivative on a curvature of
the cavity surface in the vicinity of cavity detachment. An analogy
between cavity head and a source allowed qualitative analysis of
the phenomenon@7# and deduction of an approximate formula
with a new semi-empirical coefficient for the mentioned deriva-
tive. Its substitution in Eq.~12! leads to the following criterion:

S XL2Xo

d* C2
D 3S C1

Re
2d* Û

]Û

]x
D 5@Û~11cosb!#2 (14)

Here Û is value ofU in the pointx5Xo, andC151.1, as it is
commonly used for the cavitation-free laminar boundary layer.
The valueC2561.2 is tuned with use of the experimental data
@11# for axissymmetric cavitation. For metals,b52p.

The valued* implicitly depends on the cavity shape, because it
depends on the pressure derivative upstream of cavity. Thus, value
of XL can be found from Eq.~14!. On the other hand, an approxi-
mate integration of Eq.~1! in vicinity of cavity detachment gives
@7# a simple formula:

~XL2Xo!2WeÛ
]Û

]x
5C3 (15)

HereC358.5 is tuned with use the same experimental data. Suc-
cessive solving Eqs.~14!, ~15! actually allows determination of
We for givenL and Re.

The problem of computation of attached cavitation continues to
be nonlinear, and iterations with modified Eq.~10!, ~11! are the
basis of numerical technique for this problem too. The functionU
can initially be taken from the solution of the ideal cavitation
problem with the same pair$L,XL%. The necessity to operate with

Fig. 5 Cavity leading „bottom … and trailing „top … edge abscis-
sas past axissymmetric ellipsoid „2x ÕC-1…2¿„4yÕC…

2Ä1:
m-observations †11‡; author’s computation for ideal fluid is
shown by solid curves, for viscous fluid-by dashed curves

Fig. 4 Sketch of partial cavity on a body in viscous fluid. Thin
solid curve is body surface, thick solid curve is cavity surface.
Boundary layer is limited by dashed curve, m-its separation
section, l-its reattachment, j-XL.
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d* values leads to including a boundary layer computation in
every iteration. Besides, the functionU* must be defined. It is
accurate enough to suppose that above the cavityU* 5(1
1s)1/2, but for the viscous separation zoneU* (x)5(x-X1)2A
1(11s)1/2, whereA5const, (X12XL)/(X12Xo)5const. This
approximation ofU* was used in Eqs.~14!, ~15!.

There are options in modeling flow downstream from the cav-
ity. For a relatively large cavity, it is possible to combine Eqs.
~14!, ~15! with traditional closure schemes of ideal cavitation.
Initial validations of the described innovation were carried out
with this combination. Their typical results are shown in Fig. 5 for
an ellipsoid. One may see that a significant improvement in the
prediction of cavity detachment leads to an improvement in com-
putation of cavity lengths. For shorter cavities, the boundary layer
reattachment in a pointx5X3 must also be taken into account,
and consequently:

(
m

hm~X3!5d* ~X3! (16)

d* dU* /dx~X3!5CaU* ~X3! (17)

Herem is iteration’s number, and generally,hmÞB; Co5const. It
is necessary to varyX3 and the differenceU* (X3)2(11s)1/2 to
satisfy Eqs.~16!, ~17! taking into account a jump ofd* at the
cavity end that is associated with the influence of re-entry jet.
There is a scheme with a steady water inlet in the cavity back and
a steady water outlet in boundary layer over the cavity, where
Karman momentum equation obtains the following form:

dd** /dx5Vo~Uo/U21! (18)

Hered** is momentum thickness, andVo andUo are normal and
tangent velocity components on the cavity. It is necessary to in-

troduce a profile of the tangent velocity and a ‘‘friction law’’ over
the cavity to determined* from Eq.~18!. Modeling@7# shown that
numerical results weekly depend on aVo profile along the cavity.

Initial validation of computations with Eqs.~16!, ~17! was also
done for axissymmetric flows. Comparison of cavity length is
shown in Fig. 6~maybe, with an underestimation of the wall effect
on cavities in the author’s computations!. It is important to
emphasize that there are two solutions for the sames ~with dif-
ferent cavity detachment points!. The computed maximums does
not correspond to a minimum cavity length, because it is math-
ematically possible to attain an equilibrium of smaller cavities
at a smaller cavitation number thans I . However, only the top
theoretical curve in Fig. 6 corresponds to the physically possible
phenomenon.

Such validations for hydrofoils are shown in Figs. 7 and 8.
These validations do not include comparisons with distinct pub-
lished computations for cavitation in viscous fluid, because such
computations~like @18#! do not represent dependencies in a cer-
tain range ofs. For hydrofoils, there are comparisons with experi-
mental data@20# in Fig. 8.

There is also the comparison with the most successful compu-
tations for ideal fluid@21#. Computation@21# includes a precise
tuning the ideal fluid closure scheme to a particular hydrofoil.
However, the same scheme occurs unsuccessfully for another hy-

Fig. 6 Comparison of computed and measured †26‡ cavity
length for ITTC-body. Solid curve shows computed L, m and j
show minimal and maximal observed L.

Fig. 7 Comparison of L „s… for EN-hydrofoil „a0Ä0… for aÄ4°.
Solid curve-author’s computation, dashed curve-computation
†21‡, m-measurements †20‡.

Fig. 8 Comparison of L „s… for NACA-0010 hydrofoil „HÄC,
aÄ6.5 degree …. Solid curve-author’s computation, dashed
curve-computation †21‡, j-measurements †15‡.

Fig. 9 Cavitation inception number for body with semispheri-
cal head. Computed results are plotted by solid curve for body
diameter D Ä0.05 m, by thick solid curve-for D Ä0.05 m and
stimulated laminar-turbulent transition; by dashed curve-for
DÄ0.02 m; by thick dashes-for D Ä0.4 m. Experimental data are
shown: by l-for DÄ0.05 m †6‡; by j-for DÄ0.05 m and stimu-
lated laminar-turbulent transition †28‡; by m-for DÄ0.4 m †27‡;
by Ã-for DÄ0.02 m †27‡.

Journal of Fluids Engineering MARCH 2002, Vol. 124 Õ 189

Downloaded 03 Jun 2010 to 171.66.16.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



drofoil ~see Fig. 7!. The suggested method for viscous fluid is
uniformly good with the same coefficients determined for axis-
symmetric flow.

Several recent papers include numerical modeling of viscous
effects on cavitation performed without consideration of cavita-
tion effect on viscous separation upstream of cavity. The results
~like in @22#! were obtained forL/C.0.1 and given location of
cavity detachment. Such approach is basically very close to
considered earlier@5#, and has evident limitation for extrapola-
tions to FS.

Validation of computationss15max$s(Re,We)% for axisym-
metric flow in Fig. 9 are, perhaps, the most convincing because
there are experimental data for a large variety of body sizes~body
diameters from 0.02 m up to 0.4 m! and diverse kinds of boundary
layers~in turbulent boundary layer Eq.~14! was replaced byXL

2Xo52d* @7#!. This figure manifests that scale effect on cavita-
tion cannot be completely described by Re.

There is no possibility of such wide comparison for hydrofoils,
but similar computed dependencies are plotted in Fig. 10 to show
general tendencies. FS data are higher than MT data, and ideal
fluid data are the highest. Because NACA-0012 is a symmetric
hydrofoil (a050), this plot can be symmetrically prolonged to
negativea ~or negativeCL!.

3 Analysis of Real Model Tests
A large difference betweenK and s I for hydrofoils usually

occurs because of combination of two effects. The first effect is a
viscous effect on cavitation itself. This effect is illustrated in Fig.
9 for the lift-free body, but such illustration can also be considered
as an example for a fixed lift. The second effect is a viscous effect
on K, and this effect is caused by a dependency ofCL on Re~and
CL evidently affectsK!. According to Mishkevich@23# approxi-
mate formula, E817 at fora,p/15 and Re553105, CL is 0.64 of
ideal CL and 0.77 ofCL in FS. However, for MT in the quite
narrow water tunnel,CL rises with the ratio ofC to the distanceH
between upper and lower walls and witha. Particularly, according
to @16#, for H/C51.9 ~for conditions of model test@3,4#!, theCL
rise is about 30% fora2a056.5 degrees. Because of the oppo-
site effects, the measured values ofCL are very close to the the-
oretical line for ideal fluid untila.2a0,p/20 in the actual MT
@3#. Therefore, the use of the variablea in plotting buckets fors I
is acceptable for these particular MT, as is done in Fig. 11; but
there is no walls and opposite effects in FS. Although computa-
tions for MT are close to the measured data in Fig. 11, some
experimental values ofs I are higher than both measuredK @4# and
computed values for viscous fluid. Thus, it is appropriate to re-
member that measureds I can significantly depends also on the
water quality ~on size of nucleus and air content!. Currently,

theory of cavitation in viscous fluid has not been developed
enough to take into account these water properties, and presented
dependenciess I(Re,We) have to be considered as results for a
low or moderate air content.

It is necessary to add that gaseous bubbles introduce difficulties
in the analysis of data measured in MT. The bubbles appear at
s52(P`2PG)/rU`

2 , but the gas pressurePG is generally un-
known, and that forces use of the vapor pressurePC instead of
PG in calculation of s. This introduces a random error 2(PG

2PC)/rU`
2 in determination ofs and s I . Although this error

sharply drops in FS flows~because of much higherU`!, its exis-
tence in MT flows makes difficulties in determination of a basis
for extrapolations.

How the Velocity Peak Predetermines the Scale Effect
As noted, there is no tunnel wall’s effect in FS, andCL is much

lower than at the samea and much smaller Re in a narrow water
tunnel. Therefore, the full scale values ofs I(a) are lower than
model values in Fig. 11. This paradox can be deleted by usingCL
instead ofa in plotting buckets fors I ~as is done in@10# and in
Fig. 12!.

It is also useful to supply these buckets by information about
location of the cavity edges ats5s I . These computed data for
E817 are shown in Fig. 13. There is a gap in computed data for
the model hydrofoil E817 because computed max$s% is too small
~in comparison withK! in the related range of lift; and there is
also no sheet cavitation in model tests@4#. Out of the mentioned
gap of angles, a distance between the cavity and the hydrofoil’s
leading edge is small~see Fig. 14!.

For cavities over full-scale hydrofoil in the range of small lifts,
the boundary layer becomes turbulent upstream from cavities. Be-
cause of high pulsation of pressure, it is possible to define the

Fig. 10 Computed dependencies s1„a… for NACA-0012 hydro-
foil in infinite flow: l-for ideal fluid curve-for FS „CÄ1 m, U`

Ä27 mÕs…, m-for MT „CÄ0.1 m, U`Ä6.5 mÕs…

Fig. 11 Cavitation inception number for E817 hydrofoil as
function of the angle of attack. m-computation for ideal fluid
with measured †3‡ CL that implicitly „and incompletely … takes
into account the wall influence on hydrofoil cavitation,
j-computation for FS with measured †3‡ CL, solid curve-
computation for MT with C L „Re… and without an account of the
wall effect, x-measured †4‡ data.

Fig. 12 Computed dependencies s I„CL… for E817 hydrofoil.
Dashed curve relates to FS flow, solid curve-to MT.
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leading edges of cavitation zones~usually, with groups of attached
cavities!, but there is no continuous cavity detachment line, and
the zone can be located far enough from the hydrofoil leading
edge~in Fig. 15!.

As noted, hydrofoil design is usually an inverse problem of
ideal fluid theory, and it would be useful to understand what kind
of scale effect is associated with a pressure distribution that is
selected for this problem. The bucketss I(CL) for advanced hy-
drofoil E817 and conventional hydrofoil NACA-0012~in Fig. 10!
are very different. The unusual dependency ofK on a2a0 for
E817 and similar hydrofoils was unexpected by blade designers.
As a result, cavitation inception occurs on the pressure side much
earlier than on suction side@9,24# and the silence operation speed
does not attain its accessible limit.

Basically, the difference in scale effects can be explained with
regards to pressure distributions on these hydrofoils in ideal fluid
at the same valuesCL as real flows. Fixation ofCL does not give
the complete coincidence of flows, but this fixation allows exami-
nation of the main properties of pressure distribution for the di-
versea. One can see in Fig. 16 thatCp distributions near the
leading edges are similar enough for the suction side of NACA-
0012 ata54° and the pressure side of E817 ata526°. This
similarity results in a certain similarity of dependenciesK-s I on
CL in such ranges ofCL ~or a!. The distributionCp(x) over the
suction side for E817 ata54° is dissimilar toCp(x) of NACA-

0012 at the positivea-a0 ~that coincides with the pressure distri-
bution over its pressure side at negative angle of attack!.

The curvesCp(x) for CL between 0.5 and 0.8 include a small
arc of sharp rise and a large plateau there. Ideally, a very thin
cavity could spread along this plateau. Really, surface tension pre-
vents such spreading if max$h% is too small. This results in a
relatively high differenceK-s I for any realistic pair$C,U`%.

Such a difference can be useful. A designer may attain it and
reduces I for both model and full-scale Re and We by a relevant
rise of hydrofoil camber line. However, it is necessary to consider
scale effects on cavitation inception for two sides of hydrofoil.
Therefore, in blade design with the use of such 2D sections, the

Fig. 14 Computed distribution Cp „dashed curve … and
D*Ä100d* „solid curve … on the pressure side of E817 hydrofoil
at aÄÀ6° for CÄ0.1 m and U `Ä6.5 mÕs

Fig. 15 Computed distribution of Cp „dashed curve … and
D*Ä100d* „solid curve … on the suction side of E817 hydrofoil
with cavity of at aÄ4° for CÄ1 m and U `Ä27 mÕs

Fig. 16 Distributions of Cp in ideal fluid on NACA-0012 hydro-
foil at aÄ4° „top … and on E817 at aÄ6° „middle … and at aÄÀ6°
„bottom …

Fig. 13 Computed cavity leading edges „solid curves … and
trailing edges „dashed curves … on E817 hydrofoil at MT condi-
tions „top; C Ä0.1 m and U `Ä6.5 mÕs… and FS conditions „bot-
tom; C Ä1 m and U `Ä27 mÕs… for sÄs I
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center of the K-buckets must be displaced from the center of the
interval of angles of attack~or lift coefficients!, where the values
of K are low and close to a constant.

5 Conclusions
Analyzing scale effects on cavitation inception on hydrofoils in

flows with low or moderate air content, one can compose an
analysis of cavitation in full-scale conditions from two parts. The
first part relates to the Re effect on the hydrofoil lift. The second
part relates to the combined effect of boundary layer and surface
tension on cavity equilibrium. According to this analysis:

~a! The real envelopes I(CL) of the E817 hydrofoil is much
wider than its ideal bucket~mainly because of properties of
pressure distribution on the suction side!.

~b! Scale effects on cavitation inception are very different for
suction and pressure sides of E817 hydrofoil due to differ-
ent ‘‘fullness’’ of the velocity peaks near leading edge. It is
important to keep in mind such a difference in design of
hydrofoils/blades with suppressed cavitation inception.
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Appendix
One may require additional illustrations of convergence of the

described iterative method to solve nonlinear problems with free
boundaries. The author would like to present an illustration that
does not relate to hydrofoils, but manifests iteration convergence
in the most difficult case@25# where the velocity of ideal fluid
drops in the middle of cavity~for abscissa equal 0! down to zero.

The author assumes that Fig. 17 gives a sufficient illustration of
the ability of diverse modifications of the iterative method@11# to
describe nonlinear effects.

Nomenclature

B 5 cavity thickness
C 5 hydrofoil chord

CL 5 lift coefficient
Cp 5 pressure coefficient
Ff 5 wall friction
FS 5 full-scale conditions
H 5 distance between tunnel walls

K 5 min Cp
MT 5 model test conditions

L 5 cavity length
N andT 5 normal and tangent toS

P, P` andU` 5 pressure, unperturbed pressure and free-
stream speed

S* 5 cavity surface
S 5 whole flow boundary

U5(12Cp)1/2 5 velocity in inviscid fluid
Re 5 Reynolds number

We5rU`
2 C/g 5 Weber number

g 5 coefficient of surface tension
Xo andXr 5 abscissas of boundary layer’s separation

and reattachment
XL 5 abscissa of cavity leading edge~cavity de-

tachment!
a anda0 5 angles of the attack and zero lift

b 5 angle between exterior normal to body and
interior normal to cavity atXL

d 5 ratio of hydrofoil thickness toC
d* 5 displacement thickness
s 5 cavitation number

s1 5 cavitation inception number
r 5 fluid density
x 5 curvature of cavity surface
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Models for Analysis of Water
Hammer in Piping With
Entrapped Air
Water hammer transients in a pipe line with an entrapped air pocket are analyzed with
three one-dimensional models of varying complexity. The most simple model neglects the
influence of gas-liquid interface movement on wave propagation through the liquid region
and assumes uniform compression of the entrapped noncondensable gas. In the most
complex model, the full two-region wave propagation problem is solved for adjoining gas
and liquid regions with time varying domains. An intermediate model which allows for
time variation of the liquid domain, but assumes uniform gas compression, is also con-
sidered. Calculations are carried out for a wide range of initial system pressure ranging
from 0.101 MPa (14.7 psia) to 6.89 MPa (1000 psia). A step increase in pressure equal to
5 times the initial system pressure is imposed at the pipe inlet and the pressure response
of the system is investigated. Results show that time variation of the liquid domain and
nonuniform gas compression can be neglected for initial air volumes comprising 5% or
less of the initial pipe volume. The uniform compression model with time-varying liquid
domain captures all of the essential features predicted by the full two-region model for the
entire range of pressure and initial gas volume considered in the study, and it is the
recommended model for analysis of waterhammer in pipe lines with entrapped air.
@DOI: 10.1115/1.1430668#

1 Introduction

The prediction of pressure transients in separated gas-liquid
systems is of particular interest in the power and process indus-
tries. For example, a gas accumulator, which in its simplest form
consists of a vertical tube with noncondensable gas trapped
against the top closed section of the tube, may be employed on the
discharge piping of a positive displacement pump to dampen pres-
sure pulses in piping networks. In some cases, a trapped gas
pocket in a dead-end section of process piping can produce unde-
sirable hydraulic interactions between pumps and check valves.
The accumulated gas increases the compressibility of the inven-
tory in the pump discharge piping, which can result in a flow/
pressure surge during a rapid pump start. The flow surge causes
the pump discharge check valve to quickly swing open. As the
fluid momentum is arrested, over-compression of the gas pocket
can produce a reverse flow in the pipe causing the check valve to
slam closed, resulting in a waterhammer transient. In contrast, gas
pockets can be used to lessen the severity of waterhammer tran-
sients in voided systems by providing a cushioning affect for an
accelerating water slug. A study by the Electric Power Research
Institute ~EPRI! of hydraulic transients in cooling-water systems
found that the presence of free air in water systems may be suf-
ficient itself to limit the severity of a pressure surge and make the
addition of vacuum breakers unnecessary@1#. The EPRI study
reviewed data from a number of plant transients involving pump
trips and liquid-column separation. In most cases, owing to
vacuum breaker operation and the presence of free air in the sys-
tem, a waterhammer was avoided following pump restart. While
the air is effective in mitigating severe loads in voided systems,
the peak pressure resulting from the rapid pressurization of a
closed system with entrapped air can be significantly higher than
in a purely liquid system@2, 3#. Since pressurization of the piping
system will cause movement of the gas-liquid interface, a rigorous

treatment of hydraulic transients in pipelines with entrapped air
involves the solution of coupled pressure-wave propagation prob-
lems on time-varying domains.

In order to simplify engineering analyses, it is commonly as-
sumed that the entrapped air will compress and expand uniformly,
i.e., no spatial variation in the gas region, so that the pressure-
wave propagation problem for the gas phase can be eliminated.
With the assumption of uniform gas compression, effects of the
entrapped air appear in the model as a nonlinear boundary condi-
tion imposed on the liquid-phase problem. For relatively small
amounts of air, it is further assumed that the displacement of the
interface can be considered small in comparison to the length of
the liquid region, and therefore, pressure-wave transmission
through the liquid is computed on the unperturbed spatial domain
@4#. Interface displacement is derived from the computed liquid-
phase velocity on the unperturbed interfacial boundary. The dis-
placement is then incorporated into the calculation of the gas pres-
sure which in turn feeds back into the liquid-region problem
through the interfacial pressure boundary condition.

Martin @2# used a lumped parameter model to compute the pres-
sure rise for an entrapped air pocket at the closed downstream end
of a pipe caused by sudden pressurization at the upstream end.
The model neglected liquid compressibility and assumed uniform
gas compression. Calculations showed that the peak air pressure
can be significantly higher than the driving pressure imposed at
the upstream end of the pipe.

Qiu and Burrows@5# analyzed pressure surges caused by pump
shutdown in pipe lines with entrapped air. Their model considered
liquid compressibility and cavitation using the discrete cavity
model described by Wiley and Streeter@3#; however, the en-
trapped gas was treated as a lumped system and the variation of
the liquid column length was neglected. Their results showed that
small amounts of entrapped air can cause an increased pressure
surge as compared to the case of no entrapped air.

Lee and Martin@6# analytically and experimentally studied the
pressurization of an air pocket trapped against the closed end of a
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horizontal pipe containing water. Rapid pressurization of the air
pocket was accomplished by the sudden opening of a valve sepa-
rating the air, initially at atmospheric pressure, from the pressur-
ized liquid. Liquid pressure was set by a pressure tank connected
to the pipe inlet. Peak air pressure was determined for various
tank pressures and for different volumes of entrapped air. Experi-
mental results were compared to predictions obtained by solving
the water hammer equations on the time-dependent liquid domain
using a uniform compression/expansion model to account for the
presence of the entrapped air. A simpler model which neglects
compressibility of the liquid~rigid column analysis! was also con-
sidered. As shown by the Lee and Martin, rigid column theory
breaks down for systems with small entrapped air pockets while
water hammer theory shows fairly good overall agreement with
the experiments.

Brinckman and Chaiko@7# evaluated the capability of the
nuclear thermal-hydraulics code TRAC-BF1 for predicting peak
pressure in an air-water-system pressurization transient. TRAC
results for peak system pressure were compared against water-
hammer solutions obtained by the method of characteristics for a
pipe with small initial air volume~<10% of pipe volume!. Re-
sults for peak pressure agreed favorably with the method of char-
acteristics; however, on longer time scales TRAC tends to exag-
gerate the oscillation period and the solution suffers from artificial
damping.

The present study examines the range of validity associated
with certain approximations which are commonly made in carry-
ing out water hammer analyses for systems with entrapped air.
First, the study determines the conditions for which it is appropri-
ate to neglect the movement of the gas-liquid interface in the
solution of the water hammer equations for liquid pressure and
velocity. If a method of characteristics approach is used to solve
the water hammer equations, this simplification greatly reduces
solution complexity because characteristics become linear paths in
the x-t plane, and no interpolation is required to determine the
origination points of characteristics on the previous time level.
Clearly, the error associated with solving the waterhammer equa-
tions on the unperturbed liquid domain diminishes as the initial
volume of the entrapped air decreases. The study determines the
range of liquid fractionl for which the fixed-liquid-domain ap-
proximation remains valid and discusses the error incurred by
using the approximation for systems with large entrapped air
pockets.

The second approximation that is examined in this study is the
use of a uniform gas compression model to account for the influ-
ence of the entrapped air. To the best of the authors’ knowledge,
none of the water hammer analyses reported in the literature has
quantitatively examined the importance of pressure-wave trans-
mission within the gas region. Owing to its simplicity, the stan-
dard approach taken in water hammer analysis with entrapped air
is to assume uniform compression and expansion of the gas
pocket. The present study determines the effect of nonuniform gas
compression on peak system pressure for systems with large en-
trapped air volumes.

While a lumped-parameter model for the entire air-water sys-
tem can be obtained by neglecting the liquid compressibility and
thereby treating the liquid phase as a rigid column along with
assuming uniform gas compression, this model is not considered
here as it has already been shown by Lee and Martin and by
Guarga et al.@8# that rigid-column theory can significantly over-
predict peak gas pressure for systems with small entrapped air
pockets. Analyses of pressure surge in piping with entrapped air
using the lumped-parameter model have also been carried out by
Carrera et al.@9# and Hashimoto et al.@10#.

Three different mathematical models for water hammer tran-
sients in a pipe line with entrapped air are compared in order to
assess the range of validity associated with the fixed-liquid-
domain and uniform gas compression approximations. The three
models consist of:

I. Time-varying liquid length and nonuniform gas compres-
sion

II . Time-varying liquid length and uniform gas compression,
and

III . Fixed liquid length and uniform gas compression
The physical model considered in this study consists of a ver-

tical pipe containing liquid with an entrapped noncondensable gas
pocket at the top closed end of the pipe. The gas pressure response
to a sudden pressure disturbance imposed at the bottom open end
of the pipe is investigated with respect to the initial fraction of the
pipe length occupied by liquid. Gas compression is assumed to be
isentropic regardless of whether it occurs uniformly or nonuni-
formly. Potential vapor formation in the liquid region is not con-
sidered. Based on subsidiary calculations carried out with a two-
fluid ~vapor/liquid!, two-component~air/water! method, transient
pressure can drop to saturation resulting in some liquid vaporiza-
tion; however, void fractions in the liquid region are extremely
small ~10210 to 1026!, and the void formation was found to have
no appreciable effect on the computed peak air pressure.

Use of Model I involves solving the one-dimensional, isentro-
pic, compressible-flow equations on the time-varying gas domain.
The classical waterhammer equations are solved on the time-
varying liquid domain, and the gas and liquid-phase solutions are
coupled at the moving interface by appropriate matching condi-
tions. Rather than working explicitly with the time-varying do-
mains, mappings are introduced to transform the governing gas-
phase and liquid-phase equations to fixed spatial domains, and the
resultant equations are solved using a first-order-accurate,
method-of-characteristics approach. The influence of gas-phase
wave transmission on system response is determined by compar-
ing results for models I and II. Similarly, a comparison of results
for models II and III indicates the importance of including inter-
face movement in the solution of the liquid phase pressure and
velocity. Solutions are compared over a wide range of the dimen-
sionless parameterl which is defined as the fraction of the tube
length initially occupied by liquid. Values ofl range from 0.1 to
0.98. Calculations are carried out for three initial pipe pressures:
0.101 MPa~14.7 psia!, 0.689 MPa~100 psia!, and 6.89 MPa
~1000 psia!. The dimensionless parameterd quantifies the magni-
tude of the pressure disturbance imposed at the inlet of the pipe.d
is defined as the ratio of the imposed disturbance to the initial
system pressure. Values ofd ranging from 1 to 10 were considered
in this study. Representative results ford55 are presented.

Solutions to the governing equations for models I, II, and III are
obtained using the method of characteristics. Solution of the
model I and model II equations by the method of characteristics
involves the use of linear interpolation to determine the origina-
tion points of characteristics on previous time levels. It is well
known that the use of linear interpolation in the method of char-
acteristics solution of waterhammer problems can introduce nu-
merical damping into the solution. As reported by Wiley and
Streeter@3# and confirmed in this study, the use of a higher-order
interpolation scheme~second order interpolation! introduces ex-
traneous fluctuations into the solution when applied to problems
involving steep wave fronts. A linear interpolation scheme was
therefore selected for use with the method of characteristics.
Model II equations are also solved using a spectral method to
assess the influence of numerical diffusion on the results obtained
by using the method of characteristics with linear interpolation.
Although the spectral method is not as computationally efficient
as the method of characteristics, it does not introduce numerical
damping into the solution and it is therefore a useful technique for
assessing the degree of artificial damping present in the method of
characteristics solution.

Calculation results for models I, II, and III are compared to the
experimental results of Lee and Martin@6# obtained using an air/
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water system similar to that considered in this study. The experi-
mental apparatus used by Lee and Martin contained a flow meter
which produced a large irreversible pressure loss in the liquid
region of the tube. For purposes of comparing against the experi-
mental data, the inlet boundary condition in Eq.~2! was modified
to include a large irreversible loss coefficient, and the liquid-phase
wave speed was adjusted to be consistent with the value corre-
sponding to the experimental apparatus. Unfortunately, the inclu-
sion of the large loss coefficient had the effect of masking any
differences between the three models. The comparison against ex-
perimental data does however demonstrate that all three models
considered here can give an accurate prediction of peak pressure
in air/water systems with large frictional resistances.

As part of this work, guidance is developed with regard to the
range of validity of the simplified models II and III. Discussion is
presented concerning the magnitude and type of errors which may
be incurred if models II and III are employed for gas-liquid sys-
tems with relatively large air volumes.

2 Physical Model
The system considered in this work consists of a vertical pipe

containing water with air entrapped at the top closed end of the
pipe ~see Fig. 1!. Complete separation of the air from the liquid
phase is assumed. Pipe length is 3.05 m~10 ft! and initial pressure
ranges from 0.101 MPa~14.7 psia! to 6.89 MPa~1000 psia!. The
pipe has uniform cross-sectional flow area, and the pipe has an
inside diameter of 0.0254 m~1 in!. There is no heat transfer from
the fluid to the pipe walls. Initially, the water and entrapped air are
stationary and at a uniform pressurep0 ~gravity effects are ne-
glected!. At t50, a step increase in pressure top01p08 is imposed
at the pipe inlet (x50), and the interaction between the entrapped
air and the pressure disturbance is computed. In the model, the
magnitude of the imposed pressure disturbance is described by the
dimensionless parameterd[p08/p0 . The initial temperature of the
system is 294 K (70°F), and within the gas region, wall friction is
neglected. The sound speed in the liquid phase is constant and
taken equal to 1423 m/s~4670 ft/s! corresponding to the sound
speed of 70°F water in a 0.0254 m~1 in.! steel pipe accounting for
pipe wall elasticity. The air is assumed to obey the ideal gas equa-
tion of state, and compression and expansion of the air occurs
isentropically.

3 Governing Equations

3.1 Model I. In the liquid region, the pressure and velocity
are governed by the classical waterhammer equations@4#,

]pl

]t
1r l cl

2
]ul

]x
50 and

]ul

]t
1

1

r l

]pl

]x
52

f

2D
ul uul u (1)

where the subscriptl denotes the liquid phase,p is the pressure,
u is the velocity,t is the time,x is the spatial coordinate,r is the
density,f is the Darcy-Weisbach pipe friction factor, andD is the
pipe diameter. The density in~1! is the unperturbed liquid density
which differs negligibly from the actual fluid density. Liquid
phase sound speedcl is assumed constant. Convection effects are
neglected in the liquid phase since the liquid velocity is much less
than the wave speedcl . The pipe friction factorf depends on the
local Reynolds number and the relative roughness of the tube.
These dependencies are incorporated into the model by using the
single-phase friction factor correlations employed in the TRAC-
BF1 thermal-hydraulics code@11#. The effects of viscous heating
at the pipe wall are not incorporated into the friction factor calcu-
lation as sensitivity studies showed that varying fluid temperature
and associated viscosity in the applicable range had a negligible
effect on the computed peak gas pressures. Att50, the pressure at
the inlet of the pipe (x50) begins to increase fromp0 to p0

1p08 according to the relation

pl ~0,t !5p01p08~12e2bt! (2)

where the constantb is chosen so that the rise in pressure closely
approximates a step increase. Physically, this boundary condition
could correspond to the opening of a valve at the inlet of the pipe
where the valve separates the pipe from a constant-pressure tank.
The time-varying liquid domain is defined by 0,x,s(t) where
s(t) is the location of the gas-liquid interface~see Fig. 1!.

In the gas region, one-dimensional isentropic flow of the non-
condensable, ideal gas is governed by the respective continuity
and momentum equations,

]cg

]t
1ug

]cg

]x
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~g21!

2
cg

]ug

]x
50

and

]ug

]t
1ug

]ug

]x
1

2

~g21!
cg

]cg

]x
50, (3)

where the adiabatic indexg51.4 is the ratio of the gas specific
heats. For the gas region, the domain iss(t),x,L whereL is the
total length of the pipe. Pressure in the gas phase is related to
wave speed by the isentropic relations for an ideal gas,

S cg

cg0
D 2

5S pg

p0
D 121/g

and cg0
2

5
gRT0

v
, (4)

whereR is the ideal gas constant,T is the absolute temperature,
andv is the molecular weight of the gas. The subscriptg refers to
the gas phase, and the subscript 0 refers to the initial state of the
fluid. The top of the pipe is closed, and therefore, the appropriate
boundary condition on the gas region is

ug~L,t !50. (5)

Since the pipe diameter is assumed large enough for surface
tension effects to be negligible, and since there is no flow across
the gas-liquid interface, the pressure and fluid velocity are con-
tinuous across the interface. Thus, matching conditions for pres-
sure and velocity consist of

Pl @s~ t !,t#5Pg@s~ t !,t# and ul @s~ t !,t#5ug@s~ t !,t#. (6)

The kinematic relation for the interface,

Fig. 1 Schematic of gas-liquid system
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ds~ t !

dt
5ul @s~ t !,t#, (7)

with s(0)5s0 , follows from the fact that the time rate of change
of the interface location is equal to the liquid~or gas! velocity at
the interface. Finally, initial conditions consistent with the as-
sumption of uniform initial pressure and no fluid motion att50
consist of

pl ~x,0!5p0 , ul ~x,0!50, for xP~0,s0! (8)

pg~x,0!5p0 , and ug~x,0!50 for xP~s0 ,L !. (9)

Governing equations are nondimensionalized and transformed
to time-independent gas and liquid domains by introducing the
following dimensionless variables and parameters:
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L
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, V5
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2D
, and l5

s0

L
.

For the present study, 1<d<10, k50.243, b5100, and«
53.4131024. The parameterl is introduced to define the frac-
tion of the pipe length initially occupied by liquid. In this studyl
ranges from 0.1 to 0.98. Dimensionless continuity and momentum
equations, respectively, for the liquid region become
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where the liquid domain is now fixed such thatyP(0,1). For the
gas region, the dimensionless continuity and momentum equations
are

~12h!
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]t
1@kV2~12z!ḣ#
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1@kV2~12z!ḣ#
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c
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50, (14)

where again the domain is now fixed withzP(0,1). The dimen-
sionless kinematic relation for the interface response is

ḣ5U~1,t!, (15)

and the nondimensionalized initial, boundary, and matching con-
ditions, respectively, consist of

w~y,0!51, U~y,0!50, c~z,0!51, V~z,0!50, h~0!5l,
(16)

w~0,t!511d~12e2bt!, V~1,t!50, (17)

w~1,t!5@c~0,t!#2g/(g21), and U~1,t!5kV~0,t!, (18)

3.2 Model II. Model II is similar to model I in that it incor-
porates the effects of interface displacement on the transmission
of pressure-waves through the liquid region; however, in the gas
region, a simplified approach of assuming that the gas compresses
and expands uniformly is taken, i.e., there is no spatial variation in
the gas region. Liquid region governing equations consist of~11!
and ~12! along with boundary conditions,

w~0,t!511d~12e2bt! and w~1,t!5F 12l

12h~t!G
g

, (19)

and initial conditions,

w~y,0!51 and U~y,0!50. (20)

The non-linear interfacial boundary condition in~19! which in-
volves the dimensionless interface locationh(t), describes the
pressure change in the gas as a result of adiabatic, uniform com-
pression and expansion.h(t) is determined from the solution of
~15! with initial condition h(0)5l.

3.3 Model III. As in the case of model II, the gas phase is
assumed to compress and expand uniformly. An additional simpli-
fication is incorporated which involves solving the water hammer
equations for the liquid-phase on the unperturbed domain,x
P(0,s0), i.e., the length of the liquid region remains constant.
This approximation is equivalent to settingḣ50 andh5l in the
transformed Eqs.~11! and~12!. The governing equations become
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]y
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«

l

]w

]y
52mUuUu (21)

whereyP(0,1). Boundary and initial conditions consist of~19!
and ~20!.

4 Solution Techniques

4.1 Method of Characteristics for Model I. The dimen-
sionless governing Eqs.~11!–~18! for Model I are solved by the
numerical method of characteristics. Liquid-phase equations are
expressed in characteristic form through the standard approach of
multiplying ~11! by an unknown functionL1 and~12! by a second
unknown functionL2 and then adding the resultant equations. It is
found that if the ratioL2 /L1 satisfies the relation (L2 /L1)2

5(«h)22, then the linear combination of~11! and ~12! can be
expressed in terms of total derivatives ofw andU along a curve in
the y2t plane. It then follows thatw and U are related by the
compatibility equations,

dw

dt
6
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«

dU

dt
6

m

«
UuUu50, (22)

which hold along characteristic curves defined by solutions to

dy

dt
52

ḣ

h
y6

1

h
. (23)

Note that if there is no movement of the interface thenḣ50
and h5l, and the characteristics for the liquid region become
linear paths in they2t plane. It is the movement of the interface
which introduces curvature into the liquid-phase characteristics.
Also, note thatḣ51 corresponds to movement of the interface at
the sonic velocity. For the problem of interest, the interface moves
at speeds much smaller than the sound speed, and therefore,ḣ
!1. For the gas region, the compatibility equations,

dc

dt
6

~g21!

2

dV

dt
50, (24)

relate the dimensionless wave speedc for the gas to the dimen-
sionless gas velocityV along the characteristics defined by solu-
tions to

dz

dt
52

~12z!ḣ

~12h!
1

k~V6c!

~12h!
. (25)

Initial conditions for ~22!–~25! are derived from the initial,
boundary and matching conditions~16!–~18!. The gas region so-
lution is coupled to that of the liquid region through the interfacial
matching conditions~18!.

Characteristic Eqs.~23! and ~25! are solved numerically on a
fixed spatial grid using first-order, semi-implicit temporal integra-
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tion. Integration is implicit with respect to the interface locationh
and the interface velocityḣ5U(1,t). The remaining variables on
the right-hand side of~23! and ~25! are treated explicitly. This
approach is taken to avoid numerical instabilities in problems
where stability constraints on the interface relation~15! are more
restrictive, for the case of purely explicit integration, than they are
for the characteristic equations. If purely explicit integration was
used to solve the characteristic equations, the time step size could
be limited by stability constraints on~15! rather than by con-
straints on the much more computationally intensive characteristic
equations, and this could lead to unnecessarily large computation
times.

In the present semi-implicit formulation, time step size is vari-
able, and is determined at each time level such that a disturbance
does not travel farther than the spatial separation between grid
points during a single time step. Figure 2 shows the computational
grid used in solving the governing Eqs.~22!–~25! by the numeri-
cal method of characteristics. In the interior of the gas and liquid
regions, the solution is advanced in time by forcing the right-
moving and left-moving characteristics to intersect on an interior
grid point at the next time level. Over a single time step, charac-
teristics are approximated by straight line segments. Characteris-
tics will intersect at the target grid point, on the next time level,
only if they originate from specific locations on the current time
level. Origination points are denoted in Fig. 2 byA throughD for
the interior mesh points, byE andF for the interfacial grid points,
and byG andH for the boundaries. Points of origination for the
characteristics are computed as part of the solution. At interior
mesh points where the right-moving and left-moving characteris-
tics intersect, the compatibility Eqs.~22! for the liquid and~24!
for the gas, are used to compute the dependent variables. When
advancing the solution on the boundaries aty50 andz51, only
the characteristic and compatibility relations corresponding to
wave propagation into the boundary are used; the appropriate
boundary condition from~17! provides the additional constraint
needed to determine the solution. At the interface, interfacial
matching conditions~18! are used in conjunction with the liquid-
phase and gas-phase characteristic and compatibility relations
which correspond to wave motion into the interface. Note that
solution of the compatibility equations requires the values of the
dependent variables at the characteristic origination points. Since
characteristics do not, in general, originate from grid points at the
previous time level, the dependent variables, at pointsA through
H in Fig. 2, are determined by linear interpolation. There areM
mesh points in the liquid region andN mesh points in the gas
region.

In the solution scheme, the interface problem is solved first.
Determining the interface location, velocity, and pressure involves
only one characteristic from each region: the right-moving char-

acteristic from the liquid and the left moving characteristic from
the gas. Additional constraints are provided by the associated
compatibility relations and by the two matching conditions~18!.
In solving for the interface locationh j at the new time level, and
the interface velocityUM

j which is equal toḣ j , the second-order
accurate, finite-difference formula~trapezoid rule!,

h j5h j 211
Dt

2
@UM

j 1UM
j 21# (26)

is used to approximate the interface relation~15!. Here the super-
script denotes the time level, and the subscript denotes the spatial
grid point. Although the remaining differential equations are inte-
grated using a first-order accurate approach, a second-order
method is used for the interface equation because it adds no com-
putational complexity. Moreover, the interface location and inter-
face velocity feed into all of the characteristic relations.

The finite-difference approximations to the compatibility, char-
acteristic, and matching relations at the interface consist of:
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j 2wE1
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, (30)

wM
j 5~c1

j !2g/(g21), and (31)

UM
j 5kV1

j . (32)

In addition, linear interpolation formulas are used to express
wE , UE , cF , andVF in terms of known values at neighboring
mesh points on the same time level. Routine algebraic manipula-
tions lead to the following relations for the dimensionless liquid
pressure and the gas-phase wave speed at the interface:

wM
j 5a22

1

«
~UM

j 2a3!2
m

«
a3ua3uDt, (33)

and

c1
j 5a141

g21

2
a16, (34)

where the coefficientsai are defined sequentially in the Appendix.
Note that the coefficientsai depend on the interface locationh j

and the interface velocityUM
j at the current time level. Therefore,

an iterative procedure is used to compute the interface location,
velocity, and pressure. The procedure begins with a guess for the
interface velocityUM

j . The interface locationh j is then computed
from ~26!. Coefficientsai are computed, andwM

j andc1
j are cal-

culated from~33! and ~34!. It is then determined ifwM
j and c1

j

satisfy the matching condition~31!; if not, an improved estimate
for UM

j is made and the process is repeated until~31! is satisfied to
the desired degree of accuracy. In this work an outer-loop bisec-
tion procedure was used to determineUM

j , and the magnitude of
the error in the matching condition~31! was required to be less
than 1028.

Once the interface problem is solved,h and ḣ5UM
j , are

known on the next time level. The solution is then advanced on
the boundaries and interior grid points of the gas and liquid re-
gions. Using first-order, finite-difference approximations for the
characteristic and compatibility relations~22!–~25!, and incorpo-
rating the boundary conditions~17!, leads to the following results

Fig. 2 Computational grid for method of characteristics solu-
tion of model I equations
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j 1b4 , (35)
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(38)

where thebi , di , gi , andhi are defined in the Appendix, andw1
j

andVN
j are determined based on the boundary conditions~17!.

4.2 Method of Characteristics for Model II. In model II,
the response of the gas region is described by the uniform-
compression boundary condition~19! specified forw on y51. The
interface problem consists of the compatibility and characteristic
equations from~22! and~23! which correspond to wave propaga-
tion from the liquid into the interface~sign is ‘‘1’’ ! along with the
second boundary condition in~19! and the linear interpolation
formulas which expresswE andUE in terms of neighboring mesh
point values. Approximating the characteristic and compatibility
equations with first-order-accurate, finite-difference equations
leads to the following expression for the liquid pressure at the
interface:

wM
j 5a22

1

«
~UM

j 2a3!2
m

«
a3ua3u (39)

As for model I, the solution scheme involves guessing the in-
terface velocityUM

j and then computing the interface locationh j

from ~26!. The interfacial pressurewM
j is then calculated from

~39!. It is then determined if the relation

wM
j 2S 12l

12h j D g

50 (40)

from ~19! is satisfied to the desired degree of accuracy. If it is not,
then a root-finding scheme is used to obtain an improved estimate
for UM

j , which corresponds toḣ j , and the process is repeated
until convergence is obtained. In this work, a bisection procedure
is used to compute the interface velocity.

On the boundaryy50 and in the interior of the liquid region,
the solution is advanced in the same manner as described for
model I.

4.3 Method of Characteristics for Model III. In model III,
uniform compression and expansion of the gas phase is assumed.
In addition, the liquid-phase equations are solved on the unper-
turbed liquid domain. The liquid-phase equations in characteristic
form consist of the compatibility Eqs.~22! and the associated
characteristic equations,

dy

dt
56

1

l
(41)

With this model, the characteristics are lines of constant slope in
they2t plane. This approximation greatly simplifies the solution
because all characteristics originate and terminate at mesh points.
Therefore, no interpolation is required.

4.4 Spectral Method for Model II. The uniform compres-
sion problem with time-varying liquid domain is also solved by
means of finite Fourier transforms. This alternate solution ap-
proach is chosen to quantify the effects of artificial damping in the
method-of-characteristics solution of the model II governing Eqs.
~11!, ~12!, ~19!, and~20!. In the spectral solution, the dimension-
less liquid pressurew(y,t) is expressed in terms of the uniformly
convergent Fourier sine series,

w~y,t!5w~0,t!1y@w~1,t!2w~0,t!#

12(
k51

` F ~21!kw~1,t!2w~0,t!

kp
1wk~t!Gsin~kpy!

(42)

and the dimensionless velocityU(y,t) is represented by the co-
sine series,

U~y,t!5U0~t!12(
k51

`

Uk~t!cos~kpy!, (43)

which is also uniformly convergent foryP@0,1#. Series~42! is
obtained by expandingwy(y,t) as a cosine series onyP(0,1) and
then integrating the series term-by-term. In~42! and ~43!, k rep-
resents a wave number for the monochromatic constituents ofw
andU. k is the number of waves in an interval of length 2, and the
associated wave length is 2/k. The time-dependent coefficients
wk(t) andUk(t) are given by

wk~t!5E
0

1

dy sin~kpy!w~y,t! and

Uk~t!5E
0

1

dy cos~kpy!U~y,t!. (44)

Equations~44! define finite sine and cosine transforms for the
dimensionless pressure and velocity; inversion formulas are given
by ~42! and ~43!.

Taking the sine transform of~11! and the cosine transform of
~12! leads to the amplitude equations
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wherekP$1,2,3, . . . % and

J~ j ,k![E
0

1

dy ycos~ j py!sin~kpy!. (48)

Initial conditions consist of

wk~0!5
@12~21!k#

kp
, U0~0!50, and Uk~0!50 for

kP$1,2,3, . . . %. (49)

The kinematic interface relation~15! and a truncated set of
amplitude equations are integrated numerically to obtain the time-
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dependent Fourier coefficientswk(t), U0(t), andUk(t) wherek
is restricted such thatkP$1,2,3, . . . ,K%. Converged solutions
were obtained usingK526564. The mode coupling integrals
J( j ,k) are evaluated analytically.

When the cosine series~43! is truncated toK11 Fourier
modes, the smallest scale for spatial variations in the liquid veloc-
ity U(y,t) is 2/K which corresponds to the minimum wave length
which can be resolved by the series representation ofU. Since the
Fourier decomposition ofU is band limited to wave lengths which
are >2/K, the computed liquid velocityU(y,t) can be deter-
mined everywhere within the rangeyP@0,1# by samplingU at
K11 equally-spaced points spanning the rangeyP@0,1#. At each
time step during the numerical integration of the amplitude and
interface equations, theK11 values ofU are obtained from the
truncated form of~43! where theK11 Fourier cosine coefficients
are determined from the numerical integration of~46! and ~47!.
Note that the nonlinear friction integrals which appear in~46! and
~47! are the Fourier cosine coefficients of the functionW(y,t)
[mU(y,t)uU(y,t)u. The Fourier cosine coefficients ofW, and
hence the friction integrals, can be expressed in terms of the dis-
crete Fourier cosine transform,

E
0

1

dy cos~kpy!mU~y,t!uU~y,t!u

5
1

2K
@W~0,t!1W~1,t!~21!k#

1
1

K (
p51

K21

W~yp ,t!cos~kpyp!, (50)

whereyp5p/K. Values ofW at theK11 discrete points required
in ~50! are determined from the definition ofW and the values of
U computed from the truncated form of~43! on theK11 evenly
spaced grid points spanning the rangeyP@0,1#. Rather than
evaluating the friction integral by the computationally-inefficient
defining expression for the discrete Fourier cosine transform given
in ~50!, a standard Fast Fourier Transform algorithm, which re-
quires K to be an integral power of 2, is used@12#. Likewise, the
inverse transform~43! is performed using a Fast Fourier inversion
formula rather than directing performing the summation in~43! at
each of theK11 mesh points.

5 Results
Figure 3 compares predictions of peak gas pressure for models

I, II, and III against the experimental results of Lee and Martin
@6#. The experimental apparatus used by Lee and Martin to mea-
sure peak gas pressure in air-water systems is similar to the physi-
cal system considered in this work~Fig. 1!. It consists of a hori-
zontal pipe containing water and an entrapped air pocket at the
closed downstream end of the pipe. Initially, the liquid and gas
regions are separated by a closed valve. Gas pressure is 0.101
MPa ~14.7 psia! at the start of the transient.

Liquid pressure is 0.608 MPa~88.2 psia! ~6 times the initial gas
pressure! prior to opening the valve separating the gas and liquid
phases. At the inlet of the pipe, liquid pressure is maintained at
88.2 psia for the duration of the transient. A flow meter in the
liquid region is responsible for a large irreversible pressure loss.
Liquid region boundary and initial conditions presented in §3
were modified to emulate the experiments. As shown in Fig. 3, all
three models predict peak gas pressures consistent with the ex-
perimental results. The small variation among the predictions is
due to the large flow resistance associated with the flow meter. A
large irreversible pressure loss tends to make the results rather
insensitive to modeling assumptions. Specifically, the peak pres-
sure is essentially independent of whether or not the model in-
cludes time variation of the liquid domain. Models I and II allow
for changes in the liquid region length whereas model III does not.
As will be shown from the calculation results presented below,

liquid region variation strongly affects peak pressure in systems
where frictional effects are not dominant. This finding points out
that model assessments based on experimental results from sys-
tems with strong frictional damping will not capture the limita-
tions of relatively simple models which do not account for varia-
tion in the liquid region length.

Figure 4 compares the predicted temporal response of interfa-
cial pressure for models I, II, and III. Results in Fig. 4 correspond
to the case where 10 percent of the tube is initially filled with
liquid (l50.1). Initial pressure within the tube is 6.89 MPa~1000
psia!, and att50, the inlet boundary pressure rises rapidly from
6.89 MPa~1000 psia! to 41.4 MPa~6000 psia! corresponding to
d55. A high initial system pressure is chosen because predictions
of system response have been found to be more sensitive to mod-
eling assumptions in high-pressure systems. Forl50.1, the pres-
sure disturbance imposed on the inlet of the tube att50 reaches
the gas-liquid interface att50.1; at this time the gas pressure
begins to increase. Because of the relatively large entrapped gas
pocket considered in this case, the time scale associated with the
change in gas pressure is considerably slower than the time scale
associated with pressure wave transmission through the liquid re-
gion. As a result, there are many wave reflections which take
place within the liquid region during a single gas compression
cycle. Predicted gas-pressure oscillations decay with time because
of the influence of wall friction within the liquid region. As can be
seen from the model I results in Fig. 4, pressure-wave transmis-
sion within the gas region has a significant effect on the details of
the interfacial pressure response. Pressure disturbances propagat-
ing through the gas region produce fluctuations in gas pressure not
observed in the results obtained with uniform gas compression
models~model II and model III!; however, the leading order pres-
sure response, which is generally the parameter of interest in en-
gineering applications, shows excellent agreement with the pre-
diction of model II; peak gas pressure and the dominant frequency
component of the pressure oscillation match closely. Model III, on
the other hand, significantly underpredicts the peak pressure and
overpredicts the oscillation frequency. The spectral and method of
characteristics solutions for model II show excellent agreement
which indicates that numerical diffusion is not a factor in the
method of characteristics solution of the model II equations for
this value ofl. All of the method of characteristics solutions were
carried out using 100 mesh points for the liquid region. For model
I, 50 mesh points were found to be adequate for the gas region in

Fig. 3 Comparison of peak gas pressure predicted with mod-
els I, II, and III against experimental data of Lee and Martin †5‡.
Initial gas pressure is 0.101 MPa „14.7 psia … and liquid pressure
at pipe inlet is 0.608 MPa „88.2 psia …
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all problems except for those in whichl→1. For other than the
noted limit, doubling the mesh in the liquid and gas regions pro-
duced negligible changes in the calculated results. In the limit as
l→1, the gas pressure predicted by model I became sensitive to
the gas-phase mesh spacing, and mesh-independent solutions
could not be obtained. This encountered difficulty is attributed to
numerical diffusion and is discussed later in this section. Mode-
independent spectral solutions were obtained using 64 Fourier
modes.

In waterhammer analyses, a key result is peak system pressure.
Figure 5 compares peak interfacial pressure calculated with the
three models forl ranging from 0.1 to 0.98. Initial system pres-
sure ranges from 0.101 MPa~14.7 psia! to 6.89 MPa~1000 psia!.
Results in Fig. 5 demonstrate that model II agrees very well with
Model I over the entire range of initial pressure andl with the
exception of l→1 at high initial pressure (6.89 MPa
51000 psia). The good overall agreement between models I and
II for peak pressure indicates that the uniform gas compression
approximation remains valid even when the initial length of the
gas region is comparable to, or larger than, the length of the liquid
region. The fixed-liquid-domain approximation employed in
model III can introduce significant, nonconservative error into the
peak pressure whenl,;0.95.

The discrepancy between the results predicted by models I, II,
and III for the high-pressure system withl→1 is unexpected

based on physical considerations. When the initial length of the
gas region is small compared to that of the liquid region, nonuni-
form compression of the gas and variation of the liquid length
should become unimportant, and all three models should produce
identical results. The source of disagreement can be seen from the
temporal response of the interfacial pressure shown in Fig. 6 for
an initial system pressure of 6.89 MPa~1000 psia! andl50.98.
Comparison of the pressure trace corresponding to model I against
the response predicted by models II and III shows that there is
strong numerical damping in the method of characteristics solu-
tion of the model I equations. The linear interpolation scheme
used in the method of characteristics solution of the model I equa-
tions eliminates all of the fine structure in the pressure response.
Even the method of characteristics solution of the model II gov-
erning equations shows some numerical damping when compared
to the spectral solution for model II, although the degree of nu-
merical damping is weak, and none of the important features of
the solution are lost. Forl50.98, the spectral solution of the
model II equations shows excellent agreement with the method of
characteristics solution of model III. No numerical damping is
present in the model III solution since the liquid-region character-
istics are linear paths in they-t plane and no interpolation is
required to determine the origination points of characteristics on
previous time levels.

6 Conclusions
The presence of air in voided liquid systems can be effective in

mitigating severe waterhammer loads due to rapid void collapse.
For this reason, it is common to incorporate vacuum breakers into
piping systems which are susceptible to liquid-column separation
and void formation. Caution must be exercised when introducing
air into liquid systems as the peak pressure resulting from the
rapid pressurization of a closed system with entrapped air can be
significantly higher than in a purely liquid system due to compres-

Fig. 4 Temporal response of dimensionless gas pressure for
lÄ0.1, dÄ5, and P0Ä6.89 MPa „1000 psia …

Fig. 5 Peak gas pressure predicted with models I, II, and III as
a function of l and initial air pressure with dÄ5
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sion of the air as it arrests the momentum of the moving liquid.
The consequences of introducing air into liquid systems should be
analyzed in order to verify that the measures taken are effective in
mitigating potential waterhammer events and to assess the impact
of the air pocket on hydraulic transients. The present study com-
pares models of varying complexity for analyzing pressure tran-
sients with entrapped air. The simplest model~model III! does not
account for the influence of gas-liquid interface movement on
pressure-wave transmission through the liquid region and assumes
that the gas phase compresses and expands uniformly. It is found
that this fixed-liquid-length approximation can introduce signifi-
cant error into the predicted response when the initial gas region
length is comparable to that of the liquid region. Approximating
the time-varying liquid length with a fixed solution domain leads
to an over-prediction in the frequency of interfacial pressure os-
cillations and an under-prediction of the pressure amplitude which
is nonconservative for engineering considerations. For systems
with l>0.95, it is appropriate to neglect variation of the liquid
domain as there is negligible error introduced by this approxima-
tion. In fact, for l>0.95, use of model III is the most suitable
approach because it produces results with higher resolution than
more complex models considered. Model III underpredicts the
peak gas pressure in systems with significant initial gas volume
(l,0.95) and should not be used in these cases.

For systems with larger gas pockets, the effect of the change in
liquid length with interface movement must be accounted for in

the liquid-region model to produce an accurate system simulation.
Present results demonstrate that the model with variable liquid
length and uniform gas compression~model II! captures all of the
essential features of the full two-region model~model I! for sys-
tems in which the gas region initially occupies a large fraction of
the pipe length. Small-amplitude fluctuations in interfacial pres-
sure predicted by model I for high-pressure systems with large gas
volumes are not captured by model II; however, these fluctuations
are generally not of interest in practical applications. Typically,
the peak pressure and the dominant pressure oscillation frequency
are the results of interest. Forl→1, results obtained with Model
II show a small degree of artificial diffusion characterized by a
loss of fine detail in the solution.

The most complete model considered in the present study ac-
counts for interface movement and tracks pressure wave propaga-
tion in both the gas and liquid regions. This model~model I! is
capable of capturing small-amplitude, high-frequency fluctuations
in the interfacial pressure which the other models are incapable of
predicting. However, with model I, the effects of numerical diffu-
sion are much more severe forl→1; all of the fine solution
structure is lost and at high system pressures this diffusion can
lead to a slight under-prediction in peak pressure.

Results of the present study suggest that an appropriate model
for pressure prediction in liquid systems with an entrapped gas
pocket must account for the effect of interface movement on the
liquid domain length if the model is to be valid for cases where
gas pockets occupy greater than 5% of the pipe volume. It is
further shown that the uniform gas compression model is valid
over a range of system pressures and gas volumes and does not
suffer from the numerical diffusion of the more complicated
model which tracks pressure wave propagation in the gas space.
These findings suggest that model II considered in the present
study will provide a robust methodology for analyzing waterham-
mer transients in systems with entrapped gas. Conclusions regard-
ing the range of applicability for each of the three models assessed
are summarized in Table 1.

Appendix

The Coefficientsai , bi , di , gi , and hi
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j 212UM21
j 21
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Fig. 6 Temporal response of dimensionless gas pressure for
lÄ0.98, dÄ5, and P0Ä6.89 Mpa „1000 psia …

Table 1 Range of validity for waterhammer models
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An Experimentally Validated
Model for Two-Phase Pressure
Drop in the Intermittent Flow
Regime for Circular
Microchannels
This paper reports the development of an experimentally validated model for pressure
drop during intermittent flow of condensing refrigerant R134a in horizontal microchan-
nels. Two-phase pressure drops were measured in five circular channels ranging in hy-
draulic diameter from 0.5 mm to 4.91 mm. For each tube under consideration, pressure
drop measurements were first taken over the entire range of qualities from 100% vapor to
100% liquid. In addition, the tests for each tube were conducted for five different refrig-
erant mass fluxes between 150 kg/m2-s and 750 kg/m2-s. Results from previous work by
the authors on condensation flow mechanisms in microchannel geometries were then used
to identify data that corresponded to the intermittent flow regime. A pressure drop model
was developed for a unit cell in the channel based on the observed slug/bubble flow
pattern for these conditions. The unit cell comprises a liquid slug followed by a vapor
bubble that is surrounded by a thin, annular liquid film. Contributions of the liquid slug,
the vapor bubble, and the flow of liquid between the film and slug to the pressure drop
were included. Empirical data from the literature for the relative length and velocity of the
slugs and bubbles, and relationships from the literature for the pressure loss associated
with the mixing that occurs between the slug and film were used with assumptions about
individual phase friction factors, to estimate the total pressure drop in each unit cell. A
simple correlation for non-dimensional unit-cell length based on slug Reynolds number
was then used to estimate the total pressure drop. The results from this model were on
average within613.4% of the measured data, with 88% of the predicted results within
625% of the 77 measured data points.@DOI: 10.1115/1.1428327#

Keywords: Two-Phase, Pressure Drop, Microchannel, Intermittent Flow

Introduction
Heat transfer coefficients and pressure drop in phase-change

processes are a strong function of the local vapor quality. For
condensation inside tubes, different flow patterns are established
at different regions of the condenser as the fluid undergoes a tran-
sition from vapor to liquid along the length of the tube. Accurate
heat transfer and pressure drop predictions require an approach
that accounts for the variation in flow patterns as the quality
changes. Circular and noncircular microchannel tubes are being
used in space-conditioning condensers, particularly by the auto-
motive industry. There is also considerable interest in heat transfer
and pressure drop in microchannel geometries for a variety of
applications because of the extremely high heat transfer coeffi-
cients that these geometries offer. Coleman and Garimella@1–3#
demonstrated in a study on two-phase flow of air-water mixtures
and refrigerant R134a through small diameter circular and noncir-
cular geometries that flow regime transitions in such geometries
are different from those observed in larger diameter circular tubes.
This is because of significant differences between large round
tubes and the smaller tubes in the relative magnitudes of gravity,
shear, and surface tension forces, which determine the flow re-
gime established at a given combination of liquid and vapor-phase

velocities. Thus, extrapolation of large round tube correlations to
smaller diameters and noncircular geometries could introduce
substantial errors into pressure drop and heat transfer predictions.

Limited research has been conducted on addressing the effect of
tube hydraulic diameter on pressure drop and heat transfer coef-
ficients during condensation. The relatively few studies on two-
phase flow in small diameter round tubes have primarily used
isothermal air-water mixtures. Suo and Griffith@4# investigated
intermittent flow of several gas-liquid combinations in horizontal
tubes with hydraulic diameters ranging from 1.03 to 1.6 mm. They
found that, in this flow regime, the bubbles are long cylindrical
shapes separated from the wall by a surrounding liquid film. Also,
all the bubbles travel at nearly the same velocity and thus do not
agglomerate, but are separated by a liquid slug. Dimensional
analysis was used to choose seven non-dimensional groups to
characterize the system. However, it was found experimentally
that the ratio of the velocity of the bubble~equivalent to the trans-
lation velocity of the slug/plug when there is no vapor entrainment
in the liquid slug! to the velocity in the slug~the sum of the
superficial velocity of the liquid and gas phases! could be corre-
lated with just two of the parameters, which are functions of sur-
face tension, liquid density, liquid viscosity, tube diameter and
bubble velocity. Their analysis assumes laminar flow and it was
shown that if the bubble-to-slug velocity ratio is known, then the
cross-sectional area of the film around the bubbles may be calcu-
lated. In their analysis, the authors assumed that the liquid in the
film around the bubble was effectively stagnant, noting that, for
all the gas-liquid combinations considered, the viscosity of the gas
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is much lower than that of the liquid. A corollary of this assump-
tion is that the pressure drop in the bubble/film region is negli-
gible. They suggest that their experimental results corroborate this
assumption and the implication is that the velocity ratio is ‘‘deter-
mined at the nose of the bubble.’’ Finally, the authors showed that
as the non-dimensional bubble velocity increases, the ratio of
bubble velocity to the average liquid velocity in the slug obtains a
nearly constant value of about 1.19 which compares well with the
literature.

Dukler and Hubbard@5# developed a model for the pressure
drop in intermittent flow through 38-mm diameter horizontal
tubes using air-water mixtures. They used several methods to col-
lect data from this system including fast-response pressure trans-
ducers, photography, motion pictures and dye tracers. For most of
the conditions tested, the pressure loss associated with accelerat-
ing the slow-moving liquid film as it is overtaken by the faster-
moving liquid slug was a significant portion of the total pressure
drop. Their model consists of a slug of liquid with some gas
entrained, which has a blunt nose due to the take-up of the liquid
film. The bubble/film portion of the flow was assumed to be strati-
fied and cause negligible pressure drop. The nose of the bubble is
tapered reflecting a more gradual shedding process forming the
liquid film. The authors assumed a turbulent velocity profile in the
slug and assumed that the portion of the liquid slug which is
moving at less than the average velocity determines the ‘‘shed-
ding’’ rate of the slug, or the rate at which the film is left behind.
Using this approach, they fit the following simple logarithmic
expression to their more complex analytical solutions for the ratio
of the shape-translation velocity~bubble velocity if the slug is
assumed to contain no gas! to slug velocity as a function of slug
Reynolds number:

U translation/Uslug50.021* ln~Reslug!11.022 (1)

For the Reslug range considered in their work, 30,000,Reslug
,400,000, the resulting velocity ratio varied from 1.25 to 1.30.
The authors also developed expressions for the relative slug
length and pressure loss due to the acceleration of the film to
complete the model. The independent variables required to calcu-
late the total pressure drop, in addition to the physical properties
and tube dimensions, are simply the liquid and gas flow rates, the
slug frequency~which is used to calculate the total length of a
slug and bubble pair!, and the fractional entrainment of gas in the
liquid slug. The latter two values were obtained from their data.

Fukano et al.@6# investigated the flow of air and water though
horizontal tubes with diameters ranging from 1.0 to 4.9 mm. They
used visualization and pressure drop experiments to develop em-
pirical two-phase pressure-drop multipliers for several flow re-
gimes and to validate an intermittent flow model. They showed
from their visualization work that, in the slug/plug regime, the
ratio of bubble velocity to slug velocity is about 1.2 for all test
conditions. Furthermore, for each tube diameter, they were able to
correlate the relative slug length as a function of superficial ve-
locities using a simple proportionality constant; that is,
Lslug/(Lslug1Lbubble)5k jL /( j L1 j V). They neglected the pressure
drop in the bubble/film region and assumed a simple expression
for the losses associated with the film-to-slug transitions. The
method to calculate slug length~or frequency! is not described,
but they showed that the losses associated with the film-to-slug
transitions could be a significant portion of the total pressure drop.

In the study by Coleman and Garimella@1#, the effect of tube
diameter and shape on flow patterns and flow regime transitions
for air-water mixture flow in tubes with small hydraulic diameters
~1.3 mm to 5.5 mm! was investigated. Gas and liquid superficial
velocities were varied from 0.1 m/s to 100 m/s, and 0.01 m/s to
10.0 m/s, respectively. They showed that while pipe diameter and
surface tension may have a negligible effect on flow regime tran-
sitions in tubes with diameters greater than 10 mm~@7#; @8#!, for
smaller tubes these factors play an important role. Therefore, flow
regime maps such as those developed by Mandhane et al.@7#

based upon data from larger tubes may not be applicable for a
smaller tube diameter range. It was also shown that the theoretical
results of Taitel and Dukler@9# and the assumptions inherent in
these analyses may not be valid for tube diameters less than about
5 mm. It was shown that as the tube diameter decreases, the tran-
sition to a dispersed flow regime occurs at a higher value of the
superficial liquid velocity. Also, the transition to annular flow oc-
curs at a nearly constant value of the superficial gas velocity,
which approaches a limiting value as the tube diameter decreases.
Another effect of surface tension and tube diameter is to suppress
the stratified regime in small diameter tubes and to increase the
size of the intermittent regime. Thus, this study showed that the
flow patterns and the respective transitions change significantly
with tube diameter and shape.

Coleman and Garimella@2,3# studied the influence of tube min-
iaturization on two-phase flow mechanisms during condensation
of refrigerant R134a in a 4.91-mm round tube and four square
tubes with hydraulic diameters ranging from 1 mm–4 mm. For
each tube under consideration, flow mechanisms were recorded
over the entire range of qualities 0,x,1, and for five different
mass fluxes between 150 kg/m2-s and 750 kg/m2-s. Approxi-
mately 50 data points were recorded for each tube to obtain a
comprehensive understanding of the effects of geometry, mass
flux and quality on the phase-change flow mechanisms. The flow
mechanisms were categorized into four different flow regimes:
intermittent, wavy, annular, and dispersed flow. In addition, the
large amount of data over a wide range of test conditions enabled
the delineation of several different flow patterns within each flow
regime, which provided a clearer understanding of the different
modes of two-phase flow. For example, the annular regime was
divided into the mist, annular film, annular ring, wave ring and
wave packet flow patterns. The wavy flow regime was divided
into the discrete- and disperse-wave flow patterns. The dispersed
flow regime primarily consisted of the bubble flow pattern. The
intermittent regime was divided into the plug and slug flow pat-
terns. Transition lines between the respective flow patterns and
regimes on these maps were established based on the experimen-
tal data. It was found that the hydraulic diameter has a substantial
effect on the flow patterns and transitions. As the hydraulic diam-
eter decreases, the overall size of the annular regime increases,
and conversely, the wavy regime decreases in size. Progressing
from a hydraulic diameter of 3 mm to 2 mm, the disperse wave
pattern disappears and only the discrete wave pattern remains. A
further decrease in hydraulic diameter to 1 mm causes the wavy
regime to disappear completely, and is replaced by the annular
film flow pattern. The size of the intermittent regime increases as
the hydraulic diameter decreases, with a particularly large inter-
mittent regime for the 1-mm tube, indicating a diminishing influ-
ence of gravity forces.

In the present study, the work of Coleman and Garimella@2,3#
was extended to investigate pressure drop during condensation of
refrigerant R134a in small diameter round tubes. Two-phase pres-
sure drops in fourteen different circular and noncircular~square,
rectangular, triangular and other shapes! tubes of hydraulic diam-
eters ranging from 0.4 mm to 4.9 mm were investigated by the
present authors to span the range of flow rates that covered each
of the flow regimes described above. However, the focus of the
present work is the measurement and modeling of two-phase pres-
sure drop during condensation in theintermittent flow regime for
round tubes of varying diameters. Tran et al.@10# have recently
reported similar measurements of pressure drop inboiling flow of
three refrigerants including R-134a in small diameter tubes over a
wide range of conditions and have developed a correlation which
is an enhancement and modification of existing large-tube
correlations.

Experimental Approach
The test facility used by Coleman and Garimella@2,3# for the

R134a phase-change flow visualization studies was also used in
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the present study. A detailed description of the facility and the
experimental techniques used was provided in those papers. A
brief summary of the experimental approach is presented here. A
schematic of the test loop is shown in Fig. 1. Subcooled liquid
refrigerant exiting the set of postcondensers flows through the
coriolis mass flowmeter. The refrigerant is pumped through a
tube-in-tube evaporator, in which hot water flows counter-current
to the refrigerant to boil and superheat it. The superheated state is
ensured by a combination of a sight glass, temperature and pres-
sure measurements. Temperature and pressure measurements at
the superheated state enable measurement of the refrigerant en-
thalpy. The superheated vapor enters one of two precondensers,
where city water of the desired~variable! flow rate is used to
partially condense the vapor. Each precondenser is a tube-in-tube
heat exchanger, with the difference being that one of the heat
exchangers is approximately 3 times longer than the other. These
two precondensers and varying cooling water flow rates through
them help establish a wide range of refrigerant conditions at the
test section inlet. The outlet state of the test section was calculated
using a different independent measurement of this state. Thus, the
set of postcondensers downstream of the test section is used to
completely condense and subcool the refrigerant. The subcooled
refrigerant enthalpy at the exit of the postcondenser and an energy
balance on this condenser are used to deduce the refrigerant en-
thalpy and quality at the test section outlet. The measured pressure
drop in the test section is characteristic of the average quality in
the test section.

Refrigerant exiting the precondensers enters the test section.
The circular geometries tested in this study are shown in Fig. 2.
For the two largest diameter~4.91 mm and 3.05 mm! tubes, the
test sections consisted of counterflow, tube-in-tube heat exchang-
ers. For the smaller tubes, the test sections were fabricated as flat
tubes with multiple extruded parallel channels. Three such tubes
were brazed together, as shown in Fig. 3, with refrigerant flowing
through the center tube, and coolant flowing in counterflow
through the top and bottom tubes. This method of using multiple
parallel channels ensured that the refrigerant flow rates used were
large enough to be adequately controlled and measured, with ac-
curate heat balances around the test loop. Coriolis mass flow
meters~60.15% uncertainty for the refrigerant, and60.2% un-
certainty for the air! were used for the measurement of refrigerant
and air flow rates. Cooling water flow rates for the pre- and post-
condensers were measured using banks of precision rotameters
with a maximum uncertainty of62%. The flow rate ranges cov-
ered by these rotameters were: 0.2–4.5 liters per min, 0.2–2.2

liters per min, and 100–780 ml per min. For each data point, the
cooling water was routed through the rotameter that yielded the
highest accuracy. Integral precision valving with high turndown
ratios allowed steady control of the cooling water flow rates. Ab-
solute pressure transducers with uncertainties of60.25% of the
span were used to measure pressures of the refrigerant at various
locations and also the pressure of the compressed air used as the
coolant. Pressure drops across the test section were measured us-
ing a bank of three selectable differential pressure transducers,
with maximumDP values of 6.22 kPa, 62.2 kPa, and 248.2 kPa,
respectively, and an accuracy of60.25% of the span. As the ge-
ometry, mass flux and quality was varied, the pressure drop for a
particular data point was measured using the most accurate of the
three transducers and averaged over a two minute time interval.
All temperatures were measured using Platinum RTDs.

For each of the test sections investigated in this study, single-
phase tests were first conducted to calculate the single-phase fric-
tion factors for comparison with correlations found in the litera-
ture. Both single-phase liquid and vapor data were taken to span a
wide range of data in the laminar, transition and turbulent flow
regimes. Contraction and expansion losses at the inlet and outlet
were subtracted from the total measured pressure drop using the
appropriate loss coefficients. The residual frictional component of
the pressure drop was compared with the values predicted by the
Churchill @11# correlation as shown in Fig. 4. Relative roughness
values were assumed based on typical surface roughness values
for drawn tubing. In every case, the roughness values needed to
match the Churchill@11# correlation values were well within the
range of roughnesses for such tubes, which validates the approach
used in this study. Similar results were also obtained for the other
tubes. The excellent agreement between the single-phase data and
this correlation validates the test procedures.

Because a portion of the total pressure drop~change! in two-
phase flow can be attributed to deceleration/acceleration of the
fluid due to the changing quality and fluid properties, pressure

Fig. 1 Test section schematic

Fig. 2 Tubes investigated in the present study

Fig. 3 Test section schematic
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drop tests were conducted with and without coolant flow in the
test sections. With the test section inlet and outlet quality known,
the acceleration/deceleration component can be estimated from
void fraction and momentum change analyses. The results from
these tests with and without condensation in the test section pro-
vide additional validation of these estimates. These analyses are
described in more detail in the next section. Contraction/
expansion losses at the inlet and outlet of the test section must
also be estimated to enable the calculation of the frictional com-
ponent of the pressure drop. These contributions were estimated
using two-phase ‘‘minor loss’’ models available in the literature
~described in the next section!. For additional validation, tests
were also conducted on a ‘‘near-zero’’ length test section~with a
tube length of 0.022 m!. Thus, the bulk of the pressure drop in this
test section was due to the contraction and expansion losses, and
these data served to corroborate the ‘‘minor loss models’’ used to
estimate these contributions.

Data Analysis

Quality and Pressure Drop Calculation. As stated above,
energy balance calculations were performed on the pre- and post-
condensers to obtain independently determined values of the test
section inlet and outlet qualities, which suffice to calculate the test
section average quality for each data point. However, for the tests
in which there was coolant flow in the test section also, the test
section heat duty was measured from the coolant flow rate and
temperature difference. This test section duty measurement pro-
vided another redundant value of the inlet~or outlet! quality, and
therefore, a method to confirm the test section average quality
measurement. The difference between the average test section
quality calculated from the precondenser water-side duty, and the
quality calculated from the combination of the postcondenser
water-side duty and the test-section duty, was typically less than
1–2 percent, with a few data points at the extreme conditions
showing slightly higher discrepancies. An uncertainty analysis
was conducted to estimate the uncertainty in the test section qual-
ity measurement using the error propagation approach. Represen-
tative uncertainties for the range of mass flux and qualities studied
are as follows:

G5150 kg/m22s:

xavg50.1360.032 xavg50.5060.027 xavg50.9160.021

G5450 kg/m22s:

xavg50.1260.045 xavg50.4860.014 xavg50.8860.026

G5750 kg/m22s:

xavg50.1160.039 xavg50.5160.022 xavg50.7460.035

For each data point, the measured pressure drop data can be
represented by:

DPmeasured5DPfrictional1DPexpansion1contraction1DPdeceleration
(2)

where the expansion and contraction losses are due to the headers
at both ends of the test section, and the pressure change due to
deceleration is a result of the changing vapor fraction as conden-
sation takes place. The latter two terms in above equation must be
estimated before a model for the frictional contribution to the total
pressure drop can be developed. The pressure drop due to contrac-
tion into the test section was estimated using a homogeneous flow
model recommended by Hewitt et al.@12#:

DPcontraction5
G2

2rL
F S 1

Cc
21D 2

112g2GCH (3)

whereg is the area ratio (Atest section/Aheader), CC is a function of
this ratio, andCH is the homogeneous flow multiplier, which is in
turn a function of the phase densities and the quality. For the
expansion into the header from the test section, the following
separated flow model recommended by Hewitt et al.@12# was
used:

DPexpansion5
G2g~12g!CS

rL
(4)

whereCS , the separated flow multiplier, is also a function of the
phase densities and the quality. As stated above, these estimates
were validated using pressure drop measurements on a ‘‘near-
zero’’ length test section. The results are shown in Fig. 5. This
graph shows excellent agreement between the measured total
pressure drop in the near-zero length test section and the
contraction/expansion plus frictional component predictions.

Fig. 4 Single-phase pressure drop validation „tube C30 …

Fig. 5 Validation of contraction Õexpansion contributions using
near-zero length tube
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Here, the frictional component of the short, 0.022 m length sec-
tion necessary to cause the contraction and expansion is estimated
from the corresponding data for the C30 tube~which has the same
0.761 mm diameter channels! based on the ratio of their respec-
tive lengths. The scatter in these graphs can be attributed to the
slight fluctuations in the mass fluxes for the data points, which are
also shown for reference in this figure. Once this approach was
validated in this manner, it was used to subtract the contraction
and expansion contributions from all the measured data points. It
should be noted that contraction and expansion loss contributions
were less than 5 percent of the total measured pressure drop for
almost all the data points because of the relatively long test sec-
tion lengths used.

The slight change in quality between the inlet and outlet of the
test section results in acceleration or deceleration of the fluid,
which can be estimated using the following expression@13#:

DPacceleration5FG2x2

rVa
1

G2~12x!2

rL~12a! G
x5xout

2FG2x2

rVa
1

G2~12x!2

rL~12a! G
x5xin

(5)

where a is the void fraction which was evaluated using the
Baroczy@14# correlation. Because the quality at the outlet is lower
than at the inlet~condensation!, DPaccelerationis generally negative
and, when subtracted from the measured pressure drop, adds to
the value of the measured pressure drop. As can be seen in Fig. 6
for a mass flux of 600 kg/m2-s for Tube C30, however, in all the
tests conducted in this study, this term is extremely small com-
pared to the overall pressure drop. These estimates of the negli-
gible ~and within measurement error! contribution of the accelera-
tion term were also corroborated by tests conducted with and
without condensation in the test section.~In Fig. 6, a deceleration/
acceleration term is shown even for the adiabatic tests because at
the same enthalpy, the refrigerant quality could be slightly differ-
ent as the pressure changes from the inlet to the outlet.!

Flow Regime Determination. Experiments on the tubes un-
der consideration were conducted over a nominal quality range of
5 percent to 95 percent for each of the mass fluxes of interest.
However, the focus of the present study is the intermittent flow
regime; therefore, only data points belonging to this regime were

included for this pressure drop model. The transition criteria de-
veloped by Coleman and Garimella@3# from flow visualization
studies were used to identify the flow regime established for each
data point. They found that intermittent flow occurs at low vapor
qualities, with this flow regime persisting at higher qualities as the
mass flux decreases. In addition, they developed individual tran-
sition equations for each tube (1,Dh,4.91 mm) on which flow
visualization tests were conducted, and showed that the size of the
intermittent regime increases asDh decreases. In the present
study, which covers a similar range ofDh values, interpolation
equations as a function ofDh were developed from their transition
criteria to address the specific tubes shown in Fig. 2. The general
equation for the transition criteria is as follows:

x<
a

G1b
(6)

whereG is the total mass flux expressed in kg/m2-s anda andb
are geometry dependent constants given by:

a569.5673122.595•exp~0.2586•Dh! (7)

b5259.98991176.8137•exp~0.3826•Dh! (8)

where Dh is the hydraulic diameter of the tubes in mm. These
criteria for transition from intermittent flow for each of the tubes
under consideration are shown on aG-x plot in Fig. 7. The points
of interest for this study are those that lie to the left of these lines;
points lying to the right are either in the wavy regime or the
annular regime, depending on tube diameter. A total of 77 pressure
drop data points belonging to this intermittent regime were iden-
tified for model validation using these criteria.

Model Development. Table 1 shows photographs of the plug/
slug flow expected in the region of theG-x map identified above
from the flow visualization work of Coleman and Garimella@3#. It
can be seen that solitary bubbles travel as long, nearly cylindrical
shapes between slugs of liquid with virtually no vapor entrain-
ment. In the 1-mm tube, the effect of gravity does not appear to be

Fig. 6 Delineation of acceleration Õdeceleration contributions,
tube C30, 600 kg Õm2-s

Fig. 7 Intermittent flow regime boundaries for tubes under
consideration

Table 1 Representative patterns in the intermittent regime
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significant, as evidenced by bubbles that are surrounded by a very
thin annular film of uniform thickness around the tube circumfer-
ence. Surface tension forces ostensibly have a significant effect
for such small diameter tubes. In the larger tubes, the flow exhibits
more stratification and the film becomes thicker beneath the
bubbles. These observed flow patterns are used as a basis for the
development of the intermittent regime pressure drop model. As a
starting point, the assumptions about the shape of the bubble, film,
and slug regions proposed by Suo and Griffith@4# and Fukano
et al. @6# were used. Essentially, a long, cylindrical bubble of va-
por with a uniform annular film of liquid surrounding it is as-
sumed to flow somewhat faster than the liquid slugs which bound
it on either end~see Fig. 8!; the annular film flows very slowly
compared to both the bubble and the slug. Thus liquid is continu-
ally shed into the film from the posterior of the slug and picked up
from the film at the anterior of the slug. The liquid slugs are
assumed to contain no entrained vapor, and the bubbles are as-
sumed to be uniform and constant throughout the test section. The
total pressure drop due to this flow mechanism is the sum of the
purely frictional pressure drop in the slug and film/bubble regions
and the losses associated with the flow between the film and the
slug.

Frictional Losses in the Slug.The total mass flux and average
quality in the test section are known from the measurements and
comprise the independent variables input to the model. As has
been shown by Suo and Griffith@4# from mass conservation, the
average velocity in the liquid slugs can be readily obtained from
the sum of the superficial liquid and vapor velocities. Thus the
average slug velocity and slug Reynolds number can be calculated
as follows:

j L5
~12x!G

rL
(9)

j v5
xG

rV
(10)

Uslug5 j v1 j L (11)

Reslug5
rLUslugDh

mL
(12)

For all of the test conditions considered here, 2740,Reslug
,34,400. Therefore a power-law turbulent velocity profile with
exponentn57 was assumed for this region@15#:

u~r !5UmaxS 12
r

RD 1/n

(13)

Uaverage5Umax

2n2

~n11!~2n11!
(14)

SinceUaverageis known for the slug, the velocity profile in this
region is defined. Also, the pressure drop per unit length in the
slug is easily calculated assuming the Blasius equation as follows:

S dP

dx D
slug

5
0.3164

Reslug
0.25

rLUslug
2

2Dh
(15)

Frictional Losses in the Bubble/Film Region.Fukano et al.
@6# and Suo and Griffith@4# studied flow in tubes of approxi-
mately the same diameter as in the present study and concluded
that the ratio between bubble and slug velocity is approximately
1.2. Dukler and Hubbard@5# used much larger tubes and sug-
gested a relationship~see Eq. 1! for this relative velocity that was
not intended to extend to the lower values of Reslug encountered in
the present work. However, extrapolating their equation to the
current Re range yields relative velocity values of 1.18–1.24,
which is in remarkably good agreement with the results from the
other authors, in spite of the fact that it was based on a stratified
model of the film. For the present work, therefore, it was assumed
that, for all cases:

Ububble

Uslug
51.2 (16)

Each of the aforementioned authors suggest that the pressure
drop in the film/bubble region may be negligible compared to the
total pressure drop. However, since these investigators only con-
sidered air-water systems, the physical properties of the system
that led them to this conclusion may not apply to phase-change
refrigerant flow under consideration here. In particular, the ratio of
the liquid to vapor densities for R134a is much lower~approxi-
mately 16:1 versus 850:1 for air-water! as is the ratio of liquid and
vapor viscosities~approximately 10:1 versus 50:1!. Therefore, the
contribution of the film/bubble region was not neglected in the
present work. Several other unknowns in this region can be cal-
culated using the assumed relative velocity ratio, and continuity
and momentum balances. Based on the Re ranges encountered in
this work, 8<Refilm<541 and 1900<Rebubble<18,000, the flow
in the film was assumed to be laminar and the flow in the bubble
turbulent. Here,

Refilm5
rLUfilm~Dh2Dbubble!

mL
(17)

Rebubble5
rV~Ububble2U interface!Dbubble

mV
(18)

The film flow was assumed to be driven by the combination of
the pressure gradient in the film/bubble region and shear at the
film/bubble interface. The velocity profile for combined Couette-
Poiseuille flow through an annulus where the inner surface moves
at the interface velocity,U interface, is represented by the superpo-
sition of the pressure-driven and the shear-driven components
@16,17#:

ufilm~r !5

2S dP

dx D
f /b

4mL
FRtube

22r 22~Rtube
22Rbubble

2!

3
ln~Rtube/r !

ln~Rtube/Rbubble!
G1U interface

ln~Rtube/r !

ln~Rtube/Rbubble!

(19)

Within the bubble, a power-law profile is again assumed withn
57:

ububble~r !5
~n11!~2n11!

2n2 ~Ububble2U interface!S 12
r

Rbubble
D 1/n

1U interface (20)

Fig. 8 Cross section of assumed flow pattern for model unit
cell
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Note that both of these profiles satisfy the boundary condition
thatu(r 5Rbubble)5U interface. The shear stress boundary condition
at the interface is as follows:

t interface5mLS dufilm

dr D
r 5Rbubble

5tbubble~r 5Rbubble! (21)

Since the bubble is purely driven by the pressure gradient, the
shear in the bubble at the interface is given by:

tbubble~r 5Rbubble!52
Rbubble

2 S dP

dx D
f /b

(22)

This allows the evaluation of the interface velocity,U interface, by
differentiating Eq.~19! for dufilm /dr. Therefore:

U interface5
2~dP/dx!

4mL
~Rtube

22Rbubble
2! (23)

The corresponding film velocity profile is:

ufilm~r !5

2S dP

dx D
f /b

4mL
~Rtube

22r 2! (24)

Thus the film has a parabolic velocity profile driven by the pres-
sure gradient in the film/bubble region. The average film flow rate
is therefore:

Ufilm5

2S dP

dx D
f /b

8mL
~Rtube

22Rbubble
2! (25)

The pressure drop per unit length in the bubble/film region is
not readily apparent, however it is known that~again assuming the
Blasius friction factor!:

S dP

dx D
f /b

5
0.3164

Rebubble
0.25

rV~Ububble2U interface!
2

4Rbubble
(26)

At this point, there are five equations (17, 18, 23, 25, 26) for six
unknowns:Rbubble, (dP/dx) f /b , U interface, Ufilm , Rebubble, Refilm .
To complete the problem, continuity is enforced over a control
volume noting that the volumetric flow rate through any plane
must be constant:

Uslug5UbubbleS Rbubble

Rtube
D 2

1UfilmS 12S Rbubble

Rtube
D 2D (27)

For the conditions of interest here, these calculations yield 0.899
<Rbubble/Rtube<0.911; thus the predicted bubble diameter is
about 90 percent of the tube diameter.

Fractional Contributions of Slug and Bubble/Film Regions.
With the pressure drop per length known in both the slug and the
film/bubble regions, knowing the relative length of the bubble to
slug is all that is required to calculate the frictional component of
the pressure drop for any length of tube. For this, the measure-
ments of Fukano et al.@6# were used. For each of the tube diam-
eters they tested~1.0, 2.4, and 4.9 mm!, they showed that the
relative length of the slug could be closely approximated by:

Lslug

Lslug1Lbubble
5k

j L

j L1 j V
(28)

wherek is a different constant for each tube diameter. The follow-
ing expression fits the reported values ofk:

k50.722810.4629* exp~20.9604* Dh! (29)

whereDh is expressed in mm.
Thus the pressure drop due to frictional losses is known:

DPfriction only5L tubeF S dP

dx D
f /b

S 12
Lslug

Lslug1Lbubble
D

1S dP

dx D
slug

S Lslug

Lslug1Lbubble
D G (30)

For the conditions tested, this value is typically about 64% of the
total measured pressure drop. Figure 9 illustrates how the calcu-
lated values ofDPfriction only from both the slug and bubble/film
regions compare with the total measured pressure drop.

Calculation of Pressure Loss From Film-to-Slug Flow.The
remaining contribution to the total pressure drop is the loss asso-
ciated with the flow of liquid between the film and the slug. Be-
cause the film moves slowly, the front of the liquid slug is con-
stantly taking up fluid from the film. A pressure loss is associated
with the acceleration and subsequent mixing of this liquid@5#. The
total pressure loss from these transitions can be expressed as:

DPfilm/slug transitions5NUC•DPone transition (31)

whereDPone transitionis the loss associated with a single film-to-
slug transition, and the number of these transitions that occur
within the test section isNUC . Fukano et al.@6# assume that the
pressure loss as the film enters the slug region is the same as the
dynamic pressure calculated using the relative average velocity
between the slug and the film:

DPone transition5rL

~Uslug2Ufilm!2

2
(32)

They postulate that the pressure loss is due to an expansion of the
film into the slug at the rear of the bubble. Conversely, Dukler and
Hubbard @6# derive DPone transition by considering the force re-
quired to accelerate the portion of the liquid film overtaken by the
rear of the bubble from the average film velocity to the average
slug velocity. The resulting expression can be shown to be equiva-
lent to:

DPone transition5rLS 12S Rbubble

Rtube
D 2D ~Uslug2Ufilm!~Ububble2Ufilm!

2
(33)

They suggest that a region of mixing at the front of the slug
generates the blunt interface often seen between the bubble and
slug at the front of the slug/rear of the bubble. For the cases
considered here,DPone transitioncalculated in the manner of Fukano
et al. @6# is typically 2.1–2.4 times the value obtained using the
expression from Dukler and Hubbard@5#. In the present work, the
Dukler and Hubbard@5# expression is adopted due to its mecha-

Fig. 9 Contribution of each pressure drop mechanism to total
pressure drop for each test point
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nistic basis.NUC is simply the number of slug/bubble pairs, or
unit cells, since there is one mixing zone per unit cell. Knowing
the length or frequency of the unit cells would be sufficient to
determineNUC for any test section. Unfortunately, neither of these
parameters is easily availablea priori. Dukler and Hubbard@5#
derive empirical values of slug frequency from their prior work
and present these graphically, though they suggest a correlation
from Grescovich and Shrier@18# may be applicable when data are
unavailable. Fukano et al.@6# do not specify how they calculate
the number of unit cells; presumably they, too, derive it from their
experimental work. In the present work, there is no obvious man-
ner in which to calculate the number of unit cells from the flow
conditions. Therefore, this parameter was initially calculated using
the experimental data to account for the difference between
DPfriction only and the measured values in the following manner:

NUC5
DPmeasured2DPfriction only,predicted

DPone transition
(34)

The number of unit cells for any given length generally decreases
with increasing quality, increasing mass flux, and increasing tube
diameter. Because Reslug is a function of each of these parameters,
the number of unit cells per meter~1/LUC whereLUC is the length
of a unit cell! were plotted against Reslug, as shown in Fig. 10.
Based on the trends observed in this figure, the following expres-
sion was developed to correlate the number of unit cells:

NUCS Dh

L tube
D5S Dh

LUC
D5a~Reslug!

b (35)

with the following coefficients:a52436.9, b520.5601. Al-
though the resulting regression coefficient is quite low, R250.75,
the fit is close enough to significantly improve the accuracy of the
overall results~see Fig. 11!. The maximum number of unit cells
per meter predicted by this equation for all the data points con-
sidered in this study was about 50, resulting in a minimum unit
cell length of about 20 mm. The maximum unit cell length pre-
dicted for the 0.51, 0.76 and 1.52-mm tubes was about 50 mm.
The unit-cell-length-to-tube-diameter ratio ranged from 34 to 66
for the data points for these tubes, which had the three smallest
tube diameters from among those investigated here. In the two
larger tubes, the number of unit cells predicted was very small
~corresponding to longer unit cells! since the predicted
DPfriction only was near, or in some cases, exceeding the actual mea-
sured pressure drop.~It should be noted that the measured pres-
sure drops in these tubes with the larger cross sections were rela-
tively low, particularly for this low vapor-quality region.! This

result suggests a limitation of the model for larger tubes, which
will be discussed further in the following sections.

Results and Discussion
Figure 9 illustrates the relative contribution of the three pres-

sure drop mechanisms: viscous losses in the slug, viscous losses
in the bubble/film region, and transitional losses from film take-up
at the front of the slug. For the test conditions modeled, typically
the slug flow accounts for 53 percent of the total pressure drop,
the film/bubble region 12 percent, and the transitional losses 35
percent. As shown in Fig. 11, the pressure drop values predicted
with the model described above agree well with the measured
data; 88 percent of the predicted pressure drop values fall within
625 percent of the measured values with an average error of 13.4
percent. Figure 11 also shows that, in general, as the tube diameter
increases and the measured pressure drop decreases, the variance
between the measured and predicted values increases. One expla-
nation for this is that when the total pressure drop is very small,
measurement precision may be a limiting factor. In addition, the
assumptions utilized for the model regarding the shape of the
bubble and film become less valid as the tube diameter increases
due to the increasing role of gravity which produces a more strati-
fied flow pattern~see Table 1!. Since the model presented here
neglects the effects of gravity compared to surface tension forces,
when stratification of the flow occurs, the assumptions in the
model are less representative, leading to lower accuracies. Clearly
though, the model developed here is quite successful in predicting
intermittent-regime pressure drops in microchannel tubes with hy-
draulic diameter on the order of 1 mm.

One of the weaknesses in the model is in the calculation of the
length of the unit cells. As was shown in Fig. 10, the number of
unit cells per unit length calculated from the measured data and
the modeled pressure drop in the bubble/film and slug region is a
strong function of the Reynolds number of the slug, which ac-
counts for quality, mass flux, tube diameter and liquid density and
viscosity. However, this correlation did not completely collapse
the data into a single trend. This suggests that, in addition to errors
introduced due to measurement uncertainties in these relatively
low-pressure drop flows, there are other phenomena not accounted
for in this simple model. The effect of surface tension may also be
an important parameter to consider in future work.

Effect of Hydraulic Diameter. Figure 12 illustrates the ef-
fects of quality, mass flux and hydraulic diameter on pressure drop
predicted using the model developed here for a constant represen-
tativeL tube/Dh ratio of 500. The significant features of these plots
are as follows:

Fig. 11 Comparison of total predicted pressure drop with
measurements

Fig. 10 Number of unit cells per meter derived from measured
data and model as a function of slug Reynolds number, com-
parison with curve fit
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• Smaller diameter tubes produce higher pressure drop at any
given quality and mass flux for a constantL tube/Dh , and the effect
of diameter becomes increasingly significant as the tube diameter
decreases.

• The increase in pressure drop with quality is nearly linear, but
the slope depends on the diameter and mass flux.

• Pressure drop increases with increasing mass flux, and the
effect of mass flux becomes increasingly significant as the mass
fluxes increases.

Conclusions
An experimentally validated pressure drop model for intermit-

tent flow of condensing refrigerant R134a in horizontal tubes with
hydraulic diameters from 0.5 to 5 mm was developed. The experi-
mental work presented here in conjunction with prior flow visu-
alization studies of condensing refrigerant flows provided an ac-
curate set of measured pressure drop data for intermittent flow that
was used for model validation. Using assumptions based on the
observed slug/bubble flow pattern for these conditions and empiri-
cal data from the literature for the relative length and velocity of
the slugs and bubbles, the contributions of the slug and bubble/
film regions to the pressure drop were quantified. A simple corre-
lation for non-dimensional unit-cell length based on slug Rey-
nolds number was used with relationships from the literature to
calculate the pressure loss associated with the mixing that occurs
as the liquid slugs overtake the annular liquid film surrounding the
bubble. Besides tube dimensions and thermophysical properties,
the only input required for the model are the quality and mass flux
of the refrigerant. The results of this model were within613.4
percent of the measured data on average, with 88 percent of the
predicted results within625 percent of the 77 measured data
points. The model was validated over a large range of mass fluxes.
Furthermore, criteria for predicting the existence of intermittent
flow were presented, based on earlier flow visualization work by
the authors. It was noted that the assumed flow pattern more ac-
curately represents the observed flow pattern for smaller tube di-

ameters; the agreement of the model with the experimental data
was shown to degrade somewhat for the larger tube diameters
considered. Finally, the model was used to characterize the effect
of hydraulic diameter, mass flux and quality on pressure drop in a
systematic way. It was found that pressure drop for the same
L tube/Dh ratio increases almost linearly with increasing quality,
and more sharply with decreasing tube diameter and increasing
mass flux. Although the results of the model were satisfactory, as
with other models proposed in the literature@5,6#, modeling the
variation of unit cell length or slug frequency with flow condi-
tions, tube dimensions, and fluid properties is an area that needs
further investigation.
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Nomenclature

A 5 cross sectional area@m2#
a, b 5 variable constants
CC 5 constant in Eq. 3@12#
D 5 diameter@m# ~or @mm# as noted!
d 5 ordinary differential operator

DP 5 pressure drop@kPa#
dP/dx 5 pressure drop per unit length@kPa/m#

G 5 mass flux@kg/m2s#
j 5 superficial velocity@m/s# ~see Eqs. 9 and 10!
k 5 constant from Fukano et al.@6# ~see Eq.~28!!
L 5 tube length@m#
n 5 power law exponent~see Eq.~13!!

NUC 5 number of unit cells
R 5 radius@m#
r 5 radial coordinate@m#

Re 5 Reynolds Number
u 5 velocity @m/s# position dependent
U 5 velocity @m/s# cross-sectional average
x 5 vapor quality

Greek Symbols

a 5 void fraction
CH 5 homogeneous flow multiplier Eq. 3@12#
CS 5 separated flow multiplier Eq. 4@12#

r 5 mass density@kg/m3#
m 5 dynamic viscosity@Ns/m2#
t 5 shear stress@N/m2#

Subscripts

avg 5 average within test section
f /b 5 film/bubble region

h 5 hydraulic diameter of tube
L 5 liquid

UC 5 unit cell
V 5 vapor
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Numerical Simulations
of Hydraulic Jumps in Water
Sloshing and Water Impacting
A numerical investigation on Glimm’s method as applied to water sloshing and impacting
is carried out. Emphasis is given to the handling and predicting hydraulic jumps. The
effects of the spatial and temporal discretizations are examined. Three shallow water
problems, 1) dam-breaking problem, 2) water sloshing in a rolling tank, and 3) impact of
breaking of a water reservoir, are studied. It is shown numerically that Glimm’s method is
stable and converged solutions can be obtained. The characteristics of the hydraulic
jumps are well captured by the numerical calculations. The numerical results are in good
agreement with either analytical solutions or experimental data.
@DOI: 10.1115/1.1436097#

1 Introduction
It is well known that liquid sloshing has a very significant effect

on dynamic behavior of moving vehicles~or vessels! containing
liquids. For example, a ship in heavy seas usually receives a large
amount of seawater on its deck. The flow of the water on the deck
profoundly affects the motion of the ship in the seaway in which
it operates~Buchner@1#!. An oil tanker traveling in rough seas
may suffer from dynamic instabilities due to the coupling of the
fluid oscillation in its internal tanks~De Kat @2#!. A rocket using
liquid fuel is also subject to the effect of the sloshing of the liquid
in the fuel tanks after some of the fuel has been used~Graham and
Rodriguez@3#!. Generally speaking, partially filled tanks in mov-
ing vehicles are prone to violent sloshing motions~Abramson@4#,
Pilipchuk and Ibrahim@5#!. If the liquid in a tank undergoing
oscillatory motion is relatively shallow and the oscillation fre-
quency is close to the natural frequency of the liquid sloshing, a
hydraulic jump~an abrupt change in the elevation of the liquid
surface in a very narrow region! may occur~Verhagen Van Wijn-
gaarden@6#!. A hydraulic jump can create localized high impact
pressure on tank walls, which not only affects the motion of the
vessel but may also cause structure damages~Hamlin et al.@7#!.
Verhagen Van Wijngaarden@6# observed the formation of a hy-
draulic jump in a tank of an oil tanker at some resonant frequency.
The hydraulic jump traveled periodically back and forth between
the walls of the tank. The motion of the oil tanker was affected
significantly by the movement of the hydraulic jump. Since the
formation and movement of a hydraulic jump are caused by the
motion of the supporting vessel, it is clear that the motion of the
vessel and the movement of the hydraulic jump are strongly
coupled.

Water impacting is another phenomenon in which the surface of
an object is hit by a large amount of water with high velocity. In
many cases, there is a similarity between water impacting and
water sloshing in terms of formation of hydraulic jumps. For in-
stance, as a tidal wave moves closer to a shoreline where the
water depth becomes shallower, the wave becomes steeper and its
front evolves into a hydraulic jump~Stoker @8#, Yih @9#!. This

hydraulic jump soon turns into an overturning plunging wave with
a very high tip flow velocity. This overturning wave may hit the
shore~or coastal structures! with a very large impact, which is a
major cause of damage to the shore~or coastal structures!. An-
other example of water impacting is impact of so-called green
water on structures or equipments on deck of a ship or offshore
platform ~Bunchner@1,10#!. At times, on a side of the deck, an
almost vertical wall of water can rise above the deck due to large
relative motions of the ship and severe waves. This water wall
soon falls onto the deck~the water on the deck is called green
water! similar to the water flow of a dam-breaking~Bunchner
@10#!. The water on the deck can evolve into a hydraulic jump,
resulting in a high speed water jet shooting onto the structures on
the deck. This impact of green water can cause severe damages to
the structures or sensitive equipments on the deck.

Both liquid sloshing and water impacting are very important
issues in design and operation of ships and marine structures. The
water sloshing and water impacting concerned by ship and marine
structure designers are physically similar flows, all involving hy-
draulic jumps. The size of the hydraulic jump, its location and
movement are clear to have significant influence on the hydrody-
namic impact on the structures. Therefore, an accurate modeling
and simulation of the hydraulic jumps is the key to accurate pre-
diction of the effects of liquid sloshing on the motion of ship and
prediction of water impacting on the marine structures.

Like shock waves in gas dynamics, hydraulic jumps have been
modeled mathematically with a discontinuity in liquid surface el-
evation. Many researchers, including Stoker@8# and Verhangen
and Van Wijngaarden@6#, have studied flows involving hydraulic
jumps with use of shallow water wave theories. The analytical
approaches used in these early works were based on shallow water
wave theories and Taylor series expansions about the undisturbed
liquid surface. Most of the solution methods were derived for
some particular, simple problems. It is difficult for these ap-
proaches to find applications in the analysis and prediction of
water sloshing and water impacting in practical engineering prob-
lems where nonlinear effects are often so strong that these meth-
ods are not expected to give good solutions.

Research on numerical simulations of shallow water flows and
the associated loading on structures has been carried out recently
~Faltinsen@11,12#, Lou et al. @13#, Lee et al.@14# and Buchner
@1#!. Finite difference scheme and boundary integral equation
method ~or boundary element method! are two major types of
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methods used in most of the numerical simulations. These re-
searches aimed at solving more practical problems. There are
three major difficulties associated with simulating a hydraulic
jump. The first difficulty is handling the discontinuity of water
elevation on two sides of the jump~keeping the sharp shape of the
water front of a hydraulic jump, and maintaining the amplitude of
the jump accurately!. The second difficulty is handling the propa-
gation of the hydraulic jump~ensuring the moving hydraulic jump
propagate in the right direction!. The third difficulty is associated
with accurately predicting the magnitude and phase of the propa-
gation velocity of the hydraulic jump, thus the location of the
jump. In many cases, however, too much numerical damping~or
artificial dissipation! is introduced by these two types of the nu-
merical methods near the hydraulic jump. These methods, there-
fore, often fail to predict the formation of the jump or smear an
initial jump ~Faltinsen@12#!.

These difficulties may be overcome by using Glimm’s method
@15# ~also known as Random-choice method, Chorin@16,17#!. The
method was introduced by Glimm@15# as part of the proof of the
existence of solutions to a class of systems of hyperbolic differ-
ential equations. It was later developed by Chorin@16,17# into a
useful tool to obtain the numerical solutions to systems of hyper-
bolic differential equations. One of the distinctive features of
Glimm’s method is its superiority over the early methods men-
tioned above in handling discontinuities in the solution. Since the
governing equations for the shallow water waves are of hyper-
bolic type, Glimm’s method should be very well suitable for solv-
ing the hydraulic jump problems.

Dillingham @18# was probably the first one to use Glimm’s
method to investigate the effect of the sloshing of the shallow
deck water on the sway and roll of a ship. The problem was
simplified as two-dimensional. His results using Glimm’s method
for the water sloshing in a rolling tank compared reasonably well
with the experimental measurement. But, the comparison was
made for a narrow time span. Pantazopoulous and Adee@19# used
Glimm’s method to calculate the water height of a two-
dimensional dam-breaking problem for which there is an analyti-
cal solution~Stoker @8#!. His result was not smooth and did not
compare well with the analytical solution even for a very narrow
time span. Pantazopoulos@19,20# also attempted applying
Glimm’s method to three-dimensional sloshing of water on ship
decks. Similar to the two-dimensional problem, the results for the
three-dimensional problem were not smooth. Besides, no detailed
information on the pressure on the bottom and walls of the tank
was presented in Dillingham@18# and Pantazopoulous and Adee
@19# and Pantazopoulous@20#. Since then, little had been reported
on the application of Glimm’s method in water sloshing and water
impacting until more recently when Zhou@21# and Zhou et al.
@22# reported their work on green water dynamics on deck using
Glimm’s method. Their calculations compared fairly well with the
experiment measurement. This rekindled the interest in Glimm’s
method for water sloshing and water impacting, especially those
involving hydraulic jumps.

Like any numerical method, the accuracy of the numerical so-
lutions using Glimm’s method is affected by a number of factors.
These factors include geometric discretization, time step size, nu-
merical time stepping algorithm used, Courant-Friderichs-Levy
~CFL! condition~the ratio of the time step and the spatial resolu-
tion, as a stability criterion for the time stepping!, and cor-
rect implementation of the algorithm in computer code program-
ming, etc. More thorough investigation of these factors on the
solution accuracy is needed before a fair assessment can be made
on Glimm’s method as applied to water sloshing and water
impacting.

The present paper further extends the numerical investigation
on Glimm’s method. The effects of the spatial and temporal dis-
cretizations on the numerical solution are examined. Also exam-
ined is the effect of the CFL condition on the stability of the
numerical time stepping procedure. The method is investigated

with an emphasis on handling the hydraulic jump~the height of
the jump and its propagation direction and speed! encountered in
water sloshing and water impacting. For sake of simplicity, only
two-dimensional cases are considered. Excellent agreement with
the analytical solution of Stoker@8# is achieved for the dam-
breaking problem. The result for the water sloshing is in good
agreement with experimental data. In addition, the paper also pre-
sents a simulation of the movement of the hydraulic jump travel-
ing between the walls of the rolling tank~the water surface profile
at a series of time instants!, and the sloshing moment acting on the
tank as a function of time. Glimm’s method is also applied to
study the hydrodynamic impact due to breaking of a water reser-
voir. The computed water height and the impact pressure as func-
tions of time at several locations on the walls and bottom are
compared with available experimental data.

2 Mathematical Model

2.1 Coordinate System. Three coordinate systems are em-
ployed to describe the shallow water flow on board of the deck of
a vessel with a general three-degree-of-freedom motion in a plane,
as depicted in Fig. 1.

~a! Earth-fixed coordinate system
Coordinate systemO02y0z0 is fixed in space, withy0 axis point-
ing in the horizontal direction andz0 axis pointing upwards.

~b! Moving coordinate system
Coordinate systemG2ygzg is attached to the vessel with its ori-
gin G at the vessel’s gravity center. The directions of the axes are:
yg in the lateral port side direction andzg upwards. This coordi-
nate system moves with the vessel.

~c! Deck-Flow coordinate system
Coordinate systemZd2yz is used to describe the shallow water
flow on the deck.y axis is parallel to theyg axis of theG2ygzg
coordinate system and coincides with the undisturbed calm water
surface. Thez axis is inline with thezg axis.

Figure 2 shows a two-dimensional water wave flow deck in the
Zd2yz system. The water surface elevation is defined ash(y,t)
measured fromz50.

Fig. 1 Coordinate system configuration

Fig. 2 Shallow water flow coordinate system
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2.2 Governing Equations. The problem of the shallow wa-
ter flow in a container can be formulated as a nonlinear hyperbolic
system of equations using shallow water wave theory. The non-
linear shallow water wave equations derived in Stoker@8# are used
in our study,

]n

]t
1n

]n

]y
52g

]h

]y
(1)

]@n•~h1h!#

]y
52

]h

]t
(2)

in which n(y,t) is the vertically-averaged flow velocity in the
y-direction.h is the water depth when the water is undisturbed.g
is the gravitational acceleration. In the derivation of Eqs.~1! and
~2!, the water is assumed inviscid and incompressible. The water
depth is assumed shallow as compared to the radius of curvature
of the water surface. It is not necessary to assume that the dis-
placement and slope of the water surface are small. As a result, the
theory is not necessarily linear. The above two equations are de-
rived based on the fluid mass and momentum conservation laws
~the Euler equations for ideal fluid!, and satisfy the nonpenetration
condition on the solid bottom and the kinematic and dynamic
boundary conditions on the free surface. The free surface kine-
matic condition ensures that the fluid particles on the surface re-
main on the surface. The free surface dynamic condition requires
the fluid pressure on the free surface equal to the atmospheric
pressure usually set to zero.

Equations~1! and~2! represent the movement of the water in a
stationary and leveled vessel. Since theZd2yz coordinate system
is non-inertial for a moving vessel, it is necessary to take into
account the apparent body forces arising as a result of the accel-
erations and rotations of the vessel in order to correctly describe
the flow in theZd2yz system. Therefore, Eq.~1! and Eq.~2! are
modified as~Zhou @22#!,
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where

f ~y,t !52ŸG cosf2Z̈G sinf1v2y1v̇z2g sinf (5)

and

a~y,t !52ŸG sinf1Z̈G cosf2v2z12vn1v̇y1g cosf
(6)

where (YG ,ZG) is the location of the origin of theG2ygzg sys-
tem in the earth-fixed systemO02y0z0 . f andv are the rotation
angle and the angular velocity of theG2ygzg system relative to
the earth-fixed systemO02y0z0 . The single dot and double dot
over the variables in Eq.~5! and Eq.~6! indicate the first and
second derivatives with respect to time.f (y,t) anda(y,t) are the
body forces, in y and z directions respectively, acting on the water
due to the gravitation and acceleration of theG2ygzg system.

Defining water height asl5h1h, one has]l/]t5]h/]t.
Equations~3! and ~4! can then be expressed as,
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With proper initial conditions and boundary conditions on the
tank walls, the shallow water flow field can be solved numerically.
Initial conditions are given as:

l5l~y,t0!, n5n~y,t0! at t5t0 (9)

wheret0,t,t01Dt in Eq. ~7! and Eq.~8!, Dt is a time interval
of the motion of the vessel. The boundary conditions on the free
surface and the bottom are automatically satisfied under the long
wave assumption~Stoker@8#!. The remaining boundary conditions
to be satisfied are those on the side walls of the tank. On the side
walls, the usual non-penetration of flow condition is imposed,

n5Vw (10)

whereVw is the velocity of a side wall. Numerical implementation
of the initial condition and the side wall condition is described in
the following sections.

3 Method of Solution
We divide the flow domain equally intoM elements of length

Dy along they axis and approximate the water heightl and ve-
locity n by piece-wise-constant functions ofy, i.e., l and n are
constants over an element. As defined before,Dt is the time step
in the numerical calculation of the motion of a vessel.Dt is further
discretized into much smaller equal time intervals~time steps!,
Dt5Dt/N1 , with N1 being the number of time steps.l andn at
each time instant withinDt are then obtained by solving the initial
boundary value problem, i.e., Eqs.~7! and ~8! with the initial
condition Eq.~9! and the boundary condition Eq.~10!, in a time
stepping fashion.

The main difficulty of finding the solution to Eqs.~7! and~8! is
handling of hydraulic jumps which almost inevitably appear. Prior
to the appearance of a jump, the solution may be obtained numeri-
cally using the method of characteristics. However, the method
breaks down when the characteristic lines converge, which im-
plies the formation of a jump.

Glimm’s method~Chorin @16#! is used to solve Eqs.~7! and~8!
and simulate hydraulic jumps in shallow water flows. The method
consists of two steps. First, for each element, an analytical solu-
tion of a local Riemann problem~or equivalently a dam-breaking
problem! at the end of each time intervalDt is obtained by solv-
ing the initial value problem using the solution at the previous
time step~i.e., the beginning of this time interval! as the initial
condition. Then, the solution as piece-wise constant functions for
the whole space domain is constructed using a random sampling
procedure to sample a series of the obtained local explicit solu-
tions of the Riemann problems. This gives the solution for the
water heightl5h1h and the flow velocityn for each element at
the end of the time intervalDt. The process repeats for the next
time interval, thus giving the solution at all time instants inDt for
all the elements. It has been proven that the solution obtained in
this time-stepping fashion converges to the exact solution to Eq.
~7! and Eq.~8! as the number of time steps and the number of the
spatial grid points increase~Chorin @16#!.

Glimm’s method is attractive because it can handle relatively
complex flows with multiple hydraulic jumps without any special
treatment of the discontinuities and can handle the cases where the
deck can be partially dry. The method is unconditionally stable
and numerical errors can be quantified if the Courant-Friedrichs-
Levy ~CFL! condition ~defined in Eq.~19!! is met. Theoretical
stability analysis and numerical experiences have shown that for a
best accuracy in tracking discontinuities it is best to have the CFL
condition just barely satisfied~Tannehill et al.@23#, Wigton @24#!.
In the following, we will show how this condition is satisfied in
our version of the Glimm’s method.

3.1 Time-Stepping of the Solution. The technique of op-
erator splitting~Tannehill et al.@23#! is used to remove the inho-
mogeneous termf (y) on the right-side of Eq.~7!. At each time
instant, we solve the following homogeneous equations,
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and then correct the solution to the homogeneous equations with
the inhomogeneous equation,

]n

]t
5 f ~y,t! (13)

The solution obtained using the splitting technique is the solution
to Eqs.~7! and ~8! ~Tannehill et al.@23#!.

First, we seek the solution to the homogeneous equations, Eq.
~11! and Eq.~12!. Assume that the solution to the homogeneous
equations at timenDt,

Ui
n5 Hl i

n i
J for S i 2

1

2DDy,y,S i 1
1

2DDy (14)

is known~Fig. 3~a!!. In Eq. ~14!, i is the element index indicating
the mid-point of thei th element, whilen is the time step index
indicating thenth time instant. Whenn50, i.e., at the beginning
of Dt, the solution to Eq.~7! and Eq.~8! is used for (l i ,n i) in Eq.
~14!. The objective is to find the solution to the homogeneous Eq.
~11! and Eq.~12! at time (n11)Dt with Ui

n in Eq. ~14! as the
initial condition. Figure 3~a! shows the solution atnDt for ele-
mentsi 21, i and i 11. Notice that it has been assumed that the
solutions are piece-wise-constant functions ofy.

The procedure of finding the solution to Eq.~11! and Eq.~12!
consists of two steps:

Step 1:
For grid pointi 11/2 which is the end point of the elementi and

also the starting point of elementi 11, a local Riemann problem is
solved. The local Riemann problem is an initial-value problem of
an imagined dam-breaking governed by Eq.~11! and Eq. ~12!
with the initial condition,

U~y,nDt!5H Ui 11
n y.~ i 11/2!Dy

Ui
n y,~ i 11/2!Dy

(15)

for which an analytical solution exists~Stoker@8#!. For every grid
point, e.g., point i 11/2, let f n(y,(n11/2)Dt) and f l(y,(n
11/2)Dt) be the analytical solution~corresponding ton and l,
respectively! to the local imagined dam-breaking problem. The
analytical solution within elementi, being shown in Fig. 3~b! by
the dotted line, is used to construct an intermediate solution,
Ũ i 11/2

n11/2, shown by the solid horizontal line between grid nodesi
and i 11. Ũ i 11/2

n11/2 is determined by

Ũ i 11/2
n11/25H ñ i 11/2

n11/25 f nF S i 1
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2
1r nDDy,S n1

1
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where r n is a random number from@0,1/2#. Solving the local
Riemann problems for all the grid nodesi 11/2 for i
51,2,...... ,M21, we obtain the intermediate solution over the
whole domain at timet5(n11/2)Dt, ~Fig. 3~b!!. The disconti-
nuities in the solution have been shifted a distance of half element
length.

Step 2:
This step advances the solution to timet5(n11)Dt using the

intermediate solution obtained in Step 1 as the initial condition.
Similarly, a sequence of local Riemann problems are solved for
every point of the discontinuities~now at i 11). The analytical
solution to the Riemann problem,f̃ n(y,(n11)Dt) and f̃ l(y,(n
11)Dt), for point i 11 is shown in Fig. 3~c! ~dotted line!. Fi-
nally, the solution for elementi 11 is determined in a similar way
by

Ui 11
n115H n i 11

n115 f̃ n@~ i 111 r̃ n!Dy,~n11!Dt#

l i 11
n115 f̃ l@~ i 111 r̃ n!Dy,~n11!Dt#

(17)

with a different random numberr̃ n from @21/2,0#. The final solu-
tion is shown in Fig. 3~c! by the horizontal solid line.
These two steps advance the solution to the homogeneous
equations, Eq.~11! and Eq. ~12! from time t5nDt to time
t5(n11)Dt.

Repeating the two steps for everyDt until the solution to the
homogeneous equations is obtained fort5NlDt5Dt. The homo-
geneous solution att5Dt, denoted asn i

o , is corrected to obtain
the final solution to Eq.~7! and Eq.~8! at this time instant with the
use of the inhomogeneous equation, Eq.~13!,

n i5n i
o1E

t

t1Dt ]n

]t
dt5n i

o1E
t

t1Dt

f ~y,t !dt. (18)

The time integration in the above equation can be easily carried
out using a simple Runge-Kutta method.

Two measures are employed to ensure that the numerical solu-
tion is stable and the waves propagate correctly. The first measure
is that the following Courant-Friedrichs-Levy~CFL! condition
~Tannehill et al.@23#!,

Dy

2Dt
.~ unu1C! (19)

is satisfied for every element. In Eq.~19!, unu andC are the local
velocity and celerity of the flow respectively. The local celerity is
approximated with the shallow water wave velocityC5Agl.

Fig. 3 Time stepping of the flow solution for Element i. „a…
Flow state at tÄn Dt; „b… intermediate flow state at tÄ
„n¿1Õ2…Dt; „c… flow state at tÄ„n¿1…Dt
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When the CFL condition is satisfied, the waves generated by the
local dam breaks will not propagate more than one half of the
element length in one time step. The second measure is that it is
necessary that the sequence of the random numbers$r n% ap-
proaches a uniform distribution in the interval~21/2,1/2! as rap-
idly as possible. If the sequence were completely random, then
there would have been a finite probability in numerical calcula-
tions that stationary discontinuities or boundaries may move, or
that a moving discontinuity may propagate in the wrong direction
during some short time intervals. The possibility of either of these
occurrences can be eliminated if the random sequence alternates
so that during the one half time stepr n.0 and the next half time
stepr̃ n,0 ~a more extensive discussion is given by Chorin@16#!.

3.2 Numerical Implementation of the Boundary Condition
at Walls. To enforce the nonpenetration condition, Eq.~10!, on
the walls at the two ends of the flow domain, we replace the walls
with one virtual element to the left end of the domain and one
virtual element to the right end of the domain. The flow states of
the virtual elements are chosen so that there is no flow exchange
between a virtual element and its adjacent real element. Here, we
demonstrate how this is done for the right wall. The left wall is
treated in a similar manner.

Refer to Fig. 4~a! the center of the last element is located at
point markedM while the right wall is located at the point marked
M11/2. The added virtual element has its center at the pointM
11. At time t5nDt, the flow state of elementM, denoted asn l
andl l , are known. The flow state of the virtual element, denoted
asn r andl r , is chosen so that

H n l1n r

2
5Vw

l r5l l

(20)

or

H n r52Vw2n l

l r5l l
(21)

The flow state of elementM can then be advanced to timet
5(n11)Dt using the above described two-step procedure with
n r andl r in Eq. ~21! as the initial condition. In the first step, the
analytical solution to the local Riemann problem about pointM
11/2 is obtained and used to construct the flow state att5(n
11/2)Dt between pointM and pointM11 using Eq.~16! with a
random numberr n from @0,1/2#. Meanwhile, the flow state at time
t5(n11/2)Dt between pointM21 and pointM has also been
constructed using the analytical solution to the Riemann problem
about pointM21/2. Figure 4~b! illustrates the analytical solutions
of the Riemann problems about pointM21/2 and pointM11/2
and the flow states at timet5(n11/2)Dt on both sides of point
M. In the second step, the flow state of elementM at time t
5(n11/2)Dt is obtained using the solution to the Riemann prob-
lem about pointM with the flow states on both sides from the first
step as the initial condition and a random numberr̃ n from @21/
2,0#. Figure 4~c! illustrates the corresponding solution to the Rie-
mann problem and the flow state of elementM. It is not necessary
to advance the flow state of elementM11 to time t5(n
11/2)Dt since it is a virtual element outside the flow domain.
The flow state of the virtual element at timet5(n11)Dt will be
chosen according to Eq.~21! and used for the time stepping of the
flow state of the last element for the next time step.

Actually, the time stepping of the elements at the domain ends
is carried out in the exactly same way as those inner elements
when the two virtual elements are added. The flow states of the
virtual elements are chosen according to Eq.~21! so that the non-
penetration condition is satisfied.

3.3 Impacting Forces. Once the water height is sought, the
linearized impact pressure exerted on the bottom of the tank can
be calculated using the following formula~Zhou @21#!,

p~y,z,t !uz5z0
5ra~y,z0 ,t !l~y,t ! (22)

The impact pressure exerted on the walls can be calculated using

p~y,z,t !uy5y0
5ra~y0 ,z,t !~l,~y0 ,t !2h2z! (23)

In Eq. ~22! and Eq.~23!, ~y, z! is the coordinate of a point where
the pressure is of interest in the deck-flow coordinate systemZd
2yz. r is the water density.

The forces exerted on the bottom and walls can be obtained by
integrating the pressure over the wetted area,

FY ~y,z,t !52E E
s

p~y,z,t !nY ds (24)

and the moment about the origin is:

MY ~y,z,t !52E E
s

p~y,z,t !rY3nY ds (25)

where nY is unit exterior normal to the boundary andrY is the
position vector of a point on the boundary from the origin.

4 Numerical Results
The numerical algorithm described in the previous section is

examined with three problems: 1! dam-breaking, 2! water slosh-

Fig. 4 Time stepping of the flow solution for the element at the
end of the flow domain. „a… Flow state at tÄn Dt; „b… interme-
diate flow state at tÄ„n¿1Õ2…Dt; „c… flow state at tÄ„n
¿1…Dt
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ing in a rolling tank, and 3! water impacting due to the breaking of
a water reservoir. The results of the investigations are presented in
the following.

4.1 Dam-Breaking Problem. As a first check, Glimm’s
method is used to solve the dam-breaking problem for which an
analytical solution exists~Stoker@8#!. Initially, the water height is
10.0 m on right side of the dam and there is no water on the left
side. The water on the right side extends to infinite~to the right!
and the dry left side of the bottom extends to infinite~to the left!.
The solution after the dam breaks is sought using the numerical
procedure.

Recall that in Glimm’s method, the same analytical solution
approach is applied locally~for each spatial interval! at each time
step to the imagined dam-breaking problems and the solutions of
the local dam-breaking problems used to construct the global so-
lution. Because of this, the numerical solution should recover the
analytical solution very well globally for this problem as long as
the discretizations in time and space are fine enough.

Figure 5 compares the numerical and analytical values of the
water height at the timet51.0 second. Figure 6 compares the
numerical and analytical values of the velocity at the same time
instant. A ‘‘perfect’’ correlation between the numerical and ana-
lytical results is found as expected.

4.2 Water Sloshing in a Rolling Tank. Water sloshing in a
two-dimensional tank undergoing a forced oscillation is consid-
ered. The tank has a width ofB and is initially leveled and filled
with water of a depthh0 . The tank oscillates about the origin of
the O02y0z0 system as depicted in Fig. 7.

According to the theoretical analysis by Verhagen and van
Wijngaarden@6#, a resonance of the oscillation of the water in the
tank occurs if the frequency of the excitation~the roll motion of
the tank! is near the natural frequency of a weak jump which
depends upon the fluid depth:

v05
p

B
Agh0 (26)

It was observed in the experiment by Verhagen and van Wijn-
gaarden@6# that a hydraulic jump was generated when the excita-
tion frequency was nearv5v0 and the hydraulic jump traveled
periodically back and forth between the walls of the tank.

For oscillations near the natural frequency, linear theories for
the water sloshing fail because they are not able to handle the
hydraulic jumps and would give a solution of infinite amplitude.
We use Glimm’s method to simulate the water sloshing. The ex-
perimental measurement~Verhagen and van Wijngaarden@6#! is
available for validating the numerical solution. In the experiment,
the tank width wasB51.20 m and the water depth initially was
h050.09 m. The tank was moved, with the roll angle being,

f5f0 sin~v0t2u0! (27)

where,
f0 : the amplitude of roll oscillation;
u0 : the initial roll angle;
v0 : the natural frequency,v052.46 s21.

This experimental configuration is used in the numerical
simulation.

In the numerical calculations, the tank width is equally divided
into Ny elements. The total simulation time is set to beT513.0
seconds long enough to reveal the characteristics of the flow. The
time step for which the motion of the tank is calculated isDt. Dt
is further divided intoDt5Dt/N1 in Glimm’s method for the
time stepping of the shallow water flow solution. The time march-
ing step numberN1 within Dt is determined according to the CFL
condition to satisfy the stability criteria. Within the time interval
Dt, the acceleration of the tank is held constant, implying the body
force due to the acceleration of the tank is held unchanged during
the time stepping for the time intervalDt.

Like in any numerical method, two important parameters~the
resolution of geometric discretization and the time step size! may
affect the accuracy of the numerical solutions using Glimm’s
method. The effects of these two parameters are examined and the
results of the numerical investigation are presented in Section
4.2.1 and Section 4.2.2. It should be pointed out that in the nu-
merical investigation we always keep the CFL condition satisfied
so that the time stepping is stable.

Fig. 5 Comparison of water depth of dam-breaking problem

Fig. 6 Comparison of velocity of dam-breaking problem

Fig. 7 Fluid oscillation in an oil tank
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4.2.1 Effect of the Resolution of Geometric Discretization.
The effect of the resolution of geometric discretization on the
numerical solution is examined by varying the number of the el-
ementsNy while keepingDt unchanged. Since the celerity of the
local wave propagation varies in space and changes with time, the
smaller time step sizeDt for the time stepping withinDt may vary
to meet the stability requirement of the CFL condition. In the
results presented below, the time step sizeDt is 0.10 second.

Figure 8 shows the computed water height as a function of time
at the locationy/B50.492 using three different grid resolutions~
Ny540, 80, and 100!. Figure 9 shows the effect ofDy(5B/Ny)
on the sloshing moment exerted on the tank by the sloshing water.
It demonstrates that the sloshing moment is less sensitive to the
change ofDy than the water height.

4.2.2 Effect of the Time Step Size Dt.The effect of the time
step sizeDt on the numerical solution is examined by varyingDt
while keepingDy unchanged. Again, for the same reason, the
time marching step numberN1 for the time stepping withinDt
may vary to meet the stability requirement of the CFL condition.
In the results presented below, the number of the spatial elements
is Ny580, i.e., Dy50.015 m. Three values ofDt ~0.10, 0.15 and
0.25 seconds! are used.

Figure 10 shows the effect ofDt on the water height. As can be
seen, the three curves are very close to each other for up to
vt/p55. After that, the curve withDt50.25 second gradually
departs from the other two curves in the traveling velocity of the
hydraulic jump in particular. The curves with the finer time steps
(Dt50.10 and 0.15 second! stay close for a longer time. This

indicates that the numerical error in the jump traveling velocity, as
well as the water height, accumulates as the time stepping pro-
ceeds. The largerDt is, the higher the rate of the error accumula-
tion. Such error accumulation is also very common in most of
numerical time stepping procedures. Nevertheless, it is quite re-
markable that the present algorithm remains stable for such a large
time stepDt simulation.

Figure 11 shows the effect ofDt on the sloshing moments. As
expected, the sloshing moment is much less sensitive toDt since
the sloshing moment is an integrated quantity. The rate of the
error accumulation is, therefore, lower than that for the water
height. Up tot513.0 sec., the three curves are very close to each
other.

4.2.3 Hydraulic Jump Traveling Between the Walls of the
Tank. Figure 12 shows the water surface profile at six time
instants (t59.25, 9.50, 9.75, 10.0, 10.25, and 10.50 s!, and the
traveling of the hydraulic jump between the tank walls is clearly
seen. The hydraulic jump occurs at aroundt59.25 s, and travels
toward the right wall. As the jump travels, the magnitude of the
jump remains pretty much unchanged, but the water height
changes so that the total fluid mass remains conserved. At around
t510.0 s, the jump reaches the wall, changes the direction of its
movement, and moves back toward the left wall, as indicated by
the profiles att510.25 s andt510.50 s. This characteristics of
the movement of the hydraulic jump in the sloshing tank, as ob-
served in the experiment~Verhagen and van Wijngaarden@6#!, is
well captured by the numerical simulation.

Fig. 8 Effect of resolution of Dy on the simulation of hydraulic
jumps

Fig. 9 Effect of resolution of Dy on the sloshing moment

Fig. 10 Effect of the time step size Dt on the simulation of
hydraulic jumps

Fig. 11 Effect of the time step size Dt on the sloshing moment
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4.2.4 Comparison of the Numerical Results With the Experi-
mental Data. Validation of the present algorithm is carried out
by comparing the numerical results with the available experimen-
tal data. Figure 13 shows the computed water height and the ex-
perimental measurement at the middle of the tank (y/B50). The
experimental data is available only for a relatively short period of
time (vt/p50.5 to 2.5!. Figure 14 compares the calculation and
the measurement for this time period. The agreement is fairly
good, especially in the phase of the hydraulic jump.

Figure 15 shows the computed water height and the experimen-
tal measurement at the location,y/B50.492, which is very close
to the wall. Figure 16 compares the calculation and the measure-
ment for the time period ofvt/p50.5 to 2.5. The computed
height of the hydraulic jump is very close to the height measured.
The discontinuity in the water elevation~the hydraulic jump! has
been handled well in this algorithm. The predicted location of the

jump matches closely with the observation. The jump in the mea-
surements of the water height was not as sharp. This might be due
to the effect of surface tension or viscosity of the real fluid that are
not included in the present method. In fact, one should not expect
the computed water height to match the measured water height
perfectly, especially near the hydraulic jump, because the abrupt
change in the water height is idealized mathematically with a

Fig. 12 Hydraulic jump traveling between the walls of a tank at
tÄ9.25 s, 9.50s, 9.75s, 10.00s, 10.25s, and 10.50s. „Time in-
creases from top to bottom; for each time, the horizontal axis
ranges from À0.7 m to 0.7 and the vertical axis ranges from
0.0m to 0.2 m; DtÄ0.25 s, v0Ä2.46 sÀ1, h 0Ä0.09 m…

Fig. 13 Comparison of water surface elevation at center of the
tank

Fig. 14 Zoom view of the comparison of water surface
elevation

Fig. 15 Comparison of water surface elevation at port side of
tank

Fig. 16 Zoom view of the comparison of water surface
elevation
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discontinuity in the height. In reality, the water surface is always
rounded on the both sides of the jump due to the effects of vis-
cosity and surface tension.

Next, we compare the computed sloshing moment with the ex-
perimental data. Due to the complexity of the flow motion of the
real fluid, the sloshing moment contains many frequency compo-
nents. However, the dominant frequency is the first-order fre-
quency, i.e., the natural sloshing frequency. Verhagen and van
Wijngaarden@6# gave an estimation of the amplitude of the first-
order sloshing momentM1 and the phase differencec1 based on
a Fourier analysis of the experimental data. Therefore, the com-
puted sloshing moment is filtered using Fourier analysis before a
meaningful comparison with the experiment results can be made.
Figure 17 compares the first-order components of the computed
and measured sloshing moments. The agreement is excellent.

We also include the original computed sloshing moment~with-
out Fourier analysis!. As seen, the difference in amplitude be-
tween the total moment and the first order component is small,
confirming that the first-order component is indeed dominant.

Figure 18 shows the comparison of the sloshing moments at
v/v051.0 and v/v051.10. As mentioned before, at the fre-
quency nearv5v0 , a resonance and a hydraulic jump will occur,
thus producing a large rolling moment. As seen from Fig. 18, the
generated moment has a distinguish period and amplitude, which
appears mainly due to the back and forth movements of the hy-
draulic jump.

Finally, we compare the frequency response function for the
sloshing moment. Figure 19 shows the amplitude of the computed
sloshing moment as a function of the excitation frequency. We

also include the first order component of the experiment data. As
seen, the magnitudes are very close to each other for the excitation
frequency less than the sloshing natural frequency. A significant
discrepancy is noticed when the excitation frequency is greater
than the natural frequency. Also noticed is that the peak response
from the measurement occurs at a frequency slightly less than the
natural frequency while the computed peak response occurs at a
frequency a little higher than the natural frequency. The discrep-
ancy may be due to the effects of high frequency components.
Further investigation is needed to determine the causes.

4.3 Water Impacting Due to Breaking of a Water Reser-
voir. Glimm’s method is then applied to the water impacting
due to breaking of a water reservoir. In this problem, a rectangular
water tank is initially divided with a vertical flap into two areas.
The one on the right side of the flap is filled with water~reservoir
area! and the other area is empty. We are interested in the water
flow in the tank and the water impacting on the tank bottom and

Fig. 17 Comparison of rolling moment of first order
component

Fig. 18 Sloshing moment at the range near vÄv0

Fig. 19 Amplitude frequency response function

Fig. 20 Configuration of the experimental setup for the break-
ing of the water reservoir. „a… The locations of water depth
probes „in mm …; „b… the locations of the impact pressure trans-
ducers „in mm …
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the tank wall on the left end after the flap is suddenly lifted. At the
moment when the flap is lifted, the vertical wall of the water in the
reservoir crashes into the dry area, resulting in a flow flushing
over the bottom of the tank and a splashing of a volume of high
speed water on the left wall. When the water hits the wall, it
causes a large impact on the wall.

The calculation presented here uses the same configuration of
the problem setup used in the experimental study by Buchner and
van Ballegoyen@10#, see Fig. 20. The dimension of the tank is
shown in Fig. 20. The initial water height in the reservoir was 0.6

m. In the experimental study, water height probes were placed at
four locations marked as H1, H2, H3, and H4 in Fig. 20~a!. Three
pressure transducers were placed on the wall of a plate at the
locations marked as P2, P3 and P4, Fig. 20~b!. The water height at
the four locations on the bottom and the pressure at the three
locations on the wall were measured simultaneously.

Like in the water sloshing problem, a numerical investigation
on the effects of the grid spacingDy and the time step sizeDt was
conducted, and converged solutions were obtained for the water
reservoir breaking problem. For the results presented in this paper,

Fig. 21 Water height at H 1

Fig. 22 Water height at H 2

Fig. 23 Water height at H 3

Fig. 24 Water height at H 4

Fig. 25 Impact pressure at P 2

Fig. 26 Impact pressure at P 3
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the total simulation time length isTN58.0 seconds. The simula-
tion used a time step size ofDt50.10 s and a grid space ofDy
50.01 m. The smaller time step size was again determined auto-
matically in the calculation according to the CFL condition to
ensure the stability. The pressure formula reduces top5rg(l
2z) in this case since the water tank is stationary.

Figures 21–24 show the comparisons of the water height at the
four locations. Generally speaking, the agreement is fairly good.
Especially, the numerical simulation is able to capture the occur-
rence of the first big hydraulic jump at the right time and right
place. There is a noticeable discrepancy in water height between
the calculation and the measurement. But, again, one should not
expect that the computed water height would match well with the
measured for the reasons mentioned earlier.

Figures 25 and 26 show the comparisons of the pressure at
locations P2 and P3. As seen, the trend of the computation fits
closely to that of the experiment measurement. In the experimen-
tal data, there are very high frequency components, which might
very likely come from the structural vibration of the tank as a
response to the impact. The computation under-predicts the im-
pact pressure at the higher location, Fig. 25. This may be due to
the omission of the flow velocity terms in the pressure formula;
the contribution from the velocity terms may become very signifi-
cant and cannot be ignored.

5 Conclusions and Discussions
Numerical investigation on Glimm’s method has been con-

ducted carefully. The convergence tests have been carried out for
three shallow water flow problems. The numerical solutions have
been compared with the analytical solution~the dam-breaking
problem! and the experimental data~the water sloshing problem
and the breaking of water reservoir problem!. Our experience with
Glimm’s method indicated that two measures in our version of
Glimm’s method are critical in obtaining stable and converged
results. The first measure is meeting the CFL condition for every
smaller time stepDt within the big stepDt. The second measure is
making the sequence of the random numbers$r n% approach a
uniform distribution in~21/2, 1/2! as rapidly as possible, which is
achieved by alternating the sequence such thatr n.0 for the first
half of the time step andr n,0 for the second half step.

Based on the numerical investigation and the comparisons with
the experimental data, the following conclusions can be drawn,

1 The present time stepping procedure using Glimm’s method
is stable as long as the CFL condition is met.

2 Numerical solutions converge as the time step size decreases
and the spatial grid density increases.

3 The numerical solution matches almost perfectly the analyti-
cal solution in both the water height and flow velocity for the
dam-breaking problem for which the analytical solution exists.
This indicates that the numerical algorithm is correctly imple-
mented in the computer code.

4 The capability of Glimm’s method in handling the problems
where part of the domain is dry has been demonstrated through
the numerical investigation with the three problems.

5 In general, the numerical results compare fairly well with the
experimental data for the water sloshing and the breaking of water
reservoir problems. The numerical simulation predicts the occur-
rence of hydraulic jumps at right time and right location. It also
gives correct movement of hydraulic jumps~the traveling direc-
tion and speed! and very well preserves the sharp shape of the
jumps. The computed sloshing moment on the water tank com-
pares very well with the experimental data.

6 The numerical computation under-predicts the impact pres-
sure at the higher location on the wall in the water reservoir break-
ing problem. Improvement of the accuracy in the impact pressure
calculation may be possible by including the flow velocity terms
in the pressure formula.

The results for the water sloshing problem presented in this

paper show a significant improvement over those by Pantazopou-
lous and Adee@19# but only a slight improvement over those by
Dillingham @18#. However, our results, for both the water sloshing
and water impacting problems, are supported by the more thor-
ough investigation on the Glimm’s method in terms of the numeri-
cal convergence tests and validation using experimental data.

Further investigation is needed to determine the causes of the
discrepancies between the computational results and the experi-
mental measurements in Figs. 16, 19, 21–24 and 26. The possible
causes may include ignoring the viscosity and surface tension of
the fluid, and the effect of the elasticity of the tank walls, etc.

Extension of the Glimm’s method to three-dimensional shallow
water problems is relatively straightforward although the formu-
lation and the computations may be tedious. Chorin@16# discussed
the Glimm algorithm for the multidimensional problems.

As compared to finite difference methods or boundary element
methods, the time stepping procedure using Glimm’s method is
stable and accurate for shallow water problems, especially when
hydraulic jumps occur. Unlike the boundary element method in
Faltinsen@12#, the Glimm’s method requires no artificial damping
to keep the solution from going unbounded. In contrast to some
finite difference methods~Tannehill et al. @23#!, the Glimm’s
method introduces little numerical damping and is able to main-
tain the sharpness of the hydraulic jumps. However, the Glimm’s
method will fail if the motion of the fluid is so violent that the free
surface waves turn over. In this case, the water surface is a multi-
value function. A boundary element method like that in Faltinsen
@12# would not suffer such difficulty.
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Computational Evaluation of the
Periodic Performance of a NACA
0012 Fitted With a Gurney Flap
A detailed computational investigation into the periodic two-dimensional performance of
a NACA 0012 section fitted with 2 and 4 percent h/c Gurney flaps operating at a Reynolds
number of 0.853106 is presented. The aim of the work was to determine the suitability of
the incompressible Reynolds-averaged Navier-Stokes (RANS) formulation in modeling the
vortex shedding experienced by lifting sections with blunt, sharp edged features. In par-
ticular, whether under-converged steady state calculations could be used for section de-
sign performance evaluation in place of the computationally intensive time accurate flow
simulations. Steady, periodic, and time-averaged two-dimensional lift and drag coeffi-
cients, as well as vortex shedding frequency, were predicted and compared with the
available experimental data. Reasonable agreement was found, once sufficiently fine grids
had been generated, and the correct time step determined for the time accurate
simulations.@DOI: 10.1115/1.1427927#

1 Introduction
A Gurney flap is a short thin flap of height,h, fitted perpendicu-

lar to the pressure surface at the trailing edge of a wing. The most
common application of this device is in racing-car spoilers, where
it is used to increase the down-force. The blunt, sharp edged affect
of the Gurney induces an effective camber disproportionate to its
size, increasing theCL for a given incidence, as well as maximum
CL . The penalty for these increases inCL is an augment in the
zero-lift CD . Effects similar to these are experienced by high
performance ship rudder sections@1#. Of considerable interest is
how the lift augment can be maintained while minimizing the
zero-lift drag. Early research into the performance affect of fitting
a Gurney, and the flow structure resulting was conducted by Lie-
beck @2# and Neuhart et al.@3#. Recent experimental work by
Jeffrey@4# and Jeffrey et al.@5,6# using Laser Doppler Anemom-
etry ~LDA !, coupled with force and pressure measurements, has
furthered the understanding of Gurney flap flows, and provided a
rich source of validation data for computational fluid dynamics
~CFD! simulations. CFD modeling of Gurneys has been limited,
mainly due to computational resource constraints and difficulties
associated with the periodic vortex street produced by the Gurney.

Fripp and Hopkins@7# and Jeffrey@4# used panel methods to
model sections fitted with Gurney flaps. The Gurney was mod-
elled through the definition of a modified section, with a ‘‘virtual’’
trailing edge, representing the streamlines bounding the recircula-
tion regions upstream and downstream of the Gurney. Fripp, and
Hopkins@7#, reported disappointing results following comparison
with experimental data. Jeffrey@4# managed to obtain reasonable
agreement between the computational and experimental results for
2 and 4 percent Gurneys fitted to a NACA 0012 section. Although
this approach has obvious weaknesses, it can be used as a quali-
tative tool for assessing Gurney flap performance, while being
simple to develop and computationally inexpensive.

RANS investigations have been carried out by Ashby@8#, Ross
et al.@9#, and Jang et al.@10#. All these investigations modeled the
Gurney directly, yielding time-averaged data through a quasi-
steady solution approach. At this point, it is deemed necessary to
explain what is meant by a ‘‘quasi-steady’’ solution. Although the
flow about a Gurney is unsteady due to the vortex shedding, it is

typical to solve these problems as though they were steady, i.e.,
the time derivatives in RANS equations are set to zero. This pro-
vides details of average properties, commonly referred to as a
quasi-steady state solution, rather than details of the flow tran-
sients. Quasi-steady computations are much easier and faster than
time-accurate computations. Applying this solution approach to
unsteady problems can, however, neglect important flow phenom-
ena, resulting in incorrect performance prediction. In order to ad-
dress this problem, both quasi-steady and time-accurate computa-
tions have been carried out to determine if this is the case.

Ashby @8# carried out both experimental and computational
studies of lift-enhancing tabs on a multi-element aerofoil~NACA
632-215ModB). The computational study was conducted using a
two-dimensional incompressible RANS code, implementing both
the Spalart-Allmaras one-equation and Baldwin-Barth one-
equation turbulence models. The computed results predicted all of
the trends observed in the experimental data reasonably well. The
time-averaged flow field, indicated by computed streamlines, were
found to be consistent with the flow field hypothesized by Leibeck
@2# and observed by Neuhart and Pendergraft@3#.

Jang et al.@9# carried out computational studies of Gurney flaps
fitted to a NACA 4412 aerofoil. The computational study was
conducted using a two-dimensional incompressible RANS code,
again implementing the Baldwin-Barth one-equation turbulence
model. The trends observed in this study were shown to agree
well with the available experimental results. Although not all of
the flow physics was captured in the wake downstream of the
Gurney flap, enough of the major flow disturbances caused by the
application of the Gurney flap were, giving rise to results consis-
tent with those found by experiment.

Ross et al.@10# also carried out both experimental and compu-
tational studies of lift-enhancing tabs on the multi-element aero-
foil ~NACA 632-215 ModB!. The computational study was con-
ducted using the same two-dimensional incompressible RANS
code as used by Jang et al.@9#, implementing the Baldwin-Barth
one-equation turbulence model. While the computed lift and drag
results did not exactly match those found by experiment, they did,
however, manage to indicate the correct trend in the aerodynamic
forces resulting from the addition of the Gurney flap to the geom-
etry. Ross et al.@10# do not explicitly state the reasons for the
departure of their computational lift and drag predictions from the
experimentally measured values, contrary to the earlier findings of
Jang et al.@9#. There are a number of possible explanations for
this. First, the Gurney flapped single element aerofoil modeled by
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Jang et al.@9# allowed high quality computational grids to be
produced around the section, whereas the complex multi-element
aerofoil geometry modeled by Ross et al.@10# resulted in grids of
a lower quality. Other likely causes might have been associated
with the applicability of the Baldwin-Barth turbulence model for
the modeling of more complex flows and possible uncertainties in
the experimental data obtained by both researchers. Wilcox@11#
specifically mentions that the Baldwin-Barth turbulence model
can produce nonphysical diffusion in numerical computations
around multi-element aerofoils, while also being renowned for
under predicting skin friction drag, especially for attached bound-
ary layers.

Although the RANS studies discussed above yielded results
broadly similar to those found by experiment, a number of aspects
of the computational modeling of Gurney flapped sections using
RANS techniques have not been fully addressed. As yet no re-
searchers have investigated the effect of wake grid resolution on
the predicted flow physics found aft of the Gurney flap, or com-
pared quasi-steady RANS computations with full time accurate
flow predictions.

The aim of this work has been to apply the standardk-« two-
equation turbulence model in both quasi-steady and time accurate
calculations and to compare the results with each other and ex-
perimental data. As with all other computations implementing tur-
bulence models, the debate as to the best turbulence model for a
specific application was ever present in this research. Although the
standardk-« turbulence model was known to be poor at predict-
ing flows with adverse pressure gradients~similar to the Baldwin-
Barth turbulence model! and hence separated flows, it was used
because the authors were interested in assessing its performance
for high lift section design purposes, rather than its absolute ac-
curacy. Wake grid resolution and time step sensitivity studies were
conducted to assess their influence on the computed flow, in order
to establish confidence in the results obtained.

2 Investigation
In this study, both quasi-steady state and full time accurate

two-dimensional computations were carried out on a Gurney
flapped NACA 0012 section. Prior to the Gurney flap investiga-
tion, a full boundary location and grid dependence study was con-
ducted on a bare NACA 0012 section. Subsequently, a wake grid
dependence study was conducted on the NACA 001214 percent
Gurney to investigate the effect of the wake grid on the quasi-
steady solution, in particular its effect on flow structure and per-
formance prediction.

Quasi-steady computed performance data for a NACA 0012
fitted with a 2 and 4 percent Gurney was then compared with the
experimental data obtained by Jeffrey@4#, using the optimum grid
obtained from the wake study. The quasi-steady flow about the
NACA 001214 percent Gurney was also compared the experi-
mental flow structure obtained by Jeffrey@4#. A time accurate
periodic flow investigation was carried out on the NACA 0012
14 percent Gurney only. This involved a time step study to ex-
amine the effect of time step size on the solution, followed by
validation against the experimental data of Jeffrey@4#. The time-
averaged periodic data was also compared with the quasi-steady
results to determine if the quasi-steady solution approach captured
the same time-averaged flow physics. Steady-state solutions were
also obtained for an unflapped NACA 0012 operating at the same
flow conditions as the Gurney flapped NACA 0012 sections. This
was done as a comparison to show how well the solver predicted
the effect of fitting a Gurney. These computations were also vali-
dated against the data obtained by Jeffrey@4#.

2.1 Validation Data. The experimental results obtained by
Jeffrey @4# were used for validation. These tests were carried out
in a wind tunnel on a wing section of chordc50.32 m and span
b51.6 m, at a free stream velocity ofU`540 m/s, corresponding
to a Reynolds number of between 0.7720.893106 and Mach

number of less than 0.11. The variation in the Reynolds number of
these tests was caused by variations in the ambient pressure and
temperature. The wind tunnel turbulence level was measured, and
found to be of the order of 0.2 percent. Transition was fixed at 5
percentx/c from the leading edge. The low Mach numbers of
these tests make them suitable for the validation of the computed
incompressible results obtained from the RANS code. Jeffrey@4#
presents time-averagedcl , CL , cd , CD versusa, surface pres-
sures, LDA flow field data and LDA spectral flow field informa-
tion. Calculations of the uncertainties of the data were made. The
accuracy of the inclinometer used to set the incidence angle of the
wings was60.1 degrees. An uncertainty of60.0087 in theCL
and 60.00078 in theCD was calculated. The surface pressure
measurements were found to have an uncertainty of60.0013 in
the Cp .

2.2 Grid Generator, Flow Solver and Compute Facility
Details. The eight block, C-Grid topology grids were produced
using the multi-block grid generator FLEXIMESH@12#. The com-
mercial RANS solver CFX-4.3 was used for the research pre-
sented. CFX-4.3 is a structured multi-block, fully implicit finite
volume flow code produced by AEA Technologies@13#. A varia-
tion upon the Rhie-Chow@14# solution algorithm is implemented
within CFX-4.3. In all computations third order~convection
terms! QUICK differencing, and SIMPLEC pressure correction
were used. Quadratic second order time differencing in conjunc-
tion with fixed time stepping, was used for all time accurate cal-
culations. The two-equationk2« turbulence model, implement-
ing a wall function, was tested using the standard constants@11#.
All computations were carried out using one 300 Mhz MIPS pro-
cessor on an Origin 2000.

2.3 Computational Model and Boundary Conditions.
Two Gurney flapped and one unflapped NACA 0012 sections
were modeled using the RANS code, having a chord,c
50.32 m, span,b51.6 m and flap heights of 2 and 4 percent.
These models were run at a Reynolds number of 0.853106 which
equated to an inflow velocity ofU`540 m/s, based on an air of
density rair51.204 kg/m3 and laminar viscositymair51.811
31025 m2/s. The inlet turbulence parametersk and« were set to
zero. The mass source residual stopping convergence criteria, was
set at 1.031023 kg/s in all computations. This convergence level
was determined from a mass source residual versuscl and cd
convergence study on an un-flapped NACA 0012 section. The
outer boundary conditions used were; an inlet with a prescribed
u5U` cos(a) and v5U` sin(a) velocity on the forward part of
the C-Grid and upper, lower and far field pressure boundaries of
pressurep50. The NACA 0012 section was modeled as a no-slip
wall, and the Gurney flap was represented by two no-slip wall
surfaces back-to-back. It was deemed unnecessary to model
the Gurney thickness, as its effect was considered insignificant
and would only serve to further complicate the grid generation
process.

3 Results

3.1 NACA 0012 Boundary Location and Grid Dependence
Study. A boundary location sensitivity study was conducted on
an unflapped NACA 0012 at an angle of incidence of 8 degrees
and Reynolds number of 6.03106 appropriate for the data given
in @15#. The grids were generated such that the number of cells
around the section, and the cell size on the body and on the outer
boundary, remained constant for all the boundary locations tested.
This was done to ensure that any variations incl and cd were
solely due to the boundary location changes and not any grid
quality effects. The outer boundaries were positioned between 2
and 15 chord lengths away from the section, and the effect on the
computedcl andcd was noted. The results from this study can be
seen in Table 1. It is evident that at 15 chord lengths the variations
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in the predictedcl andcd are small. Based on these findings, the
outer boundaries in all subsequent investigations were placed 15
chord lengths away from the section.

A decoupled dependence study was conducted on the NACA
0012. Dependence of the solution to changes in near wall grid
node location, number of nodes around the section (nj) and num-
ber of nodes radiating (nh) from the section was sought. It should
be noted that the hyperbolic stretching function of Eiseman@16#
was used in order to ensure the refined grids produced were of
similar form. Wake grid dependence was not investigated since a
detailed study would later be carried out for the Gurney flapped
NACA 0012. However, a fine grid was propagated in the wake
direction (nz549), and held fixed throughout the near wall, radial
and chordwise studies. A total of 12 grids were tested, the results
of which can be seen in Table 2. Based on these findings, and in
order to have a sufficiently fine grid in the wake the 494399 grid
was used for all subsequent calculations with the first grid node
located 0.000625c away from the aerofoil (y1539299).

3.2 Wake Grid Dependence Study. It was necessary for a
wake grid dependence study to be carried out. A refined grid based
on the one obtained in the NACA 0012 dependence study was
taken and the wake distribution aft of the Gurney was refined
successively producing four grids. The propagation parameters
were chosen such that the majority of the grid nodes were located
near to the Gurney. The finest~Grid 4! is shown in Fig. 1, for
clarity every second grid line has been plotted. The flow over the
four grids was then solved at an incidence ofa50 degrees. The
computed meancl , cd along with their uncertaintiesUs due to
iterative non-convergence, as defined by Stern et al.@17#, are
compared in Table 3. The computedcl , cd quasi-steady values
referred to in the subsequent work are the mean values calculated
near the end of the simulation.

It is evident that thecl does not seem to follow a limiting trend
with increasing wake grid density. This is somewhat expected,
since the lift force is predominately affected by the flow over the
section and not what is occurring in the wake. Although thecd
does not seem to have fully converged to a limiting value, it is
evident that the predicted drag is affected by the wake grid den-
sity. Increased numbers of cells in the wake region allow more
accurate resolution of the pressures aft of the flap and hence the
predicted drag force. However, the small gains in accuracy in the
computed drag resulting from the increased wake density do not
seem to warrant the large simulation times. It can be seen from
Table 3 that the computations on coarse grid~Grid 1! produces a
fully converged steady state solution, i.e., lowest iterative uncer-
tainty and mass source residual~MSR!. Although the uncertainty
of the predictedcl is seen to be converging, it is not similarly
small for Richardson Extrapolation to be used to evaluate the
uncertainty due to grid refinement. It is also evident that thecd
uncertainty is not converging because of the large mass source
residual associated with the quasi-steady assumption, and difficul-
ties with the stability of the numerical solver in trying to reduce
this further.

The streamlines plotted for the coarse grid~Grid 1! in Fig. 2
show the formation of the double vortex structure hypothesized by
Liebeck@2# ~Fig. 3!. Figure 4 shows the interpolated mean stream-
lines derived by Jeffrey@4# from his LDA measurements. It is
evident on comparing Fig. 2 and Fig. 4 that the coarse grid com-
putations over predict the double vortex length by approximately
15 percent. The streamlines plotted for the fine grid~Grid 4! in
Fig. 3 indicate the formation of a periodic vortex structure. It is
evident that the captured flow physics is highly dependent on the
wake grid resolution aft of the Gurney flap, confirming what was
initially postulated but not confirmed, by Jang et al.@10#. It was
found that as the grid in the wake region was refined, the steady
state solutions failed to converge, instead oscillating about some

Table 2 NACA 0012 grid dependence study

nj3nh y1 cl31021 cd31021 a ~deg!

474325 270-765 0.0 0.106 0.0
474327 118-398 0.0 0.101 0.0
474329 65-200 0.0 0.098 0.0
474332 39-99 0.0 0.096 0.0
474334 20-49 0.0 0.096 0.0
44332 26-197 7.020 0.347 8.0
118332 26-197 8.149 0.164 8.0
244332 26-197 8.148 0.166 8.0
494332 26-195 8.150 0.168 8.0
494324 20-196 8.086 0.178 8.0
494349 36-197 8.164 0.162 8.0
494399 35-195 7.884 0.213 8.0

Table 3 Four percent Gurney quasi-steady wake grid study

Grid nz

Meancl

31021
Meancd

31021
cl Us

31021
cd Us

31021
Mean MSR

~kg/s!
CPU Time

~min!

1 37 6.517 0.304 0.0006 0 0.001 140
2 59 6.533 0.315 0.1377 0.004235 0.7 177
3 79 6.538 0.320 0.1036 0.008175 0.5 193
4 99 6.501 0.338 0.0293 0.008995 0.5 200

Table 1 NACA 0012 boundary location study

r /c cl31021 cd31021 cl ~% Change! cd ~% Change!

2 7.700 0.265 - -
5 7.957 0.209 3.3 21.1
10 8.056 0.191 1.2 8.6
15 8.071 0.189 0.1 1.0

Fig. 1 Four percent Gurney, fine grid „Grid 4 …
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mean mass source residual value. This also resulted in oscillations
in the predictedcl andcd about some mean or quasi-steady value
as shown in Fig. 5.

Numerically the steady-state solution is converging as if it was
at one time step in a periodic flow. If the flow field is output early
on in the simulation for the fine grid~Grid 4!, before the solver
manages to resolve the unsteadiness in the flow, the same double
vortex structure as per the coarse grid is produced. As a final
investigation the coarse~Grid 2! and fine grid~Grid 4! were run

over a range of incidences,220<a<20 degrees. The results
from this study are shown in Fig. 6. It can be seen that there is
little difference in thecl andcd curves of both grids except around
stall, with the coarse grid~Grid 1! predicting a later onset. The
effect of wake grid distribution on the section pressure distribution
was also plotted for the coarsest~Grid 1! and finest~Grid 4! grids
at an angle of incidence 10 degrees in Fig. 7. As can be seen,

Fig. 2 Four percent Gurney, coarse grid „Grid 1 … streamlines

Fig. 3 Four percent Gurney, fine grid „Grid 4 … streamlines

Fig. 4 Four percent Gurney, experimental streamlines, Jeffrey
†4‡

Fig. 6 Four percent Gurney quasi-steady c l , c d Vs a

Fig. 7 Four percent Gurney quasi-steady Cp distribution, a
Ä10 deg

Fig. 5 Four percent Gurney quasi-steady c l and c d conver-
gence history
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there is no noticeable difference in the pressure plots for both
grids, supporting the conclusions obtained from the previouscl
comparison.

Although the wake dependence study indicated that the wake
grid density only has a small effect on the computedcl andcd , it
was decided that the fine wake grid~Grid 4! would be used in all
subsequent quasi-steady, and time accurate calculations at the ex-
pense of increased solution times. This decision was made be-
cause the fine grid~Grid 4! was considered to form a closer nu-
merical representation of the physical flow, allowing the
unsteadiness to be captured in the later time accurate calculations.
The total number of cells in the fine grid~Grid 4! was 68508.

3.3 Quasi-Steady Performance Results.The quasi-steady
cl and cd were validated against theCL and CD obtained by
Jeffrey@4# for the NACA 001214 percent Gurney over a range of
incidences past stall. The quasi-steady pressure distribution was
also compared with the experimental data obtained by Jeffrey@4#,
at an angle of incidence ofa510 degrees. In order to assess the
proficiency of the RANS code in predicting the effect of fitting
different size Gurneys, both an unflapped NACA 0012 and a
NACA 001212 percent Gurney were also modeled over a range
of incidences past stall. Typically the quasi-steady computations
took between 2 and 5 hours to converge to an oscillating state,
depending on the angle of incidence.

It was decided that the computedcl data would be compared
directly with the measuredCL , data obtained by Jeffrey@4#. This
decision was taken because comparing the data with thecl derived
through integration of the experimental pressures around the sec-
tion was felt to be inadequate, since it fails to take account of any
forces acting on the Gurney flap itself. Although this was akin to
comparing two-dimensional data (AR5`) with three-
dimensional data (AR55), it was considered the best option,
other than making empirical corrections to the data. Figure 6 com-
pares the computed data with the experimental data.

As expected when carrying out a comparison of this type, there
is a decrease in lift slope from the two-dimensional computed data
to the three-dimensional experimental data. However, when the
two-dimensional lift slope from the computed data is corrected to
a finite aspect ratio (AR55) using the finite aspect ratio correc-
tion @15# in Eq. ~1!, the lift slopes are in agreement, not withstand-
ing the limitations of applying Eq.~1! to flows with large regions
of separation.

dCL

da
5

dc1

da

11
1.9

AR

(1)

Table 4 shows the lift slope corrected data. Agreement of the
experimental and corrected computational lift slopes seems to
suggest that the two-dimensional sectioncl curve is correct. How-
ever, the predicted stall angle and maximumcl are governed by
limitations of standardk2« turbulence model with wall function,
as stall is approached. The model gives poor prediction of the
onset of flow separation from surfaces under the action of adverse
pressure gradients.

The computedcd was compared with the measuredCD found
by Jeffrey @4# and not thecd found though integration of the

surface pressures as again the effect of the flap and the skin fric-
tion contribution is neglected. However, at low angles of inci-
dence, both the two-dimensional computed data, and the experi-
mental three-dimensional data should be similar, since the induced
drag component is small. Figure 6 compares the computed data
with the experimental data. It is noticeable that even at low angles
of incidence the computed data severely under predicts the drag
experienced by the section, even at point of zero-lift. However,
the likely reason for this difference can only be deduced upon
comparison of thecd drag curve for the NACA 001212 percent
Gurney with its experimental equivalent in Fig. 8. It can be seen
that there is closer agreement between the computed and experi-
mentally derived data for the NACA 001212 percent Gurney. A
possible explanation for this has been proposed. It is thought that
the large upstream low pressure recirculation produced in front of
the Gurney flap in the experiment~even at the zero-lift incidence!
promotes the development of vortices close to the trailing-edge.
This might explain why the smaller Gurney flap model has a
better correlation with the experimental data than the larger Gur-
ney flap case. Discrepancies in the predicted drag may also occur
because the CFD simulation assumes the flow is fully turbulent,
neglecting the laminar-turbulent transition occurring near the lead-
ing edge and the drag associated with tripping the flow in the
experiments.

The computed quasi-steady pressure distribution for the NACA
001214 percent Gurney along with the steady-state pressure dis-
tribution about an un-flapped NACA 0012 section at an angle of
incidence ofa510 degrees was compared with Jeffreys data@4#
in Fig. 7. The Gurney flaps influence on the pressure distribution
around the NACA 0012 section is evident when the data for the
un-flapped NACA 0012 section is compared to its flapped coun-
terpart. The Gurney unquestionably increases the pressure differ-
ence between the suction and pressure surfaces, especially in the
vicinity of the trailing edge. There is generally good agreement
between the computed and experimental data, with the largest
differences in the pressure distribution occurring near the leading
edge. These large differences are likely to be due to the poor
prediction of boundary-layer growth resulting from the use of the
standardk-« turbulence model.

The effect of flap size on thecl and cd was investigated. Fa-
cilitating this, further computations were carried out on an un-
flapped NACA 0012 and a NACA 001212 percent Gurney. The
data obtained are plotted in Fig. 8. The computed two-dimensional
data are compared with the experimental three-dimensional results
and the lift slopes corrected to a finite aspect ratio (AR55) in
Table 4. It is apparent from Fig. 8 that the trends of increasingcl

Table 4 Lift slope data

Gurney

CFX
dcl

da
~AR5`!

CFX Corrected
dCL

da
~AR55!

Jeffrey @4#
dCL

da
~AR55!

None 0.0983 0.0712 0.0714
2% 0.1124 0.0814 0.0811
4% 0.1129 0.0818 0.0827

Fig. 8 Two and four percent Gurney quasi-steady c l , c d Vs a
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andcd with increasing flap height are correctly reproduced in the
computations. The computed lift slopes also show good agreement
with the experimental lift slopes.

3.4 Periodic Performance. A study into the periodic per-
formance of the Gurney flapped NACA 0012 section was con-
ducted. In order to keep the number of large time accurate simu-
lations to a minimum, only the NACA 001214 percent Gurney
was modeled. The aim of this investigation was to obtain infor-
mation on the flow transients caused by the Gurney flap and to
identify if the RANS code is capable of predicting the principle
vortex shedding frequency and periodic performance. Comparison
of the time-averaged performance data with the data obtained
from the quasi-steady investigation was used to assess the appli-
cability of the quasi-steady approach.

The selection of the correct real time step is the most important
parameter after grid resolution to affect the solution of periodic
flows. To highlight this, a study was conducted to determine the
optimum time step needed to capture the vortex shedding behind
the Gurney. Computations were carried out on the fine grid~Grid
4! used in the previous quasi-steady computations, at an incidence
of a50 degrees. Solutions were obtained using various time steps
and the time step dependency of the solutions was investigated.

An initial estimate of the smallest time step needed was made
using the residence time approach@18#. Knowing the smallest cell
size in the wake regionDx50.001 m and freestream velocity
U`540 m/s, an approximation of the required time step was
made. This gave the estimate of the smallest time step to beDt
50.000025 s. An estimate of the total simulation time was made,
based on the domain size and freestream velocity. The time taken
for the fluid to travel from the inlet to the downstream outlet was
calculated as 0.25 s. Based on these onerous conditions at least
10000 time steps were estimated for the whole simulation. Figure
9 shows the evolution of thecl and cd as the simulation
progresses.

It is evident that the solution is highly oscillatory at the begin-
ning of the computation and slowly converges to a regular oscil-

lating solution as the vortex shedding becomes better resolved.
Figure 9 confirms the estimate of the total simulation time, as up
until 0.2 s in the solution is still converging. Figure 10 shows the
periodiccl andcd near the end of the simulation over a period of
approximately two cycles. Looking at the number of 0.000025 s
time steps used in evaluating the periodic performance over one
cycle in Fig. 10, it would be pertinent to assume that an excessive
number have been used. To investigate if this was in fact the case
further solutions were carried out using larger time steps of
0.00005, 0.0001, 0.0003, and 0.001 s. The results from this study
are also plotted in Fig. 10.

As can be seen all but the two largest time steps of 0.0003 and
0.001 s succeeded in predicting the periodic performance of the
section. It is evident from the plots ofcl and cd for these two
larger time steps that the solver has essentially solved the problem
as if the flow was at a steady state. On comparison of the periodic
response curves in Fig. 10 and the time-averaged~zero, a0 and
normalized first harmonic,a1 /a0) performance data in Table 5 it
is evident that the predicted performance is approximately the
same for time steps 0.000025, 0.00005, 0.0001 s, all except for the
lift curve produced using the smallest time step of 0.000025 s
which has a slight offset.

Although the response curves shown in Fig. 10 were plotted
using the data taken from the same time interval near the end of
the simulation, all the curves are out of phase. These phase shifts
occur because of the way in which the vortex shedding is resolved
as the solution progresses. Table 5 shows the amount of CPU time
taken in all for the time step studies to complete. These computa-
tions are extremely intensive, with the small time step case taking
230 hours to solve.

Although satisfactory time accurate results have been obtained
in this instance, the numerical basis of the RANS approach must
not be forgotten. As highlighted by Lasher and Taulbee@19# if the
time scale of a periodic flow feature overlaps with the time scale
of the turbulence, what exactly has been time-averaged by the
RANS equations? In this case there is still a clear distinction

Fig. 9 Four percent Gurney periodic force evolution, Dt
Ä0.000025

Fig. 10 Four percent Gurney periodic response over two
cycles

Table 5 Four percent Gurney time stepping results

Dt
~s!

f p
~Hz!

Meancl31021

(a0)
cl(a1 /a0)

31021
Meancd31021

(a0)
cd(a1 /a0)

31021
CPU Time

~hrs!

0.000025 526 6.812 0.348 0.369 0.650 230
0.00005 526 6.844 0.359 0.363 0.661 115
0.0001 526 6.801 0.274 0.356 0.562 104
0.0003 416 6.525 0.039 0.309 0.129 57
0.001 - 6.497 - 0.305 - 13
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between the periodic flow and turbulence. Although not investi-
gated in this work, useful information might be gained as to the
turbulence time and length scales from analysis of the calculatedk
and« values.

4 Comparison of Periodic Performance With Experi-
mental and Quasi-Steady Data

Following the detailed time step study, the time-averagedcl and
cd were assessed against those obtained by Jeffrey@4# and com-
pared with those found in the quasi-steady investigation over a
range of incidences. The computed principle shedding frequency
was validated against the LDA measured value of Jeffrey@4#. The
time-averaged pressure distribution was also validated against Jef-
frey’s @4# data at an angle of incidence ofa510 degrees. It was
decided, based on the data obtained in the time step study, that a
time step of 0.0001 s would be used in all the computations,
providing a compromise between accuracy and CPU time. Typi-
cally, these time accurate computations took between 100 and 150
hours to converge to an oscillating state depending on the angle of
incidence.

Table 6 shows the calculated principle shedding frequency and
Strouhal number at angles of incidence ofa525, 0,110 degrees
using a time step of 0.0001 s. It can be seen that only thea50
and25 degrees incidence angle computations managed to capture
the periodic vortex shedding. The110 degree incidence angle
case along with all the other incidence angle computations failed
to capture the periodic vortex shedding. It is likely that this oc-
curred because the wake grid at these incidence angles~which
would be approximately at the same angle as the aerofoil to the
inflow! failed to have enough resolution to capture the unsteadi-
ness. This problem could have been resolved by propagating the
fine wake grid in the anticipated wake direction, however this was
not investigated. Thea525 degrees incidence case managed to
capture the periodic vortex shedding because at this angle the
vortex street was displaced closer toward the wake grid centerline,
where the grid was of a sufficient resolution to capture the vortex
shedding. It can be seen from Table 6 the computed principle
shedding frequency and Strouhal number for thea50 degrees
incidence case compares extremely well with the measured values
found by Jeffrey@4# in his LDA experiments.

As with the quasi-steady comparison ofcl and cd , the com-
puted time-averagedcl and cd was also compared directly with
the measuredCL andCD data obtained by Jeffrey@4#. Figure 11
compares the time-averaged data with the experimental data and
quasi-steady state data. It is apparent that the computed time-
averagedcl is identical to that obtained in quasi-steady state in-
vestigation and hence shows the same correlation with the experi-
mental data. Correction to finite aspect ratio, using the same
method as applied to the quasi-steady data would therefore give
the same close correlation. It is apparent that the time-averagedcd
is identical to that obtained in quasi-steady state investigation and
hence shows the same correlation with the experimental data not
withstanding the high mass source residual for the quasi-steady
calculations.

The computed periodic pressure distribution at an angle of in-
cidencea510 degrees was compared with the experimental data
obtained by Jeffrey@4# and the results obtained in the quasi-steady
investigation. For the pressure distributions at the maximum~1/4
shedding cycle! and minimum ~3/4 shedding cycle! and time-

averaged values it was found that there was little change in the
pressure distribution over the shedding cycle, with only small no-
ticeable changes (DCp,1.2 percent! in the pressure distribution
occurring in the trailing-edge region (x/c.0.7). The time-
averaged pressure distribution was found to be identical to that
obtained in the quasi-steady investigation in Fig. 7, showing the
same close correlation with the experimental results.

5 Conclusions
A detailed investigation of the quasi-steady and periodic perfor-

mance of a NACA 0012 fitted with 2 and 4 percent Gurney flaps
was conducted using a RANS solver implementing the two-
equationk-« turbulence model with wall function.

The quasi-steady wake resolution sensitivity analysis high-
lighted that although the wake grid resolution has an affect on the
flow physics captured within it, the mean performance remained
largely unchanged. The predicted quasi-steady performance for
both the coarsest and finest grids was found to correlate well with
the experimental data. The correct trends in performance resulting
from the addition of different size Gurney flaps was also observed.

The time accurate performance investigation highlighted the
importance of selecting the correct time step necessary to resolve
the periodicity in the wake region. The time-averaged perfor-
mance was found to be identical to the performance predicted by
the quasi-steady solution approach, showing the same correlation
with the experimental data. The principle vortex shedding fre-
quency was also found to correlate favorably.

The quasi-steady solution approach used here and in other in-
vestigations was confirmed as producing the same performance
predictions as the full time accurate simulations, however, at
1/30th of the computing cost. Hence, for practical applications
when periodic section performance is of secondary importance,
the quasi-steady solution approach can be used to obtain estimates
of performance. However, care should be taken during grid de-
pendence investigations involving quasi-steady and time accurate
solution approaches as has been shown because the local grid size
can have a significant influence on the predicted flow, and this
may prevent asymptotic force convergence.

The detailed validation studies presented here have shown that
the typical grid resolution needed for accurate two-dimensional
section performance prediction is of the order of 70,000 cells.
Assuming that a similar level of grid resolution would be required
in the third dimension, an estimate of total number of cells needed
to model a low aspect ratio wing can be made. It is thought that 21
million cells would probably be needed to resolve the three-
dimensional flow features to the same degree of accuracy as those

Table 6 Four percent Gurney principle shedding frequency
and Strouhal No.

a ~deg!
CFX

f p

Jeffrey @4#
f p

CFX
St

Jeffrey @4#
St

0 526 485-490 0.168 0.155-0.157
25 526 - 0.168 -
110 - 440-445 0.141-0.142

Fig. 11 Four percent Gurney quasi-steady and periodic time-
averaged c l , c d vs a
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in the two-dimensional study presented here. Even with this num-
ber of cells there is no guarantee that grid convergence would be
achieved.
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Nomenclature

AR 5 aspect ratio
an 5 Cosine Fourier series coefficients (n50,1)
b 5 wing span
c 5 reference chord
d 5 base height, measured normal to chordline

cd 5 section drag coefficient
CD 5 wing drag coefficient
cl 5 section lift coefficient

CL 5 wing lift coefficient
Cp 5 pressure coefficient
f p 5 principle vortex shedding frequency
h 5 Gurney flap height
k 5 turbulent kinetic energy

nj 5 no. cells around the section
nh 5 no. cells radiating from the section
nz 5 no. cells in the wake direction
r 5 boundary location distance

St 5 Strouhal number,f pd/U`
t 5 time

u, v 5 velocity components inx, y axes system
Us 5 uncertainty due to iterative nonconvergence
U` 5 freestream velocity
x, y 5 coordinate system:x1ve downstream,y1ve up

a 5 incidence
rair 5 density of air
mair 5 laminar viscosity of air

« 5 rate of dissipation of turbulent kinetic energy
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The Effect of Finite Amplitude
Disturbance Magnitude on
Departures From Laminar
Conditions in Impulsively Started
and Steady Pipe Entrance Flows
The aim of this study was to investigate first departures from laminar conditions in both
impulsively started and steady pipe entrance flows. Wall shear stress measurements were
conducted of transition in impulsively started pipe flows with large disturbances. These
results were reconciled in a framework of displacement thickness Reynolds number and a
velocity profile shape parameter, with existing measurements of pipe entrance flow insta-
bility, pipe-Poiseuille and boundary layer flow responses to large disturbances, and linear
stability predictions. Limiting critical Reynolds number variations for each type of flow
were thus inferred, corresponding to the small and gross disturbance limits respectively.
Consequently, insights have been provided regarding the effect of disturbance levels on
the stability of both steady and unsteady pipe flows.@DOI: 10.1115/1.1445137#

1 Introduction
This study is concerned with the onset of instability and transi-

tion in two ostensibly similar systems—steady pipe entrance flows
and spatially fully developed pipe flows impulsively started from
rest. These flows share the common feature that each has velocity
profiles which evolve, in space and time, respectively, from uni-
form toward parabolic shapes. Both limiting velocity profile
shapes are unconditionally stable to axisymmetric and nonaxisym-
metric infinitesimal disturbances: the latter pipe-Poiseuille limit
was first shown by Lessen et al.@1# to possess this property for
both types of disturbances~see also Salwen and Grosch@2#; Sal-
wen et al.@3#!, while the former represents a limiting boundary
layer of zero thickness. At intermediate stages~Reynolds number
dependent! the flows may become unstable during the boundary
layer growths. Although for steady and unsteady flows, velocity
profiles vary with space and time respectively, linear stability de-
pends merely on velocity profile shape, provided the respective
effects of spatial and temporal development are insignificant for
the two flows. The former effect was shown to be true in Abbot
and Moss@4#, while the latter is valid provided the time scale of
the unstable disturbance is significantly smaller than the diffusive
time scale of the developing flow, an issue that is addressed in
Section 3 of this paper. In mathematically formulating the two
problems, while the spatial growth of disturbances might be more
physically appropriate for the first case and the temporal growth
for the second, Gaster@5# has established that the alternatives
degenerate to the same case in the infinitesimal disturbance sta-
bility limit.

A number of analytical investigations of steady pipe entrance
flow stability have been performed~for example; Huang and Chen
@6#; Garg @7#; da Silva and Moss@8#; Abbot and Moss@4#!, of
which the results of Abbot and Moss most closely approach the
accepted asymptotic limit of Red*5520 for zero pressure gradient
boundary layers on a flat plate, applicable at the pipe inlet limit.
This was first determined by Jordinson@9# and later refined by
Davey ~unpublished; see Drazin and Reid@10#! to Red*5519.06.

~The displacement thickness Reynolds number is defined as
Red*[U0d* /n, with d*[displacement thickness;U0[cross-
sectional mean velocity;n[fluid kinematic viscosity.! However
this flow system is still unresolved, to the extent that the only
substantial experimental study by Sarpkaya@11# yields results at
much lower critical Reynolds numbers than analysis.

Studies of departures from laminar conditions in pipe flows
monotonically accelerated from rest~Van de Sande et al.@12#,
Lefebvre and White@13#; Moss @14#! have been largely experi-
mental, except for the predictions of Abbot~1995! for flows ex-
ponentially accelerated after an impulsive start, for which an im-
pulsively started flow is a limiting case. Of the measurements,
Lefebvre and White, and Moss observedlocal transition, rather
than turbulent structureswashed downfrom the inlet after startup.
~In fact the latter author observed both modes of transition and
accounted for them in a formal way.! It is noteworthy that no
published work in unsteady~nonpulsatile and nonoscillatory! pipe
flows has thusfar produced even a qualitative correlation with ana-
lytical stability results.

The purpose of this paper is to attempt to reconcile the stability
characteristics of steady entrance pipe flows and impulsively
started flows~far from the pipe inlet!, through the use of the
hypothesis that finite amplitude disturbances give rise to critical
Reynolds numbers lower than those predicted by the linear theory.

2 Experimentation
The test rig used in the current investigation~Moss @14#!, is

shown in Fig. 1. It comprised a stainless steel pipe, 15.6 mm in
diameter, mounted vertically and supplied by a constant head tank
via a simple sharp edged inlet, which did not prevent the intermit-
tent occurrence of turbulence in the tube at a steady state Rey-
nolds number of about 2400~effectively a disturbed inlet!. A
quick-acting solenoid valve allowed a close approximation to an
impulsively started flow with a final Reynolds number which was
dictated by the opening of a high-accuracy needle valve. Both
valves were positioned at the end of the pipe, approximately 1.5 m
below a Disa type 55R47 glue-on shear stress probe situated 291
diameters from the pipe inlet. The working fluid was kerosene and
flow rate was measured by an orifice meter located below the test
section.
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The analogue output of the shear stress probe was directed into
a digital oscilloscope triggered by the solenoid valve. The cross-
sectional mean velocityU0 at transition was obtained from the
flowrate measured using a simple orifice meter. Transition was
found to occur at diminishing times with increasing flow velocity,
and beyondU0.1.2 m/s~a Reynolds number based on pipe di-
ameter of about 12,500! occurred during the flow acceleration:
experimental data were disregarded for comparison purposes be-
yond that point. Therefore, transition was observed in an environ-
ment withU0 constant, but the boundary layer~and hence shear
stress! changing with time. This distinguishes the current work
from that of Van de Sande et al.@12#, who observed transition in
a pipe system in which the flow~and henceU0! in addition totw
were changing with time. Intermittent turbulence for the present
study occurred in the tube at a steady-state Reynolds number
(Re[U0d/n; d[pipe diameter! of about 2400, while no turbulence
was observed for Reynolds numbers less than about 2200. This
trend may be reconciled with the results of Rubin et al.@15# who
introduced strong disturbances into pipe-Poiseuille flows, estab-
lishing that a Reynolds number of approximately 2200~corre-
sponding to the minimum Reynolds numbers at which so-called
puffsare sustained! was required to ensure survival in their down-
stream path. Accordingly, this point may be regarded as thelarge

disturbance pipe-Poiseuille stability limit~i.e. any increase in the
magnitude of disturbances would not further reduce the Re at
which they are sustained!.

Figure 2 is a typical voltage trace obtained from the shear stress
probe. An initial period of laminar flow occurs~characterized by
an abrupt increase in shear stress as the flow starts up, followed by
a steady decrease as vorticity diffuses away from the pipe wall!
which is followed by three successsive and discrete events at the
measuring station, clarified in Moss@14#: ~i! the natural orlocal
occurrence of transition to turbulence at A, arising from a turbu-
lent front moving in the upstream direction as successive sites
become unstable;~ii ! A turbulent to laminar interface at B as the
structure observed in~i! is washed downstream by~iii ! the inlet-
generated laminar to turbulence interface observed at C. Figure 3
shows the variation of wall shear stress with final cross-sectional
mean velocity just prior to transition, embracing all of the tests
which were conducted.

3 Results and Discussion
In attempting to reconcile the current unsteady measurements

with analytical data it should be noted that the onset oftransition
was measured, while patterns ofinstability to infinitesimal distur-
bances were predicted. Thus comparisons were necessarily made
circumspectly, emphasizing asymptotic features. The current sta-
bility curves were established for axisymmetric disturbances: this
may be justified by the fact that the purpose of this paper is to
emphasize first order effects, in the context of the fact that the
only experimental study of steady entrance flows has been shown
to be minimally dependent on whether the applied disturbances
are axisymmetric or nonaxisymmetric in nature~Sarpkaya@11#!. It
should be emphasized that Sarpkaya used a large contraction ratio
with a very smooth transition at the inlet~see his Plate 1!, and was
thus able to sustain laminar flow at a steady state Reynolds num-
ber of 24,000. As will be noted later, differences between the inlet
geometries of Sarpkaya’s test facility and the current one largely
explain deviations between the respective sets of data, particularly
at lower values ofS.

The present transition data are plotted in Fig. 4 as a variation of
displacement thickness Reynolds number@Red*[Red* /(2R)#
with dimensionless time (t̄[nt/R2), wheren andR are fluid ki-
nematic viscosity and pipe radius respectively. The displacement
thickness was obtained by first computing variations ofd* /R with
the parameterS@[twd/(mU0)#. Thereafter these data were used
as a ‘‘lookup table’’ into which measured values ofSwere passed
to obtain interpolated values ofd* /R for the measured data; i.e.
the assumption was made that the same direct correspondence
betweend* /R and S exists for the experimental as for the com-
puted data. There are strong indications from Fig. 4 that critical
values of Red* are bounded for both high and low values oft̄:

Fig. 1 Schematic of test rig used in the current investigation

Fig. 2 Typical voltage variation with time, as an output of the
shear stress probe

Fig. 3 Variations of wall shear stress with cross-sectional
mean velocity immediately prior to transition
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within the uncertainties~approximated by the cross-hatched area!
imposed by the scatter of the data, the median values of Red* are
given by 6506115 and 275665 ast̄→0 and`, respectively.

Figure 5 shows Sarpkaya’s@11# stability data plotted as a varia-
tion of displacement thickness Reynolds number (Red*) with di-
mensionless axial distance (x̄[2xR/Re). In this instance, mea-

sured values of the Reynolds number Re were multiplied by
computational predictions ofd* /(2R) at the various values ofx̄
to obtain critical values of Red* which are bounded~and tend
toward a value of about 410! asx̄→0, but appear to be unbounded
as x̄→`. It is noteworthy that the scatter of the data increases
with x̄, toward the pipe-Poiseuille limit.

The data in Figs. 4 and 5 need to be contextualized by com-
parison with computational predictions. In the first instance, Sar-
pkaya’s @11# stability measurements predictions and the present
transition results are plotted~Fig. 6! in the framework of Re ver-
susS. The parameterS defined earlier was used because,~i! like
other parameters such asd* /R, it is directly representative of
velocity profile shape, and~ii ! it could be easily obtained from the
current measurements of shear stress. It may be regarded as a
velocity profile shape parameterfor any particularclassof pipe
flows, although it is not unique among different classes. For ex-
ample, in the case of impulsively started pipe flows far from the
pipe inlet, equal values ofS guarantee equal shapes of velocity
profile: however the same values ofS for an entrance flow, say,
might imply slightly different shapes of velocity profile. Superim-
posed on the experimental data are the computations of Abbot
@16# and Abbot and Moss@4# for impulsively started flows and
steady pipe entrance flows respectively~axisymmetric distur-
bances!. Both analyses exhibit limits corresponding to uniform~as
S→`! and parabolic~asS→8! velocity profiles that are stable at
all Reynolds numbers to infinitesimal disturbances. Deviations be-
tween the computational predictions for the two cases are a direct
consequence of slightly differing velocity profile shapes for the
same values ofS. Both sets of experimental data fundamentally
diverge from their respective linear predictions for all values ofS;
they also differ substantially from each other for low values ofS,
but appear to show a similar pattern asS increases. As previously
noted, the current data appear to be approaching Re.2200 ~i.e.,
the large amplitude stability limit for pipe-Poiseuille flows! as S
→8, while Sarpkaya’s data have a similartrend to the predictions,
insofar as they appear to be unbounded in this same limit.

Figure 7 shows the same data as Fig. 6, now plotted in a frame-
work of Red* versusS. Superimposed as individual points are the
predicted linear stability limits asS→` for the two types of flow.
Although critical Re’s in this limit are infinite, critical Red* ’s are
bounded. For a steady entrance flow the classical, zero pressure
gradient Blasius boundary layer limit is given by Red*5519.06,
while for its unsteady counterpart the error function boundary
layer limit of Red*51675 pertains to impulsively accelerated

Fig. 4 Variation of displacement thickness Reynolds number
with dimensionless time, showing departures from laminar
flow for the current experiments

Fig. 5 Variation of displacement thickness Reynolds number
with dimensionless axial co-ordinate, showing the experimen-
tal onset of instabilities „Sarpkaya †11‡… for axisymmetric and
non-axisymmetric disturbances

Fig. 6 Variation of Reynolds number with velocity profile shape parameter,
showing:- the current transition data for impulsively started pipe flows flows;
Sarpkaya’s †11‡ stability measurements for steady pipe entrance flows; the
respective linear stability predictions for each type of flow; and the possible
large disturbance pipe-Poiseuille limit
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boundary layer flows over a flat plate in the absence of spatial
development~Abbot @16#!. Therefore, while the two types of flow
are ostensibly similar asx̄, t̄→0 insofar as they both exhibit uni-
form velocity profiles, in fact their limiting velocity profile shapes
close to the pipe wall differ significantly—with commensurately
different stability characteristics.

In the context of other experimental work showing the effects
of large disturbances on stability, it was noted previously that as
S→8 ~pipe-Poiseuille flows!, approximate critical values of Re
and Red* are, respectively, 2200~from Rubin et al.@15#! and 275
~the product of 2200 and the dimensionless displacement thick-
ness of value 0.125!—plotted as thepossible large disturbance
pipe-Poiseuille stability limitin Figs. 6 and 7. AsS→` ~corre-
sponding tox̄→0!, steady pipe entrance flows behave like classi-
cal boundary layers, for which there is well-established evidence
in the literature~for example Mayle@17#! that as the level of

free-stream turbulence intensity increases the transition Reynolds
number based on displacement thickness diminishes. Critical val-
ues as low as Red*.340—plotted as thepossible large distur-
bance boundary layer stability limitin Fig. 7 have been observed
just before the start of transition~see Abu-Ghannan and Shaw,
@18#!. Although for boundary layers the variation of critical Red*
with disturbance level appears to be asymptoting at this point, it is
a subject of debate in the literature as to whether or not a lower
value exists.

From the above rationale it is apparent that asS→8 and S
→` for steady pipe entrance flows critical values of Red* have
the approximate ranges̀>Red*>275 and 340>Red*>519.06,
respectively: for each limiting value ofS the upper and lower
values of Red* refer to flows subjected to infinitesimal and large
disturbances respectively. Therefore it is inferred that critical val-
ues of displacement thickness Reynolds number are much more

Fig. 7 Variation of displacement thickness Reynolds number with velocity
profile shape parameter, showing: The current transition data for impulsively
started pipe flows flows; Sarpkaya’s †11‡ stability measurements for steady
pipe entrance flows; the respective linear stability predictions and boundary
layer limits for each type of flow; the possible large disturbance pipe-Poiseuille
limit; the possible large disturbance Blasius boundary layer limit; and the pos-
sible large disturbance error function boundary layer limit

Fig. 8 Variation of displacement thickness Reynolds number with velocity
profile shape parameter, showing asymptotic limits, the experimental data of
Sarpkaya †11‡, and the expected qualitative dependence of steady pipe flow
entrance stability on disturbance level
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sensitive to disturbance magnitude for small values ofS than for
large. Sarpkaya’s data may be broadly reconciled with this logic
and framework, because in the range`>Red*>8, they fall within
the infinitesimal and large amplitude disturbance limits.

As discussed previously, impulsively started flows in the pipe-
Poiseuille limit (S→8) share the large and infinitesimal distur-
bance stability characteristics of their steady entrance flow coun-
terparts. However, asS→` ~corresponding to x̄, t̄→0!,
impulsively started flows have an infinitesimal disturbance limit
given by Red*51675, rather than the value of 519.06 for steady
pipe entrance flows. While the large disturbance limit for the latter
flow is given by Red*.340, there has thusfar been no prior indi-
cation in the literature of a corresponding measured stability limit
for the latter~error function! velocity profile.

The current experimental data were subject to large distur-
bances of an unknown magnitude, and approach the approximate
values Red*5275 and 650 asS→8 and`, respectively~see Fig.
4!. In view of the fact that the former value may be interpreted as
the large amplitude stability limit for pipe-Poiseuille flows, it
seems reasonable to deduce that the latter is its counterpart for
error function boundary layer flows. This result is significant be-
cause it would be difficult to achieve experimentally by any other
means. However its validity depends on the assumption that the
disturbance levels in this limit were similar to those which the
pipe-Poiseuille limit were exposed to—or at least of a sufficient
magnitude to ensure that any increase in disturbance size would
not have further reduced the value of the displacement thickness
Reynolds number at which departures from laminar flow oc-
curred.

In broad terms the first transition observed in the present study
was local in the sense that it occurred as part of a turbulent struc-
ture moving rapidly upstream. In addition, it was probably of a
bypass kind in which transition took place abruptly in the pres-
ence of finite disturbances. Although ‘‘natural’’ transition occur-
ring via the growth of Tollmien-Schlichting~T-S! waves is
thought to be fundamentally different from bypass transition, the
start of both processes is characterized by a departure from lami-
nar flow: for the former case this takes the form of linear insta-
bility, while for the latter it is the onset of transition itself. There-
fore representation of the two extremes on a common set of axes
is appropriate, and in fact an ideal way to ascertain a global pic-
ture of the manner in which steady entrance and impulsively
started pipe flows respond to finite disturbances.

While the computations of neutral stability for impulsively
started flows take cognizance of instantaneous velocity profile

shape, they ignore the effects of unsteadiness. This may be justi-
fied for such systems, provided the viscous time scale (tv iscous)
governing the velocity profile development is much greater than
the time scale (tdisturb) of the unstable disturbance. In fact a
simple analysis shows that the ratio~b! is given to a good ap-
proximation by

b[
tv iscous

tdisturb
5

ād* c̄

2p
Red*

where the dimensionless wave number and wave celerity are de-
fined by ād* [ad* and c̄[c/U0 , respectively. Computations of
b gave values in the approximate range 28>b>20, vindicating
the assumption that neutral stability curves for this flow system
depend mainly on velocity profile shape.

On the basis of the evidence presented, Figs. 8 and 9 were
constructed as being broadly representative of the manner in
which the two classes of system respond to finite amplitude dis-
turbances. In both instances linear stability curves are shown~the
infinitesimal disturbance limit!, while possible large disturbance
limits for S→` and S58 are given in each case as individual
points; other variations are qualitative, with the exception of
curves passing through the current data and those of Sarpkaya
@11#, which have been included as appropriate for the respective
cases of impulsively started and steady entrance pipe flows.

4 Conclusions and Recommendations for Future
Work

The following has emerged during the course of this investiga-
tion:

~i! The Reynolds number based on displacement thickness
(Red*) and dimensionless shape parameter@S[twU0 /(md)# rep-
resent a suitable framework for viewing computational predictions
and measurements of the stability of impulsively started pipe
flows and steady pipe entrance flows on a single set of axes.

~ii ! All of the experiments yielded lower critical Reynolds
numbers than their respective predictions, attributable to the mag-
nitude of the initial disturbances, which were clearly much lower
in the case of Sarpkaya’s@11# experiments for steady pipe en-
trance flows~lowest Re.24,000 for intermittent turbulence! than
the current ones for impulsively started pipe flows~lowest Re
.2400 for intermittent turbulence!.

~iii ! As S→8 ~the pipe-Poiseuille limit!, critical values of Red*
for the current experiments approach the well-established large

Fig. 9 Variation of displacement thickness Reynolds number with velocity
profile shape parameter, showing asymptotic limits, the current experimental
data, and the expected qualitative dependence of impulsively started pipe flow
stability on disturbance level
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disturbance stability limit of Red*.275 with a scatter of665,
while as S→` they approach the limit given by Red*.650
6115. It is thus inferred that this latter value approximates the
large disturbance error function stability limit, subject to scatter in
the experimental data.

~iv! Critical values of displacement thickness Reynolds number
for steady pipe entrance flows subjected toinfinitesimal distur-
bances have the range 519.06<Red*<` ~for `>S>8 corre-
sponding to 0< x̄<`!, while the approximate range 275<Red*
<340 applies forlarge disturbances over the same range ofS
and x̄.

~v! Critical values of displacement thickness Reynolds number
for impulsively started pipe flows subjected toinfinitesimaldistur-
bances have the range 1675<Red*<` ~for `>S>8 correspond-
ing to 0< t̄<`!, while the approximate range 275<Red*<650
applies forlarge disturbances over the same range ofS and t̄.

~vi! Critical values of Red* asS→`, for steady pipe entrance
flows in the Blasius boundary layer limit are much less sensitive
to disturbance magnitude than for impulsively started pipe flows
in the error function boundary layer limit.

~vii ! For both steady pipe entrance flows and impulsively
started pipe flows, critical values of Red* as S→8 are far more
sensitive to disturbance magnitude than they are in the limitS
→`.

~viii ! Future experiments need to be designed and conducted in
order to further quantify the effect of finite disturbances on the
stability of both steady pipe entrance flows and impulsively
started pipe flows; future computations should take cognizance of
the effects of nonaxisymmetric disturbances on the stability of
these flows.
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Numerical Prediction of Hot-Wire
Corrections Near Walls
A thorough numerical investigation was performed for the two-dimensional convective
heat transfer of a circular cylinder in a Couette flow close to a wall in order to study the
hot-wire near-wall correction. A finite-volume Navier-Stokes solver enhanced by local
block refinement and multigrid acceleration guaranteed highly accurate and efficient
computational results. Unlike all previous numerical simulations, a more realistic model
was used in the present study by taking the heat transfer in the solid wall into account to
bridge the discrepancy between the previous theoretical models and the real situation. The
computed results from the present investigation show good agreement with experimental
data in the literature. Reference correction curves for hot-wire anemometers with respect
to different wall materials (e.g., aluminum, glass, Perspex, air, etc.) were obtained.
@DOI: 10.1115/1.1429636#

1 Introduction
Hot-wire anemometry~HWA! is a well-developed measurement

technique widely used in experimental fluid mechanics. It mea-
sures the local, time-resolved velocity in a flow field utilizing the
calibration relationship between the convective heat loss from the
wire and the local flow velocity, which must be determined in
advance in a known flow field, normally in a uniform free-stream
flow. In general, the heat transfer rate of a hot-wire in a free
stream depends not only on the flow velocity, but additionally on
various geometrical and design factors such as the diameter and
length of the wire, the dimensions of the wire supports, the con-
nection of the wire to the supporting prongs and the orientation of
the probe to the flow velocity, on fluid properties such as density,
viscosity, Prandtl number, etc., and on the wire overheat ratio, i.e.,
the temperature difference between the wire and the fluid. How-
ever, if a large length-to-diameter ratio is used for a hot-wire and
if the orthogonality between the wire and the velocity direction is
assured, some of the above-mentioned influences can be reduced.
As a result, the heat transfer of a hot-wire in measurements can be
treated as a problem of two-dimensional convective heat transfer
of a heated cylinder.

Although the hot-wire measurement technique can be consid-
ered as well developed through numerous investigations~see, e.g.,
Bruun @1#!, its application to perform reliable near-wall measure-
ments is still connected to open questions. It is well known that a
hot-wire generally measures a larger apparent velocity than the
true value, thus corrections are needed when it is applied in the
proximity of a cooler solid wall. This is known as the wall effect.
Many efforts have been made in the last half century to investigate
the influencing factors responsible for this measurement deviation
and to set up a suitable correction procedure for near-wall mea-
surements~see, e.g., Bhatia et al.@2#!. A brief literature survey is
given in the next section to bring together the existing knowledge
on this topic. However, the problem remains so far unsolved since
contradictory results exist in the literature and our understanding
on the physics behind the wall effect on hot-wire measurements is
still far from satisfactory.

It is clear, at least since the work of Polyakov and Shindin@3#,
that the thermal conductivity of the wall material has a strong
effect on the hot-wire reading and it is generally agreed that the
required hot-wire corrections close to highly conducting walls are
larger than those close to wall materials with low thermal conduc-

tivities ~see, e.g., Bruun@1#!. However, Bhatia et al.@2# reported
that wall materials such as glass or plywood do not require cor-
rections at all, in contradiction to the findings of Polyakov and
Shindin@3#. Another surprising result is from the recent numerical
investigation by Lange et al.@4#. They predicted that the apparent
velocity measured by a hot-wire is smaller than the real value in
the proximity of a perfectly insulated wall, thus an opposite cor-
rection to that for a highly conducting wall is needed. Although
the recent work of Chew et al.@5,6# confirms the tendency of the
results of Polyakov and Shindin@3#, the confusion about the
physical cause for the wall effect in the case of poorly conducting
walls remains unsolved. Chew et al.@5# suggested the flow distor-
tion due to the presence of the hot-wire close to a wall as the
major cause of the wall effect. In contrast, Bhatia et al.@2# and
Lange et al.@4# proposed the heat conduction in the solid wall as
the major influence.

The existing controversies can be resolved by means of numeri-
cal simulations since they can provide detailed field information
on the flow and heat transfer around the hot-wire and in the solid
wall. In the previous numerical studies~Bhatia et al.@2#; Chew
et al. @5#, Lange et al.@4#! known to the authors, the conjugated
heat transfer in the solid wall was not taken into account. In fact,
due to the simplifications introduced in their theoretical models,
only two extreme cases, i.e., a perfectly conducting wall and a
perfectly insulated wall, were considered in these studies. The
discrepancies between numerical results and experimental data
can only be resolved by means of a more realistic theoretical
model. Moreover, it is also necessary to take the conjugate heat
conduction in the solid wall into account in the numerical study to
get a better understanding on the effect of the wall thermal con-
ductivity on the hot-wire measurement. These considerations mo-
tivated the work reported in this paper.

In the present work, a detailed numerical investigation of the
convective heat transfer of a heated cylinder in a near-wall lami-
nar flow was carried out. Unlike the previous numerical studies,
the conjugate problem consisting of the convective heat transfer
of the cylinder and the heat transfer in the solid wall was solved.
This enabled us to study in detail the influence of different wall
materials. A very efficient finite-volume Navier-Stokes solver
~FASTEST! for block-structured colocated grid arrangements with
a local grid refinement scheme was employed for the numerical
investigations~Perić @7#, Barcus et al.@8#, Perić @9#, Durst et al.
@10#, Durst and Scha¨fer @11#!. A detailed description of the mathe-
matical model together with the discretization procedure for the
governing equations is provided in Section 3. The computational
domain and the boundary conditions are discussed in Section 4.
Numerical results together with conclusive findings are presented
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in Section 5. Good agreement with experimental data was found
for wall materials with both high and low thermal conductivities.
In addition to realistic wall materials~aluminum, glass, Perspex,
air!, two artificial wall materials with 10 percent and 1 percent of
the thermal conductivity of air were also investigated for theoret-
ical interest. As expected, the numerical investigations not only
yielded useful correction data for HWA measurements close to
different wall materials but also threw new light on this problem.

2 Literature Survey on Hot-Wire Heat Transfer Close
to a Wall

The need for correction in HWA measurements near walls has
been known since the early applications of this velocity measure-
ment technique. A good review of the literature on this subject
before 1980 can be found in Bhatia et al.@2#. Among the earlier
investigations, the work of Wills@12#, which was one of the first
to deal with the corrections for constant-temperature HWA probes,
has attracted wide attention. Since the time constant for constant-
temperature HWA is small compared with the time-scale of turbu-
lence, Wills @12#, following up the suggestion of Reichardt@13#,
expected that corrections based on the known velocity distribution
in a well-defined laminar channel flow can be applied to measure-
ments in turbulent boundary layer flows if the friction velocityUt
is the same as in the calibration flow facility. However, without
any physical explanation, only half of the laminar correction was
proposed by Wills@12# for turbulent flow measurements based on
a comparison of his experimental data measured in the viscous
sublayer of turbulent channel flow with the expected velocity pro-
file, i.e., U15Y1. HereU15U/Ut andY15YUt /n are nondi-
mensional velocity and wire-to-wall distance, respectively.

Although differences in corrections between laminar and turbu-
lent flow were also reported by some other earlier investigators, a
recent experimental study by Chew et al.@6# confirmed the ex-
perimental finding of Zemskaya et al.@14# that the same velocity
corrections are needed for hot-wire measurements in a laminar or
a turbulent flow if the wall shear stress is the same in both flows.
In addition, all numerical simulations~Bhatia et al.@2#, Chew
et al. @5#, Lange et al.@4#!, which implemented a laminar flow
model to investigate the HWA wall correction, also achieved ac-
ceptable agreement with experimental data obtained under turbu-
lent flow conditions in the case of highly heat-conducting walls.

Using dimensional analysis, Wills@12# concluded that the ad-
ditional heat loss of a hot-wire in the vicinity of a solid wall
depends on the Reynolds number of the wire (ReD5U0D/n, where
U0 is the velocity at the location of the wire,D is the wire
diameter andn is the fluid viscosity! and the ratio of the wire-to-
wall distance to the wire radius. The thermal conductivity ratio of
the wall material and the fluid (kw* 5kw /kair) was also pointed out
as an important influencing parameter. However, no further efforts
were made to analyze this effect.

Later, Kostićand Oka@15# and Hebbar@16# obtained velocity
correction curves for hot-wire measurements based on their ex-
periments in turbulent flows in a channel and over a flat plate,
respectively. Their results suggested the existence of a universal
correction expressed in terms of a function,DU15 f (Y1), where
DU1 is the velocity correction, i.e., difference between the appar-
ent velocity and the real value (Uappa2U0) normalized byUt .
This finding implies that the effect of the friction velocityUt on
the HWA correction is negligible, which was verified by the nu-
merical results of Bhatia et al.@2# ~which also suggested a univer-
sal correction! and later by those of Chew et al.@5#. It should be
pointed out that the wall materials in both experimental studies
were not given, implying that the important influence of wall ma-
terials on the hot-wire near-wall measurement was not recognized
by them.

Contesting the universal correction which is exclusively deter-
mined by the wire-to-wall distanceY1, Zemskaya et al.@14# re-
ported a strong influence of the wire diameter, whose influence

range extends beyondY152. The diameter effect was confirmed
by the more complete experimental study of Krishnamoorthy
et al. @17#, which was carried out with an aluminum wall. Their
results show that the velocity correction needed at a givenY1

increases with increasing wire diameter and with increasing over-
heat ratio. The dependence on the wire diameter was supported by
the numerical results of Chew et al.@5#, whereas all the available
numerical studies~Bhatia et al.@2#, Chew et al.@5#, Lange et al.
@4#!, which were performed with a two-dimensional model, pre-
dicted no apparent or a very weak effect of the overheat ratio.

The additional heat loss to the prongs (3D effect! was attrib-
uted by Chew et al.@6# as the cause of this contradiction. They
measured the velocity distribution near an aluminum wall using a
5 mm wire with different length-to-diameter ratios (L/D5200,
250, and 400! and different overheat ratiost ranging from 1.1 to
1.8. The results obtained forL/D5200 ~the same as used by
Krishnamoorthy et al.@17#! showed a similar dependence on the
overheat ratio to that reported by Krishnamoorthy et al.@17#,
while this influence disappears in the case of a lower overheat
ratio equal to 1.1 or with a larger length-to-diameter ratio (L/D
>250). This recent work of Chew et al.@6# is one of the most
systematic experimental investigations of the wall effect on HWA
measurement, including the influence of prong length, wire diam-
eter, wall conductivity and the overheat ratio. Their data confirm
again the wire diameter influence mentioned above.

Based on measurements with two different walls made of cop-
per~high thermal conductivity! and textolite~low thermal conduc-
tivity !, Polyakov and Shindin@3# reported that the wall effect is
larger in the vicinity of a highly conducting wall than a wall of
low conductivity. This finding is also confirmed by the numerical
simulation of Chew et al.@5# and their experimental investigation
with an aluminum and a Perspex wall~Chew et al.@6#!. In the
case of highly conducting walls, general agreement could be
reached from a number of numerical~Bhatia et al.@2#, Chew et al.
@5#, Lange et al.@4#! and experimental~Krishnamoorthy et al.
@17#, Janke@18#, Chew et al.@6#! investigations that velocity cor-
rections are needed for HWA measurements in the rangeY1

&4 – 6. In contrast, a great contradiction still exists with respect to
the case of poorly or ‘‘non-conducting’’ wall materials. Bhatia
et al. @2# concluded from their computations that no correction is
necessary for a poorly conducting wall. However, this is directly
contradictory to the results of Polyakov and Shindin@3#. It also
contradicts the results of Ligrani and Bradshaw@19#, which were
obtained with subminiature hot-wire sensors in the vicinity of a
mirror glass wall, and those of Chew et al.@5,6#. Further confu-
sion arose from the most recent numerical findings by Lange et al.
@4# that a hot-wire will read out a smaller apparent velocity than
the true value, i.e., an opposite velocity correction is needed in the
case of an adiabatic wall. In support of their findings, their results
for a perfectly conducting wall showed good agreement with the
available experimental data measured in the vicinity of metal
walls. It has to be pointed out, despite the numerous investigations
mentioned above, the influence of the thermal conductivity of the
wall material is still not fully clear. In fact, the effect of this
influencing factor has so far not been quantitatively analyzed.

Hence, the above summary of the literature shows that, as con-
cluded in Bruun’s book on HWA~Bruun @1#!, no universal correc-
tion procedure has so far been established, because of the various
parameters that influence this correction. The literature survey
also shows that the physical causes of the wall effect, especially
the influence of the wall material, are not well understood. There
are still strong contradictions and quantitative discrepancies
among experimental data and numerical results. A more extensive
numerical investigation is required in order to resolve the discrep-
ancies and to clarify the existing confusions.

An improved theoretical model has to be applied in the numeri-
cal simulation to take the influence of the real thermal conductiv-
ity of the wall material into account. Therefore, the conjugate
problem consisting of the flow and heat transfer around the cylin-
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der and the heat transfer in the solid wall was solved in this work,
which enabled us to study in detail the influence of different wall
materials.

3 Numerical Method

3.1 Theoretical Model and Governing Equations. In the
present study, a continuum approach is used. The fluid is assumed
to be incompressible~the density does not vary with the pressure!
while the variation of the fluid properties~r, m, k andcp) under
different temperatures is taken into account. The nondimensional
governing equations expressing the conservation of mass, momen-
tum and energy for steady two-dimensional flow of an incom-
pressible fluid are, in Cartesian coordinates, as follows:
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wherei , j 51,2 andF* is the normalized viscous dissipation func-
tion, given by
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Considering the flow characteristics in the viscous sublayer
around the cylinder, the friction velocityUt5Atw /r` and the
molecular diffusion lengthl c5n` /Ut are introduced as character-
istic quantities for the normalization.r* , m* , k* andcp* are den-
sity, dynamic viscosity, thermal conductivity and specific heat at
constant pressure normalized by the corresponding values at the
ambient temperatureT` , i.e., r` , m` , kf ,` and cp,` , respec-
tively. T* is normalized by the temperature difference between the
cylinder and the undisturbed oncoming flow (TW2T`).

The resultant nondimensional parameters relevant to the con-
sidered flow problem are as follows:

Reynolds number: Re5Uclc /n`51
Grashof number: Gr5 l c

3gb`r`
2 (TW2T`)/m`

2

Prandtl number: Pr5m`cp,` /kf ,`

Eckert number: Ec5Ut
2/cp,`(TW2T`)

where g is the gravitational acceleration,b` the coefficient of
volumetric thermal expansion evaluated at the ambient tempera-
ture T` .

For the solid wall, the system of governing Eqs.~1!–~3! re-
duces to a diffusion equation describing the heat conduction in the
wall. In the case of a steady-state problem as considered here, the
heat conduction in solids is described by a Laplace equation and
only the ratio of the thermal conductivity of the solid to the fluid
kw* remains as a relevant parameter in this part of the integration
domain.

The fluid considered was air at an inflow~ambient! temperature
of T`520°C. Two hot-wire temperaturesTW521 and 100°C
were investigated, corresponding to the overheat ratio1 t
5TW@K#/T`@K#51.003 and 1.27, respectively. A small overheat
ratio of t51.003 is not of interest for practical applications of
hot-wire measurements. It was used as a test case to evaluate the
effect of the overheat ratio. In case oft51.003, the temperature
dependence of the fluid properties can be neglected. Conse-
quently, the nondimensional fluid properties~r* , m* , k* andcp* )
are set to unity. Otherwise, these quantities were calculated by

means of quadratic functions of temperature, whose coefficients
were obtained based on VDI-Wa¨rmeatlas@20#, and were updated
in each new iteration. Considering the dimensions and tempera-
tures involved in the present investigation, natural convection and
viscous dissipation effects are small. Therefore, the last terms in
Eqs. ~2! and ~3! were neglected. A detailed justification for ne-
glecting these physical effects can be found elsewhere~Lange
@21#, Lange et al.@22#!.

3.2 Discretization and Solution Procedure. For the spatial
discretization of Eqs.~1!–~3!, a finite-volume method with a colo-
cated arrangement of the variables was employed, as described by
Demirdžić and Peric´ @23#. Equations~2! and ~3! were integrated
over each control volume~CV!, leading to a balance equation for
the fluxes through the CV faces and the volumetric sources. The
convection and diffusion contributions to the fluxes were evalu-
ated using a central differencing scheme of second-order accuracy,
which for the convective part was implemented using the
deferred-correction approach proposed by Khosla and Rubin@24#.
An evaluation of the discretization accuracy based on the numeri-
cal results is given in the next section.

For the pressure calculation, a pressure correction equation was
used instead of Eq.~1! and was solved iteratively with Eq.~2!
following the well-known SIMPLE algorithm proposed by Patan-
kar and Spalding@25#. Convergence was achieved when the maxi-
mum sum of the normalized absolute residuals in all equations
was reduced by six orders of magnitude. Details of the discretiza-
tion and the pressure-velocity coupling can be found elsewhere
~Perićet al. @26#, Demirdžić and Peric´ @23#!.

The solver for the linearized system of equations is a parallel
variant of the strongly implicit method of Stone@27# based on an
incomplete LU decomposition. A nonlinear multigrid scheme was
employed for convergence acceleration~see, e.g., Hortmann et al.
@28#!. For parallel computations, a block-structured grid partition-
ing and a message-passing strategy were used as described in
Durst and Scha¨fer @11#.

In order to improve the accuracy of the numerical results with-
out a decrease in efficiency and to optimize the utilization of the
available computational resources, a local grid refinement tech-
nique was employed. For the local refinement procedure, the com-
putational domain was divided into blocks and each block was
discretized with a different mesh density. After refinement, each
block remained fully structured, hence retaining the very efficient
implementation of the code~Durst et al.@10#, Lange@21#!.

The numerical code was verified by extensive predictions for
the flow and heat transfer around a heated two-dimensional cylin-
der under free-stream conditions in the range 1024<ReD<102

~Lange@21#, Lange et al.@22#!, which also partly provide calibra-
tion data (Nù versus ReD) for the present study.

4 Computational Domain, Boundary Conditions, and
Numerical Grids

In the present study, a heated infinite cylinder parallel to a wall
and normal to the flow is employed to represent the hot-wire. To
simulate the flow conditions in the part of a boundary layer in the
vicinity of a wall, a Couette flow with a constant ambient tem-
perature was prescribed at the inflow boundary~see Fig. 1!. The
upper boundary was assumed to be undisturbed and a zero gradi-
ent boundary condition for a fully developed flow was assigned at
the outflow boundary.

A hot-wire with a diameter ofD55 mm was studied here. The
wire-to-wall distanceY is in the range 10<Y/D<300. For each
value of Y/D, several inflow velocity gradients were applied,
based on which the friction velocity varies in the range 0.006
<Ut<0.307@m/s#. As a result, the resulting nondimensional wall
distances (Y15@YUt#/n) cover a range from 0.1 to 10 in the
computations. The Reynolds numbers ReD based on the cylinder
diameter and the undisturbed inflow velocity at the location of the
wire are very low in this investigation, namely in the range

1The overheat ratiot should not be confused withtw , the molecular momentum
transport term at the wall.
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0.001–1, which is typical for HWA near-wall measurements.
Based on some numerical tests, the computational domain was
normally extended between 1000D and 3300D to the wall to
ensure the accuracy of the results.

The heat transfer in the solid wall was coupled to the flow
region by means of the temperature continuity and the heat flux
conservation at the interface. The ambient temperature was pre-
scribed for both lateral boundaries of the wall block at the inflow
and the outflow locations, physically corresponding to the case of
an infinitely long solid wall. Tests were also made with an alter-
native lateral boundary condition by assuming the downstream
lateral wall temperature to be equal to that of the fluid at the
interface, which corresponds to the case that the solid wall is
ended and surrounded by the fluid at this boundary. Negligible
differences were found for the cylinder Nusselt number and for
the flow and temperature field in the region of interest with both
types of boundary conditions when the domain was extended to
6000D upstream and 10000D downstream of the cylinder. Hence
good accuracy of the simulations could be guaranteed. Walls of
600D, or 3 mm in thickness, and with different thermal conduc-
tivities ~aluminum, kw* 59186; glass,kw* 529.6; Perspex,kw*
57.2; air,kw* 51; and two artificial materials withkw* 50.01 and
0.1! were investigated. The computational domain together with
corresponding boundary conditions are summarized in Fig. 1.

The computational grids consisted of five multigrid levels in the
present study. In order to ensure a high accuracy of the numerical
results, grids were locally refined around the cylinder. As a result,
more than 500 grid points at the cylinder surface (D55 mm) and
about 160,000 grid points for the total domain were applied on the
finest grid level. As an example, a zoomed view of the grid and
the core region on the third multigrid level for the case ofY/D
5100 are shown in Fig. 2. With this resolution, reliable numerical
results for the mean Nusselt number, which is defined as

Nu52
1

2p R ]T*

]S r

D DU
W

du (5)

where r and u are coordinate components of a polar system lo-
cated at the center of the cylinder, can be obtained. Evaluations
for the discretization error were carried out with the help of the
following formula ~Ferziger and Peric´ @29#!

pn5

lnS Nun212Nun22

Nun2Nun21
D

ln 2

where the subscriptn denotes the grid level. Based on the results
of Nu, the order of the discretization accuracy were found to be
p5'1.9 in the case oft51.003 where the temperature dependence
of the fluid properties was neglected. In the case oft51.27 the
variation of the fluid properties under different temperatures was
taken into account, the problem becomes strongly nonlinear and
one finer multigrid level~totally six levels! was additionally
needed to obtain monotonic convergence~Nu decreases with in-
creasing grid leveln! on three continuous grid levels for the pur-

Fig. 1 Computational domain and boundary conditions

Fig. 2 Example of a computational grid „YÕDÄ100… and zoom
of the locally refined region at the third grid level „of a total of
five multigrid levels …
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pose of the discretization error analysis, which yieldedp651.7
21.95. Hence, the second-order accuracy of the CDS spatial dis-
cretization was preserved in the present study. According to the
numerical tests with six multigrid levels, a maximum decrease of
0.1 percent in the results of Nu were found from the fifth to the
sixth grid level in the case of a mirror glass wall. The effect of the
grid resolution is much stronger in the case of an aluminum wall,
where a maximum decrease of about 0.29 percent was observed.
That might cause a maximum discretization error of about 1.5
percent in the corresponding results ofUappa

1 or CU ~defined in
Section 5! on the fifth grid level. Therefore, in this case~alumi-
num wall! the numerical results of Nu were corrected by employ-
ing the Richardson extrapolation method~see, e.g., Ferziger and
Perić@29#! to remove the discretization error. Noting that an error
of 1–2 percent might occur in hot-wire measurements, the present
numerical results should be acceptable.

5 Results for Different Heat Conductivities of the Wall
Material

As in experimental measurements, the computed value of the
Nusselt number Nu was transformed into a corresponding value of
the velocity based on the improved numerical calibration curves
of Nu` versus ReD compared with the previous work of Lange
@21# which were obtained by simulations for flow and heat trans-
fer around a cylinder under free-stream conditions. Accordingly,
the predicted apparent velocityUappawas determined. The actual
local velocity U0 is known from the inflow boundary condition.
Following Lange et al.@4#, the velocity correction results are also
presented here by employing the correction factorCU , defined as

CU5
U0

Uappa
5

U0
1

Uappa
1 (6)

which is the fraction of the hot-wire signal that corresponds to the
actual value of the velocity. A transformation between this repre-
sentation and the most common form in the literature,DU1

5Uappa
1 2U0

15U0
1(CU

2121) can be made since the real velocity
distribution (U0

1 versusY1) is known~see Fig. 11 in Appendix!.
The present study is concentrated on the wall thermal conductivity
effect on the hot-wire near-wall correction. The effect of the wire
diameter was not investigated here. The same wire diameter as in
the present study (D55 mm) was used in all references cited for

the validation of the numerical results except Polyakov and Shin-
din @3#, D51 – 10mm, Hebbar@16#, D53.8mm and Ligrani and
Bradshaw@19#, D50.625mm.

5.1 Results for Walls With High Conductivities. The nu-
merical results of the velocity correction factorCU in the case of
an aluminum wall (kw* 59186; t51.27 and 1.003! are shown in
Fig. 3. The results oft51.003 were obtained to evaluate the effect
of the overheat ratio. Similar to the previous numerical results
~Bhatia et al.@2#, Chew et al.@5#, Lange et al.@4#!, a weak depen-
dence of the velocity correction on the overheat ratio was ob-
served in Fig. 3. Tests were also performed for different thermal
conductivities withkw* varying from 7000 to 10,000, but no obvi-
ous change was found in the numerical results. That suggests that
the hot-wire correction is not sensitive to the wall material in
case of highly conducting walls. Therefore, experimental data
with different highly conducting wall materials can be used for
comparison.

Several experimental results and the numerical results of Lange
et al. @4# for a perfectly conducting wall are plotted for compari-
son. The experimental data were extracted from their papers and
the data of Kostic´ and Oka@15# and Hebbar@16# were redisplayed
by means of interpolation. The wall material used in Kostic´ and
Oka @15# and Hebbar@16# were not given while it was copper
(kw* .10,000) in Polyakov and Shindin@3# and aluminum in
Krishnamoorthy et al.@17# and Chew et al.@6#, which is the same
as in the present investigation. The overheat ratios in Krish-
namoorthy et al.@17# ~t51.27 and 1.006, respectively! are very
close to those of the present study. Thus their results serve as the
most suitable reference data for the present simulation.

As can be seen in Fig. 3, the experimental data are highly
scattered due to different experimental conditions~e.g., D, t!.
Fairly good agreements are observed between the present results
and the experimental data of Polyakov and Shindin@3# and of
Krishnamoorthy et al.@17# at the lower end ofY1 (Y1,1). In
the rangeY1.1.5 the experimental results can be distinguished
into two classes. The results forCU in Krishnamoorthy et al.@17#
are obviously higher than those of the other class~Kostić and Oka
@15#, Polyakov and Shindin@3#, Hebbar@16#, Chew et al.@6#!,
among which a general agreement can be seen. The present nu-
merical results agree favorably well with those of Krishnamoorthy
et al. @17#, whose measurement conditions are closest to the

Fig. 3 Comparison of numerical and experimental values of the velocity correction factor CU in
cases of highly conducting walls, DÄ5 mm if not given
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present simulation. The general agreement between the present
computed velocity corrections and experimental data obtained in
turbulent flows confirms again that the velocity correction curve
established under the laminar flow condition could be applied to
measurements in turbulent near-wall flows.

It is interesting to note that, the differences between the present
results and the fitting curve of Lange et al.@4# for a perfectly heat
conducting wall is minor. That implies, that the isothermal bound-
ary condition at the fluid-wall interface (Tw5const) employed in
the previous numerical investigations~e.g., Lange et al.@4#! is a
good simplification to model the influence of the highly conduct-
ing wall on the hot-wire measurements. The discrepancy is mainly
due to the fact that the calibration data used by Lange et al.@4#
has been improved in the present study. In addition, the computa-
tional domain in their simulations (3000D downstream of the
wire! is not large enough according to the present study.

Although favorable agreements with the measurements of
Krishnamoorthy et al.@17# are reached, it should be pointed out
that the computed velocity correction factorCU for t51.27 is
obvious larger than all the corresponding experimental data in the
range 1,Y1,2. In other words, the heat loss rate and the appar-
ent velocity reading of a hot-wireUappa

1 in this range are under
predicted in the present study. It might be caused by the two-
dimensional model used in the numerical simulations, in which
the additional lateral heat loss of the wire was not included. In
case ofY1,2 the data ofCU from Chew et al.@6# are lower than
all other results. On checking their measurement condition, it is
found that the channel used in Chew et al.@6# was 1.6 mm in
height, i.e., only 320 times the wire diameter. As a result, the heat
convection of the wire may additionally be subjected to the hy-
drodynamic and thermal influence of the upper wall. This effect is
expected to be larger at lower wire Reynolds number ReD , i.e.,
lower Y1 whenY/D is kept unchanged.

The additional heat transferred to the wall is thought to be the
dominant cause of deviations in the HWA measurements in the
proximity of a highly heat-conducting wall, as was recognized by
previous investigators~see e.g., Bruun@1#!. This perception was

also the justification for the neglect of any flow field distortion in
the computations of Bhatia et al.@2#. Detailed information on the
local heat transfer behavior around the wire probe and at the fluid-
wall interface were analyzed in Shi et al.@30# to allow a better
understanding of the mechanism of the wall correction.

5.2 Results for Walls With Low Conductivities. The re-
quired velocity correction for HWA measurement decreases with
decreasing thermal conductivity of the wall material, resulting in
larger values ofCU for a givenY1 position of the wire, as shown
in Fig. 4, where the predicted results for mirror glass (kw*

529.6) and Perspex (kw* 57.2) are presented. The experimental
data of Chew et al.@6# ~Perspex! and Ligrani and Bradshaw@19#
~mirror glass,D50.625mm) were extracted2 and redisplayed in
the corresponding form of the numerical results for comparison.
In addition, the numerical results of Lange et al.@4# for the ex-
treme case of an adiabatic wall are also plotted. In Fig. 4, the
present computedCU data for a mirror glass wall are smaller than
the corresponding results of Ligrani and Bradshaw@19# for Y1

,2, however, the qualitative agreement is reasonably good in the
entire range ofY1. The smaller deviations fromCU51 found in
Ligrani and Bradshaw@19# corresponding to smaller required ve-
locity corrections may be due to the small wire diameter (D
50.625mm) they used. As pointed out in Section 5.1, the results
of Chew et al.@6# contain the influence of the upper wall due to
the small channel size. The thermal conductivity of the wall ma-
terial was not reported in both experimental studies, which, how-
ever, has a significant effect on the required velocity correction
according to the present results. The wall thickness was also not
given. In comparison with the case for highly conducting walls,
more experimental investigations are required not only to evaluate

2Although we were careful with the data extraction, minor errors may still be
introduced. However, they should have no consequence to the conclusion of the
present work.

Fig. 4 Comparison of numerical and experimental values of the velocity correction factor CU in
cases of walls with low conductivities
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the present numerical results, but also to improve the understand-
ing of the physics behind the hot-wire corrections required near
walls of low conductivity.

It is interesting to note the small ‘‘hump’’ in theCU versusY1

curve whereCU.1 occurs~negative velocity correctionsDU1

,0 are needed! in both experimental~Ligrani and Bradshaw@19#
Chew et al.@6#! and numerical results. As mentioned in the litera-
ture survey, great confusion exists concerning the HWA measure-
ment correction close to walls of low conductivities. The common
understanding in the literature~see e.g., Bruun@1#! is that positive
velocity corrections (DU1.0, i.e., CU,1) are needed in the
case of ‘‘nonconducting’’ wall materials forY1&2. Owing to this
understanding, great confusion arose among hot-wire experts
when Lange et al.@4# predicted that negative corrections (DU1

,0, i.e.,CU.1) are needed for hot-wire measurements close to
an perfectly heat-insulated wall. Therefore, the same ‘‘hump’’
phenomenon observed in the experimental data of Ligrani and
Bradshaw@19# and Chew et al.@6# is not only a support for the
present numerical results but also encourage the authors further to
reveal the physical mechanism, which is discussed in detail in Shi
et al. @30#.

For theoretical interest, numerical investigations were carried
out for wall materials with the same heat conductivity as the fluid
(kw* 51) and two artificial materials withkw* 50.1 and 0.01. All
the numerical results are presented in Fig. 5 together with the
results of Lange et al.@4#.

It is interesting to see in Fig. 5 that the computed corrections
for the three materials further confirm the existence of the
‘‘hump’’ in the CU(Y1) distribution. This phenomenon for the
two artificial materials (kw* 50.1 and 0.01! is so evident that they
also serve to validate the trend of the numerical finding of Lange
et al. @4# for the extreme case of an adiabatic wall (kw* 50). In
contrast to this finding, the numerical work of Chew et al.@5# did
not report a negative velocity correction (DU1,0 or CU.1) in
the case of an adiabatic wall.

All previous experimental and numerical investigations on this

topic simply classified the wall materials into ‘‘nonconducting’’
~low conductivities! walls and highly conducting walls. According
to the present results, summarized in Section 5.1, the classification
for the case of highly conducing walls is acceptable since no
obvious difference is found for the numerical values of the veloc-
ity correction factorCU when the thermal conductivity of the wall
material varies from 7000 to 10,000. However, such a classifica-
tion is insufficient for ‘‘nonconducting’’ wall materials. As shown
in Fig. 5, the quantitative dependence of the velocity correction on
the thermal conductivity of the wall material is very clear for
different poorly conducting walls. For example, mirror glass (kw*
529.6) and Perspex (kw* 57.2) are normally both treated as ‘‘non-
conducting’’ materials whereas quite different values of the veloc-
ity correction factorCU are predicted for the two wall materials in
the present work.

Based on the distribution of the numerical velocity correction
factor CU(Y1), the critical distanceYct

1 , below which velocity
correction is required for hot-wire measurements, can be deter-
mined. This value is aboutYct

1&4.5 both for an aluminum wall or
for the poorly conducting walls of mirror glass or Perspex. How-
ever, with decreasing wire-to-wall distance negative velocity cor-
rections (CU.1, i.e.,DU1,0) are first needed and then positive
values (CU,1, i.e., DU1.0) in the case of poorly conducting
walls. The range ofY1 for negative corrections depends on the
thermal conductivity of the wall material. For example, this range
is larger for a Perspex wall (1.5,Y1,4.5) than a mirror glass
wall (2.0,Y1,4.5).

It is worth mentioning the results for a wall withkw* 51. In such
a case, the required velocity corrections of the hot-wire measure-
ment are normally expected to be very small, i.e.,CU'1, because
the conductivity of the fluid is the same as that of the wall. How-
ever, as clearly demonstrated in Fig. 5, instead of a small correc-
tion, the predicted apparent velocity is about two times the ex-
pected value atY1'0.32 ~resulted fromY/D5100 and ReD
50.001). Now, the remaining open question arises again, whether

Fig. 5 Summary of the numerical values of the velocity correction factor CU for different wall
materials
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such large measurement deviations in this case are really caused
by the flow distortion from the interaction between the cylinder
and the wall as suggested by Chew et al.@6# for the case of walls
with low conductivities. This problem will be addressed now.

The flow distortion around the cylinder due to the presence of a
wall is obvious in Fig. 6, where contours of the total velocity
values (V15Au21v2/Ut) are plotted. The undisturbed inflow
velocity is known by reference toV15Y1. However, no strong
flow acceleration is found close to the cylinder. Instead, the
v-component of the velocity is found to be restricted by the wall
when the wire-to-wall distance is reduced~not presented here!.
Therefore, the flow distortion~convection! is not a dominant ef-
fect on the enhanced heat loss from the wire. On the contrary, as
Lange et al.@4# pointed out, the small Peclet numbers~Pe5Re Pr!
that characterize this kind of flow reflect precisely the minor role
played by the convective heat transfer compared with the heat
transferred by conduction. Moreover, the interpretation of Chew
et al. @6# failed to explain the ‘‘overshoot’’ phenomenon observed
by Lange et al.@4# for the extreme case of an adiabatic wall and
also by the present simulations and some experimental investiga-
tions ~Ligrani and Bradshaw@19#, Chew et al.@6#! for poorly
conducting walls. In fact, the real physical mechanism of the
‘‘overshoot’’ phenomenon and the large measurement distortions
in the proximity of a wall withkw* 51 can be understood by a
detailed analysis of the conjugate heat transfer around the wire in
the fluid flow and in the wall, which is discussed in the next
section.

6 Mechanism Responsible for Different Wall Correc-
tion Behaviors of Hot-Wire Measurements

The above results show clearly the dominant influence of the
wall thermal conductivity. Therefore, it is important to analyze the
heat transfer process between the fluid and the solid wall, which is
exactly the point simplified in the theoretical models of the previ-
ous numerical simulations~Bhatia et al. @2#, Chew et al. @5#,
Lange et al.@4#!. As discussed below, the temperature distribu-
tions at differentY1 show clearly the important influence of the
temperature wake and the heat exchange process between the fluid
and the solid wall on the heat loss rate from a wire. Based on this
finding, the distinct behaviors of the velocity correctionCU(Y1)
corresponding to different thermal conductivities of wall materials
and at differentY1 locations could be explained.

The ‘‘temperature wake-wall’’ interaction and the heat ex-
change process between the fluid and the solid wall that corre-

spond to different wall effects on the hot-wire measurement at
variousY1 locations are shown schematically in Fig. 7.

When a hot-wire comes close to a wall, i.e., within certain
values ofY1, heat transfer from the fluid into the wall material
occurs in the region of the temperature wake of the wire far down-
stream~refer to Fig. 7~a!! even when the wire has not become
subject to the wall effect. The heat flux from the fluid is then
transferred in both the upstream and downstream directions in the
solid wall and back into the fluid when the fluid temperature at the
interface is lower than that in the solid wall. This ‘‘temperature
wake-wall’’ interaction and the heat ‘‘feedback’’ process through
heat transfer in the solid wall will have no evident effect on the
hot-wire heat loss unless it occurs close enough to the wire loca-
tion when the wire-to-wall distance reaches below a certain value
of Yct

1 . This distance depends directly on the thermal conductivity
of the wall material. For example, based on the results in Fig. 5,
Yct

1 is about 5.5 for aluminum and about 4.0 for mirror glass. As
an example for this case, the ‘‘temperature wake-wall’’ interaction
and the heat feedback process are clearly observed in Fig. 8 for a
wire located atY/D5100 from a mirror glass wall with ReD51
resulting inY1510, where the wall effect on the hot-wire mea-
surement is still negligible (CU'1 in Fig. 4!.

This process has a two-way effect on the heat loss from the
hot-wire. The enhancing effect is obvious for materials withkw*
.1 since the heat transfer in the region close to a wire can be
enhanced owing to the heat transfer process in the solid wall com-
pared with the combined effect of diffusion and convection in a
free stream so that the heat transfer rate of the wire is increased.
However, a restraining effect may also arise when the heat flux

Fig. 6 Total velocity „V¿ÄAu 2¿v 2ÕUt… around the wire for YÕDÄ10 and ReÄ0.001, resulting in
Y¿Ä0.1, and for k w*Ä1

Fig. 7 Schematic temperature influence region of a hot-wire
and the heat exchange process between the fluid and the solid
wall at various wire-to-wall distances Y¿
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from the temperature wake downstream far away from the wire
transfers partly upstream in the solid wall and comes back into the
fluid flow in the vicinity of the wire location, or especially in the
vicinity upstream of the wire whenY1 decreases~Fig. 7~b!!. In
such a case, the flow around the wire is heated by the feed-back
heat flux from the wall, and as a result the heat loss rate of the
wire is reduced, which is illustrated in Fig. 9~mirror glass,Y/D
5100 and ReD50.1, resulting inY1'3.2). This restraining effect
is the physical cause responsible for the surprising ‘‘velocity cor-
rection factor overshoot’’ phenomenon (CU.1) obtained for the
‘‘nonconducting’’ walls~Fig. 5!. For highly conducting walls, the
heat from the fluid transfers far away from the wire location ow-
ing to the high thermal conductivity of the wall material. As a
result, the restraining effect arising from the heat ‘‘feed-back’’
process always plays a negligible role, hence the velocity correc-
tion factorCU remains below unity~Fig. 3!.

WhenY1 is further reduced~Fig. 7~c!!, the temperature wake-
wall interaction begins in the close proximity of the wire. More-
over, a large heat flux transfers directly from the heated fluid
around the wire into the wall owing to its higher conductivity than
the fluid, hence the temperature gradient around the wire is greatly
increased. The heat transfers far away from the wire location in
the wall, both upstream and downstream. The upstream heat trans-
fer in the wall is especially enhanced by the large cooling effect of
the oncoming unheated flow. As an example, Fig. 10 displays
clearly the direct ‘‘wire-wall’’ heat interaction at a distance of
Y150.63 close to a mirror glass wall resulting fromY/D5100
and ReD50.004, where the higher wall temperature gradients in
the upstream direction indicate an enhanced heat transfer in that
direction. The enhancing effect becomes dominant and more heat
is lost from the wire than under the free-stream condition asY1

decreases further. As a result,CU,1 is observed.
Now the ‘‘hump’’ in the CU(Y1) distributions for wall materi-

als with low conductivities is easily understood. It reflects the
dynamic transition from the restraining effect to the enhancing

effect with decreasingY1. For decreasing thermal conductivity of
the wall, the restraining effect increases, hence the ‘‘hump’’ in the
CU(Y1) distribution increases~see Fig. 4!.

7 Conclusions and Final Remarks
Numerical simulations were carried out to study the influence

of the thermal conductivity of the wall material on the hot-wire
wall correction. The conjugate heat transfer in the solid wall was
taken into account, which leads to a significant improvement of
the results for poorly conducting materials. Materials with differ-
ent thermal conductivities were investigated. Reasonable agree-
ment with the measurement data in the literature was achieved for
both highly and poorly conducting materials. Based on the present
results, the following conclusions can be drawn:

• In the case of highly conducting walls, the velocity correc-
tions needed for HWA near-wall measurements are not sensitive to
the wall material, but a strong dependence on the thermal conduc-
tivity of the wall material is found in the case of poorly conduct-
ing walls.

• The wall effect can not only enhance heat transfer from the
wire, as recognized in previous studies, but can also have a re-
straining effect on the heat loss from the wire when the wire is
located at a certain range ofY1 values from poorly conducting
walls, due to the heat feed-back from the wall.

• The heat exchange process between the fluid and the wall is
the most important physical mechanism for the hot-wire correc-
tions required near walls both of high and low thermal conductiv-
ity. In numerical studies, the Dirichlet temperature boundary con-
dition Tw5T` at the fluid-wall interface, corresponding tokw
5`, is a good approximation for cases of highly conducting
walls. In case of walls of low conductivity, on the other hand, it is
not realistic to model the wall effect by means of the Neumann
temperature boundary condition]T/]nuw50 at the fluid-wall in-
terface, which physically corresponds tokw50. Instead, the con-
jugate heat transfer in the solid wall has to be included in the
mathematical model.
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Nomenclature

CD 5 drag coefficient
cp 5 specific heat at constant pressure

CU 5 velocity correction factor
D 5 cylinder diameter

Ec 5 Eckert number
g 5 gravitational acceleration

Gr 5 Grashof number
H 5 thickness of the solid wall
k 5 thermal conductivity
L 5 length of the wire

Nu 5 Nusselt number
P 5 pressure
Pr 5 Prandtl number
q̇ 5 specific heat flux

Re 5 Reynolds number
T 5 temperature

Ui 5 Cartesian velocity components
Ut 5 friction velocity
xi 5 Cartesian coordinates
Y 5 wire-to-wall distance
b 5 coefficient of volumetric thermal expansion
m 5 dynamic viscosity
n 5 kinematic viscosity
r 5 fluid density
t 5 overheat ratio

tw 5 wall shear stress
F 5 viscous dissipation function

Indices:

0 5 actual value
appa 5 apparent value

c 5 characteristic quantities
ct 5 critical value
` 5 free-stream
f 5 flow region

w 5 solid wall
W 5 at the cylinder surface
* 5 nondimensional quantity

1 5 in wall units

Appendix
Following the suggestion of one referee, the numerical results

in cases of realistic wall materials~aluminum, mirror glass and
Perspex! are redisplayed in Fig. 11 in the form ofU1 versusY1

for reference.
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@9# Perić, M., 1990, ‘‘Analysis of pressure-velocity coupling on non-orthogonal
grids,’’ Numer. Heat Transfer, Part B,17, pp. 63–82.

@10# Durst, F., Lange, C. F., and Scha¨fer, M., 1995, ‘‘Local block refinement using
patched grids for the parallel computation of viscous flows,’’ Technical Report
LSTM 445/N, LSTM, Universita¨t Erlangen-Nu¨rnberg, Erlangen.

@11# Durst, F., and Scha¨fer, M., 1996, ‘‘A parallel blockstructured multigrid method
for the prediction of incompressible flows,’’ Int. J. Numer. Methods Fluids,22,
pp. 549–565.

@12# Wills, J. A. B., 1962, ‘‘The correction of hot-wire readings for proximity to a
solid boundary,’’ J. Fluid Mech.,12, pp. 388–396.
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@15# Kostić, Z., and Oka, S., 1972, ‘‘Influence of wall proximity on hot-wire ve-
locity measurements,’’ DISA Information,13, pp. 29–33.

@16# Hebbar, K. S., 1980, ‘‘Wall proximity corrections for hot-wire readings in
turbulent flows,’’ DISA Information,25, pp. 15–16.

@17# Krishnamoorthy, L. V., Wood, D. H., Antonia, R. A., and Chambers, H. J.,
1985, ‘‘Effect of wire diameter and overheat ratio near a conducting wall,’’
Exp. Fluids,3, No. 3, pp. 121–127.

@18# Janke, G., 1987, ‘‘Hot wire in wall proximity,’’ G. Comte-Bellot and J.
Mathieu, eds.,Advances in Turbulence, pp. 488–498, Springer, Berlin.

@19# Ligrani, P. M., and Bradshaw, P., 1987, ‘‘Subminiature hot-wire sensors: De-
velopment and use,’’ J. Phys. E,20, pp. 323–332.

@20# Verein Deutscher Ingenieure 1994,VDI-Wärmeatlas~7th ed.!, VDI, Düssel-
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Numerical Simulation of Polymer
Flow Into a Cylindrical Cavity
In this paper, new finite-difference based detailed general methodologies are presented for
numerical simulation of injection mold-filling during the production of a long cylindrical
object. The polymer considered is low density polyethylene (LDPE) following power-law
viscosity model for nonzero shear rate zone. However, where shear rate becomes zero,
‘‘zero-shear viscosity’’ value has been used. Three cases have been considered, namely; (i)
isothermal filling at constant injection pressure; (ii) isothermal filling at constant flow
rate and; (iii) nonisothermal filling at constant flow rate. For (iii), the viscosity of LDPE
is also a function of temperature. The material of the mold is steel. For the nonisothermal
filling, the concept of melt-mold thermal contact resistance coefficient has been incorpo-
rated into the model. The length and diameter of the body in all three cases have been
taken as 0.254 m and 0.00508 m, respectively. The results show excellent agreement with
the corresponding analytical solutions for the first two cases showing the correctness of
the numerical method. The simulation results for nonisothermal filling are reported for the
first time for this particular geometry and lend insight into various important aspects of
mold-filling including injection pressure versus time, and effects of flow rates on melt
temperature fields at various axial locations as well as on frozen skin layer.
@DOI: 10.1115/1.1445796#

Keywords: Injection Molding, Polymer Flow, Numerical Simulation

1 Introduction and Literature Review
Injection molding is one of the most common processing meth-

ods for thermoplastics. Nowadays one sees a multitude of differ-
ent types of injection molded products in homes, vehicles, offices,
and factories. These include combs, syringes, paint brush handles,
crash helmets, telephones, soft drink glasses, gearwheels, brief
cases, television housings, typewriters—the list is almost endless.

In the injection molding process, a thermoplastic in the form of
granules or powder, passes from a feed hopper into a barrel where
it is heated until it becomes soft. It is then forced through a nozzle
into a relatively cold mold which is clamped tightly closed. After
the plastic is cooled and solidified, the article is ejected and the
cycle is repeated. The major advantages of the process include its
versatility in molding a wide range of products, the ease with
which automation can be introduced, the possibility of high pro-
duction rates, and the manufacture of articles with close tolerances
~Crawford @1#!.

To improve the mold design and process control in this area,
increasing reliance is being placed on computer-aided design,
manufacture, and engineering. The quality of an injection molded
part is affected by many factors, which include geometric param-
eters associated with the mold design and the cooling system de-
sign as well as process parameters such as molding conditions
during filling phase.

Numerous mathematical models have been proposed and exten-
sively developed by various research groups for the analysis of
different stages of the injection molding process. Serious research
on injection molding started in the early fifties~Kamal et al.@2#!.
An empirical equation for capillary flow, coupled with a quasi-
steady approximation and a correlation to calculate the filling time
associated with the molding process were developed. A numerical
model for disk type geometry was given by Kamal and Kenig@3#
who proposed an integrated mathematical treatment of the filling,
packing, and cooling stages of the injection molding cycle. Wu

et al.@4# also presented a model for simulation of filling of a disk
shaped cavity. The transport equations for a power-law fluid were
used to solve the transient and nonisothermal problem of the fill-
ing of the cavity.

A finite-difference/finite element simulation was presented by
Hieber and Shen@5#. In this paper, a detailed formulation was
given for simulating the injection mold filling of thin cavities of
arbitrary planer geometry. The modeling is in terms of generalized
Hele-Shaw flow for an inelastic, non-Newtonian fluid under
nonisothermal conditions. Chiang et al.@6# employed a unified
theoretical model to simulate the filling and post filling stages of
the injection molding process. Implementation of such a model is
based on hybrid finite element/finite difference numerical solution
of the generalized Hele-Shaw flow of a compressible viscous fluid
under nonisothermal conditions.

Hetu et al. @7# reported a 3D finite element method for the
simulation of the filling stage in injection molding of industrial
parts. Recent trends are seen in the direction of obtaining opti-
mum molding conditions. Pandelidis and Zou@8# addressed the
problem of automatic optimization of gate location and presented
a methodology for molding condition optimization in a compan-
ion paper~Pandelidis and Zou@9#!. Choi et al.@10# presented a
method for optimizing process parameters of injection molding
with Neural Network application in the process simulation envi-
ronment. In their study, a learning system was developed to gen-
erate an optimum set of process parameters at the design stage
with minimum number of CAE runs. While the work of Hetu
et al. @7# dealt with irregular geometry and finite-element simula-
tion, the present work treated a simple but important geometry
and solves the mold filling problem by developing novel, general
finite-difference based methodologies and showed new results that
lent insight into non-isothermal polymer flow into a cylindrical
cavity.

1.1 Objectives of the Present Study. The objectives of the
present study are to investigate numerically the mold filling for
the production of a cylindrical object of length, 0.254 m and di-
ameter, 0.00508 m. Three cases have been considered, namely:~i!
isothermal filling at constant injection pressure;~ii ! isothermal
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filling at constant flow rate; and~iii ! nonisothermal filling at con-
stant flow rate. The main aims are~a! to develop a new numerical
approach based on finite-difference which can be useful to other
researchers and~b! to gain insight into the aspects of polymer
flow into a long cylindrical cavity.

2 Isothermal Filling
The first two cases fall under the category of isothermal filling,

which corresponds to the situation when the ratio of heat gener-
ated by viscous dissipation to that lost by heat transfer to cold
walls is close to unity and therefore, fair estimates of filling time
can be obtained by assuming isothermal flow.

For the first two cases the quasi-steady, fully developed, and
incompressible flow of a polymer~in this case, LDPE! melt along
a cylindrical cavity of diameter D and length L~Fig. 1! under
isothermal condition takes place. While in case~i!, the melt is
injected at constant injection pressure and hence the flow rateQ
decreases as the mold fills, in case~ii !, the constant flow rate is
maintained and hence the injection pressure is increased as the
cavity fills.

2.1 Problem Formulation. In injection molding simula-
tions the inertial terms in the momentum equation are negligible
in comparison to the pressure and viscous terms. Therefore, the
simple Stokes flow form of the momentum equation may be used.
The polymer is Non-Newtonian and assumed to follow power-law
viscosity model for nonzero shear rate zone. It is well known that
low density polyethylene~LDPE! exhibits power-law behavior
over limited ranges of shear rate~Han @11#!. In the range of shear
rates considered in the present work, the assumption of power-law
viscosity model for molten LDPE is a valid one. However, where
shear rate becomes zero, ‘‘zero-shear rate viscosity’’ value has
been used. For both cases the flow is quasi-steady, fully devel-
oped, and incompressible. Cylindrical polar coordinatesr and z
are appropriate for describing the axisymmetric flow in which
case there are no variations with respect to the angular coordinate,
u andVu50. Fully developed flow implies that]Vz /]z50. From
the equation of continuity it can be deduced thatVr50. Since the

Fig. 1 Cylindrical cavity to be filled by polymer melt

Fig. 2 The computational domain for isothermal filling

Fig. 3 The grid and the grid points in the computational domain
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problem is thermally and geometrically symmetric about the lon-
gitudinal axis, only one half of the physical domain is considered.
The computational domain is shown in Fig. 2. From the three
components of the equation of motion is it is apparent that
]p/]r 50 and]p/]u50. Therefore, onlyz-momentum equation
needs to be solved. Since the flow is isothermal, the solution of
energy equation is not necessary. For both the cases, the govern-
ing differential equation and boundary conditions are same.

2.2 Governing Differential Equation.

]p

]z
5

1

r

]

]r
~r t rz! (1)

where t rz5m
]Vz

]r
(1a)

and m5m~ u]Vz /]r u!n21 (1b)

‘‘ m’’ in Eq. 1~b! is called Consistency Index~see Nomenclature
for its unit! and represents the Newtonian viscosity~that is, cor-
responding ton51!. Therefore, the values ofn different from
unity describe the deviation from Newtonian fluids. In the case of
many polymer solutions and melts,n is usually less than unity
~Han @11#!. For ]Vz /]r 50, zero shear-rate viscosity value is
used. Clearly,p is a function of onlyz, whereas the right hand side
of Eq. ~1! is a function of onlyr. Therefore,]p/]z must be con-
stant.

2.3 Boundary Conditions. B.C.1: At r 50, ]Vz /]r 50
~axisymmetry!
B.C.2: At r 5R, Vz50 ~no-slip!
The pressure at the melt front is always zero because the atmo-
spheric pressure prevails there~Guceri @12#!.

2.4 Details of Finite-Difference Formulation. From Eq.
~1!, using L’Hopital’s rule, we get

for r 50,
]p

]z
52m

]2Vz

]r 2 (2)

where m5m0

wherem0 is the viscosity at zero shear rate.
For r .0, Eq. ~1! reduces to

m

r

]Vz

]r
1m

]2Vz

]r 2 1
]m

]r

]Vz

]r
2

]p

]z
50 (3)

wherem is defined in Eq. 1~b!.
Equations~2! and ~3! are discretized using finite-difference

scheme. A uniform grid is used~Fig. 3!. The details of the finite-
difference scheme are shown below.

Grid Points: j51 for i 52 to m. These grid points lie on the
center axis (r 50) and hence Eq.~2! applies here.
Since atr 50, ]Vz /]r 50, using image-point technique, we have

Vz,i , j 112Vz,i , j 21

2Dr
50⇒Vz,i , j 115Vz,i , j 21

Sincepmelt front50, pi , j50 (i>2). Also, p1,j5pinj . Using back-
ward difference for]p/]z, central difference for]2Vz /]r 2 and
usingVz,i , j 115Vz,i , j 21 andpi , j50(i .or52) andpl , j5pinj from
above, the discretized form of Eq.~2! becomes

4
m0

~Dr !2 Vz,i , j24
m0

~Dr !2 Vz,i , j 112
pinj

z
50 (4)

Grid Points: j52 to n22, i 52 to m. The discretized form of
Eq. ~3! takes the following form using backward difference for
]p/]z, central difference for]2Vz /]r 2 and pi , j50(i>2) and
pl , j5pinj .

Vz,i , j 21S 2
m i , j

2~Dr !r i , j
1

m i , j

~Dr !22
m i , j 112m i , j 21

4~Dr !2 D
1Vz,i , j S 22

m i , j

~Dr !2D1Vz,i , j 11S m i , j

2~Dr !r i , j
1

m i , j

~Dr !2

1
m i , j 112m i , j 21

4~Dr !2 D1
pinj

2
50 (5)

Grid Points: j5n21, i 52 to m. From the boundary condi-
tion at r 5R, Vz50 which implies thatVz,i , j 1150. Therefore,
from Eq. ~5!, the following discretization equation is obtained.

Vz,i , j 21S 2
m i , j

2~Dr !r i , j
1

m i , j

~Dr !22
m i , j 112m i , j 21

4~Dr !2 D
1Vz,i , j S 22

m i , j

~Dr !2D1
pinj

z
50 (6)

It should be noted thatz5zi ,1 ( i>2)

2.5 Average Velocity of the Melt, Fill Time, and Volumet-
ric Flow Rate. The average velocity of the melt over any cross-
section of the cylindrical cavity is calculated from the following
expression.

Vz,avg5

E
0

R

Vz2prdr

pR2 (7)

The fill time is computed from

t5 (
i 52

m21

Dt i (8)

where Dt i5
Dz

Vz,avg,i
(8a)

The volumetric Flow Rate~Q! is calculated from

Q5~pR2!Vz,avg (9)

3 Methods of Solution

3.1 For Isothermal Filling at Constant Injection Pressure:
Case„i…. From Eq. 1~b!, it is evident that the knowledge of the
velocity profile is needed to calculate viscosity. Therefore, the
velocity profile is guessed at the stationi 52. This in turn is used
to compute viscosity value at the grid points fromj 52 to n from
Eq. 1~b!. For j 51, m5m0 at the given melt temperature is used.
Subsequently, the set of linear algebraic Eqs.~4!–~6! having a
tridiagonal coefficient matrix is solved using Thomas algorithm.
The new velocity profile is again used to calculate the new vis-
cosity values and the aforesaid procedure is repeated till there is
virtually no change in the old and new velocity profiles. The con-
verged velocity profile is then used to compute the average melt
velocity, the fill time and the volumetric flow rate from the Eq.
~7!, Eq. ~8!, and Eq.~9!, respectively. The computation now starts
at i 53 separated from the previous station byDz with the
guessed profile same as the profile ati 52 and the aforesaid pro-
cedure described fori 52 is repeated. The computation continues
for i 54,5,6, and so on till the end of the cavity is reached.

3.2 For Isothermal Filling at Constant Flow Rate: Case
„ii …. In this case the flow rate is constant and known. The solu-
tion gives us the injection pressure required at a particular time to
achieve the desired flow rate. The correct injection pressure at a
given time is obtained iteratively by the application of the
Newton-Raphson Method~Jaluria @13#!. The basic concept is as
follows. If Q is the flow rate, then for the correctpinj we can write
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F~pinj!5E
0

R

Vz2prdr 2Q50 (10)

That is,pinj is the root of Eq.~10!. Now, following the Newton-
Raphson method, the following can be written.

pinj,improved5pinj,guess2
F~pinj,guess!

~F~pinj,guess1Dpinj!2F~pinj,guess!!/Dpinj
(11)

Dpinj is taken as a small interval. The procedure is repeated till
upinj,improved2pinj,guessu<«.

The solution starts ati 52 with guessed velocity profile and
injection pressure. Then the set of linear simultaneous Eqs.~4!–
~6! are solved by Thomas algorithm as before. Newton-Raphson
method is now applied to obtain convergedpinj and hence, con-
verged velocity profile. Then the solution moves on toi 53,4,5
and so on till the end of the cavity is reached.

It is important to note that for both case~i! and case~ii !, com-
putation starts from a small distance away from the inlet, since the
Eqs. ~4!–~6! can be solved forz.0. That is why, in the present
study,Dz is taken very small in order to calculate the fill time to
the closest possible accuracy. It is, however, possible to take a tiny
value of initial Dz and then increaseDz to save computational
time. That is, a nonuniformDz is allowed in this method.

4 Nonisothermal Filling of Cavity at Constant Flow
Rate: Case„iii …

4.1 Physical Problem. In this case, the ratio of heat gener-
ated by viscous dissipation to that lost by heat transfer to cold
walls is much greater than unity which gives rise to nonuniform
temperature in the melt. The mold is kept at a temperatureTmold.
The material of the mold is steel. The polymer melt enters at a
temperatureTi . The injection pressurepinj is gradually increased
so that the flow rateQ in the cavity is constant.

4.2 Problem Formulation. Since the viscosity of the poly-
mer melt is dependent on the shear rate as well as temperature, the
momentum~axial! and energy equations are coupled and are to be
solved simultaneously. Half of the physical domain is shown in
Fig. 4. The computational domain is the cavity.

4.3 Governing Differential Equations. Momentum~axial!
equation:

]p

]z
5

1

r

]

]r
~r t rz! (12)

where t rz5m
]Vz

]r
(12a)

and m5mU]Vz

]r U
n21

e2b~T2Tref! (12b)

For ]Vz /]r 50, m5m0e2b(T2Tref) is used.m0 is the zero shear-
rate viscosity value.Tref5160°C.
Energy Equation:
Neglecting axial conduction,

rcpVz

]T

]z
5k

1

r

]

]r S r
]T

]r D1mS ]Vz

]r D 2

(13)

4.4 Boundary Conditions.

B.C.1: at r 50,
]Vz

]r
50~axisymmetry!

B.C.2: at r 50,
]T

]r
50~axisymmetry!

B.C.3: at r 5R, Vz50~no-slip!

B.C.4: at r 5R, 2k
]T

]r
5h~T2Tmold!

The pressure at the melt front is always zero as the atmospheric
pressure prevails there.

4.5 Explanation for B.C.4. Even if the thermal contact re-
sistance between the melt and the mold cavity can be assumed
negligible, an interface condition between the melt and the mold
is implemented. It is similar to heat transfer between two solids
with imperfect contact. ‘‘h’’ in Eq. ~14! is similar to contact con-
ductance. The assumption is justified by the fact that in mold
flows frozen skin layers are likely to be formed~see the Results
and Discussion!. The variation in the heat transfer at the interface
is a complex phenomenon that depends on many factors such as
surface roughness, geometry, mold coating, and polymer compo-
sition. From the model point of view, the interface modeling adds
flexibility. It facilitates the coupling between the flow equations
and heat transfer. The condition specified at the interface is such
that the heat flux must be conserved across the discontinuity. This
is expressed as:

q95h~Tmelt2Tmold! (14)

Fig. 4 The half physical domain for nonisothermal filling
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The melt-mold thermal contact resistance coefficient,h, is deter-
mined experimentally~Kamal et al.@14#!. In the present work, a
suitable value forh is taken as 23108 W/m2

•K ~Hetu et al.@7#!.

4.6 Details of Finite Difference Formulation. The discreti-
zation of the momentum equation is same as described in Section
2.4 for isothermal cases, only difference being the expressions
used to calculate the viscosity which are given below.

For r 50, m5m0e2b~T2Tref! (15a)

For r .0, m5mU]Vz

]r U
n21

e2b~T2Tref! (15b)

Energy Equation:
For r 50, using L’Hopital’s rule~since]T/]r 50! and also sub-
stituting ]Vz /]r 50 in Eq. ~13!, we get

rcpVz

]T

]z
52k

]2T

]r 2 (16)

For r .0,

rcpVz

]T

]z
5kS 1

r

]T

]r
1

]2T

]r 2 D1mS ]Vz

]r D 2

(17)

The energy equation being parabolic is solved using Explicit
finite-difference scheme taking stability considerations into ac-
count. A uniform grid is used~Fig. 3!.

Grid Points: j51, i 52 to m. These grid points lie on the
center axis and hence Eq.~16! applies here. The discretized form
of Eq. ~16! usingTi , j 115Ti , j 21 ~resulting from the application of
image-point technique! takes the following form.

Ti 11,j5S 12
4kDz

rcpVz,i , j~Dr !2DTi , j1
4kDz

rcpVz,i , j~Dr !2 ~Ti , j 11!

(18)

Grid Points: j52 to n21, i 52 to m. Equation~17! is valid
at these grid points. The discretized form of Eq.~17! is as follows.

Ti 11,j5S 12
2kDz

rcpVz,i , j~Dr !2DTi , j1
kDz

rcpVz,i , j
S Ti , j 111Ti , j 21

~Dr !2

1
1

r i , j

Ti , j 112Ti , j 21

2Dr D1
m i , jDz

rcpVz,i , j
S Vz,i , j 112Vz,i , j 21

2Dr D 2

(19)

Grid Points: j5n, i 52 to m. These grid points correspond to
r 5R at which B.C.3 and B.C.4 are valid. SinceVz50 ~B.C.3!
here, Eq.~17! takes the form

kS 1

r

]T

]r
1

]2T

]r 2 D1mS ]Vz

]r D 2

50 (20)

Using image-point technique, that is, central difference approxi-
mation to B.C.4, we have

Ti , j 1152
2hDr

k
~Ti , j2Tmold!1Ti , j 21 (21)

Substituting Eq.~21! into the discretized form of Eq.~20! contain-
ing backward difference expression for]Vz /]r and noting that
Vz,i , j50 ~no-slip!, the following expression forTi , j is obtained.

Ti , j5S m i , j

2k
~Vz,i , j 21!22Ti , j 21S Dr

2r i , j
21D2TmoldS h~Dr !2

2kri , j
2

hDr

k D
12

h~Dr !2

2kri , j

D (22)

Note that in the above the indexi actually corresponds toi 11.
This means thatTi 11,j is calculated from Eq.~22! by using the
previously calculated value ofTi 11,j 21 obtained from Eq.~19!.

4.7 Average Melt Temperature. Once the temperature and
velocity profiles at anyz-location is obtained, the average melt
temperature is calculated using the concept of mixing-cup tem-
perature~Holman @15#! as given below.

Tavg5

E
0

R

r2prdrVzcpT

E
0

R

r2prdrVzcp

(23)

The trapezoidal rule has been used to evaluate the above integral.

4.8 Stability Criteria. Since the energy equation is para-
bolic, the following restriction regardingDz has to be imposed in
order to obtain a stable solution by the Explicit method.

For r 50, Dz<
rcpVz,i , j~Dr !2

4k
(24)

For r .0~butÞR!, Dz<
rcpVz,i , j~Dr !2

2k
(25)

The smaller of the two minimumDz’s obtained from Eq.~24! and
Eq. ~25! is taken.

4.9 Method of Solution. Since the energy equation is para-
bolic ~as thez-coordinate behaves like a time coordinate!, a solu-
tion marching in the axial~z-direction! is required which means
that the inlet melt temperature is needed to initiate the computa-
tion. As the energy equation contains the viscous dissipation term,
to start the solution, the velocity profile is guessed first at the
station i 52. The injection pressure also has to be guessed. Then
using the guessed velocity profile, the energy equation is solved to
obtain a new temperature profile which is subsequently used to
calculate the viscosity of the melt. The next step is to solve the
momentum equation and calculate the new velocity. Newton-
Raphson method is applied to get a convergedpinj , and the ve-
locity profile for the particular temperature~which was obtained
from the guessed velocity profile to begin with!. Using the current
velocity profile the energy equation is solved to get the current
temperature profile. Again the previous and current velocity and
temperature profiles are compared to see whether significant
change has occurred or not. In case the convergence criteria for
both velocity and temperature are not satisfied, the procedure is
repeated with the new velocity and temperature profiles until in
successive iterations no change is observed in both velocity and
temperature. The solution then moves on to the nextz-station
using the freshly calculated temperature at the previousz-station
and so on till the end of the cavity is reached. The pressure dis-
tribution in the melt at the end of filling is calculated from Eq.
~26!.
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pi 115pi1S ]p

]zDDz, i 51 to m22 (26)

where]p/]z52pinj(t)/L ~sincepm50 andp versusz is linear!.
Also, p15pinj(t) wherepinj(t) is the final injection pressure, that
is, the injection pressure at the end of the filling process.

5 Results and Discussion
Mold filling simulation requires the calculation of the detailed

velocity and temperature profiles throughout the mold flow re-
gion, including the position and shape of the advancing front. This
helps the analyst to determine orientation distribution affecting the
article morphology, which evolves upon cooling and solidifica-
tion. Such a model will facilitate the theoretical mold design as
well as optimizing molding conditions for specific property
requirements.

In the present research numerical results are shown for isother-
mal and nonisothermal filling of a cylindrical cavity of length 25.4
cm ~0.254 m! and diameter 5.08 mm~.00508 m!. The material of
the object is LDPE~low density polyethylene!. Sufficient numeri-
cal experiments have been done to obtain the optimum grid size.
For the isothermal cases 1013101 grid points have been used, the
first and second numbers signifying number of grid points inr and
z-directions, respectively. For the nonisothermal case, 313181
grid points have been taken. For the sake of brevity only one grid
independence test for a given case of nonisothermal filling is
shown in Fig. 15. It may be noted that the present work addresses
the issue of ‘‘stability’’ by choosing to think ofz as a time scale
and selectingDz to be sufficiently small as not to cause the Ex-
plicit scheme to become unstable. The approach involves a num-
ber of iterative procedures to ensure ‘‘convergence’’ in velocity
and temperature profiles, not to mention the nonlinear viscosity.
DecreasingDr by a factor of 2 would require thatDz be dropped
by a factor of 4. The grid independence test is conducted by fixing
the number of grid points in thez-direction at 181 and changing
the number of grid points in ther-direction from 11 to 61 in steps
of 10. It is clearly seen from Fig. 15 that the optimum number of
grid points is 313181 and the solution becomes unstable when
the number of grid points in ther-direction is 61 as expected from
the stability analysis. All computations have been carried out on
HP-9000 computer system of IIT Kanpur.

5.1 Case„i…: Isothermal Filling at Constant Injection Pres-
sure. The input data for this case are shown in Table 1. The

property values of the polymer melt have been taken from Tadmor
and Gogos@16#. Values ofz andQ are listed for various times in
Table 2. The excellent match with the corresponding analytical
solutions~Tadmor and Gogos@16#! which are given below shows
the correctness of the numerical solution.

z~ t !5S 11n

113nD n/~11n!

RS pinj

2mD 1/~11n!

tn/~11n! (27a)

Q~ t !5pR3S 11n

113nD n/~11n!S n

11nD S pinj

2mD 1/~11n! 1

t1/~11n!

(27b)

The results clearly indicate that we should expect a very high
flow rate and quick filling initially, followed by a rapid drop inQ
and long filling times for the remainder of the cavity. Figure 5
shows thatz versust plot for the present numerical solution. It is
clear that]z/]t is high in the beginning whereas with increasing
time ]z/]t drops off rapidly. This is obvious because with increas-
ing z, Q decreases at a fast rate. Figure 6 shows the plot ofQ
versusz. It essentially reproduces Table 2 in the graphical form.

Figure 7 depicts the half melt velocity profile at various
z-locations indicated by percent filling distance. It is clear that the
profile is initially parabolic but turns to flat as the cavity is filled

Fig. 5 The position of advancing melt front as a function of time for constant
injection pressure isothermal filling

Table 1 Input data for case „i…

m 9360(N sn/m2)
n 0.41

Pinj 15.6 ~MPa!
Ti 160°C
m0 6300~N s/m2!

Table 2 Values of t and Q at various z-locations

Z tanal. tnuml. Qanal. Qnuml.

0.035 1.0031023 .9731023 .20731023 .21731023

0.106 .16931021 .14331021 .35931025 .43731025

0.150 .147 .146 .60131025 .60631025

0.200 .394 .391 .29831025 .30231025

0.250 .850 .847 .17331025 .17431025

0.254 .897 .893 .16631025 .16831025
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more and more. Thus the shape of the melt front flattens out with
increasing axial distance. It is also seen that the magnitude of the
maximum velocity~located at the center axis! decreases with in-
creasingz.

5.2 Case„ii …: Isothermal Filling at Constant Flow Rate.
The input data for the case are shown in Table 3. The property
values of the polymer melt have been taken from Tadmor and
Gogos@16#. Figure 8 shows the plot of injection pressure versus
time. It is observed that an applied pressure linearly increasing
with time is required. This is because with time the melt tends to
slow down and therefore, to maintain constant flow rate, the in-
jection pressure is continuously increased. This linear trend can be
easily justified from the analytical solution~Tadmor and Gogos
@16#! for Q(t) which is given as follows.

Q~ t !5
pR3

s13 S Rpinj

2mz~ t ! D
s

(27c)

Note that Eq.~27c! is the original equation from which Eq.~27a!
and Eq.~27b! follow. Now, if Q(t) is constant, thenpinj must be
linearly proportional toz(t) sinceR, m, s(51/n) are constants.
Table 4 shows a comparison of injection pressure versus time of
the present and the analytical solution. The agreement is excellent.
In actual practice, variable injection pressure is more common
since it is easy to implement and has a better control over the
filling time.

5.3 Case „iii …: Nonisothermal Filling at Constant Flow
Rate. In practical situations, isothermal filling is difficult to
achieve. Therefore, we turn our attention to the scenario where the
mold is kept at a fixed temperature and the melt is losing heat to
the mold. The input data for this case are shown in Table 5.

Figure 9 shows a comparison of injection pressure versus time
for nonisothermal and isothermal filling. It is evident that the in-
jection pressure increases nonlinearly with time for the non-
isothermal filling. This is because of the fact that in the case of
non-isothermal filling momentum equation is coupled with the
energy equation through the viscosity which is a function of strain
rate as well as temperature. Also, it is seen that the requirement of

Fig. 6 Flow rate versus distance for constant injection pressure isothermal
filling

Fig. 7 Half melt velocity profile at various z-locations for constant injection
pressure isothermal filling

Table 3 Input data for case „ii …

m 9360(N sn/m2)
n 0.41
Q .51531022 (m3/s)
Ti 160°C
m0 6300 ~N s/m2!
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injection pressure rise versus time is much less in the case of
nonisothermal filling because of the effect of viscous heat genera-
tion in the melt which raises the temperature and hence decreases
the viscosity of the melt. As a result, less injection pressure is
required to push the melt through the cavity. The viscosity de-
creases more toward the end of the cavity due to higher average
temperature and hencedpinj /dt also decreases thus producing a

flatter curve as the time increases. However, this trend is valid for
high flow rate case (0.51531022 m3/s) which corresponds to the
present figure~Fig. 9! under discussion.

Figure 10 shows the melt temperature field at various
z-locations forQ50.51531024 m3/s. The layer near the center is
virtually isothermal throughout filling, which is due to the fact

Fig. 8 Plot of injection pressure versus time for constant flow rate isothermal
filling

Fig. 9 Comparison of injection pressure versus time for nonisothermal and
isothermal filling at constant flow rate

Table 4 Comparison of Pinj,anal and Pinj,numl

t
~s!

Pinj,anal.
~MPa!

Pinj,numl.
~MPa!

.10031023 124.34 125.61

.50031023 629.05 626.23

.60031023 753.54 754.86

.70031023 880.67 880.67

.80031023 1004.48 1006.82

.90031023 1133.29 1132.15

.10031022 1259.32 1258.10

Table 5 Input data for case „iii …

m 9360(N sn/m2)
n 0.41
b 0.01 ~°C21!
r 525 ~kg/m3!
cp 2300 ~J/kg°C!
k 0.335~W/m°C!
h 23108(W/m2°C)

m0 6300 ~N s/m2!
Ti 200°C

Tmold 60°C
Mold

Material
Steel
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Fig. 11 Melt temperature fields at various z-locations for QÄ0.107Ã10À4 m3Õs
for nonisothermal flow „case „iii ……

Fig. 12 Frozen skin layers for various flow rates for nonisothermal flow „case
„iii ……

Fig. 10 Melt temperature fields at various z-locations for QÄ0.515Ã10À4 m3Õs
for nonisothermal flow „case „iii ……
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Fig. 13 Pressure distribution in the cavity after filling for nonisothermal flow
„case „iii ……

Fig. 14 Melt velocity profiles at different locations during filling for nonisother-
mal flow „case „iii ……
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that the velocity gradients are zero and the thermal conductivity of
the melt is low. As one approaches the wall of the cavity, the
temperature increases with radial position, it goes through a maxi-
mum and then decreases to low values. The maximum is a result
of the competition between the viscous heat dissipation and heat
conduction. The level of the largest is nearly 238°C. As stated
above, the temperature rapidly drops at larger radial positions.
This is due to the fact that in this region the melt has resided in the
cold cavity, and near the wall, for a longer period of time.

Figure 11 shows similar plot as in Fig. 10 but forQ50.107
31024 m3/s, that is, for a much lower flow rate. It is interesting
to see that no peak appears in this case. The average temperature
at 80 percent of filling is lower than that at 20 percent of filling
which means that the temperature of the melt decreases as it flows
towards the end of the cavity. This is because of the fact that at
low flow rates the velocity profile is flatter and hence viscous
dissipation is less and therefore, the maximum temperature is not
encountered. The reason why the melt becomes colder as it
reaches the end is due to the high residence time in the cavity
arising out of the low flow rate and greater loss of heat to the cold
mold.

From Fig. 10 it is observed that very near the wall the tempera-
ture of the melt is below 180°C, where the viscosity of LDPE is so
high that the fluid exhibits virtually no flow. Thus, for the above
regions a ‘‘frozen skin’’ layer is formed during filling. This layer
is seen to form much earlier for lower flow rate case~Fig. 11!, that
is, nearr 50.002 m.

Figure 12 shows the frozen layer is smallest for the highest flow
rate and vice-versa. The ‘‘frozen skin’’ layer is not desirable in
that it contributes to the ‘‘molded in’’ strains in the molded article.
The frozen layer can be effectively reduced or eliminated by
higher injection pressure~resulting in higher flow rate!, higher
melt temperature and to a lesser but appreciable, degree by in-
creasing mold temperature.

Figure 13 shows the pressure distribution in the cavity after
filling. As expected,p versusz profile is linear with negative pres-
sure gradient. Figure 14 shows the location of the melt front at
various times. The velocity profile remains invariant because of
constant flow rate and fully developed nature of the flow.

The results for the case of nonisothermal filling are new and

have not been found in earlier literature. To the best of the present
authors’ knowledge, no experimental data are available for the
case of nonisothermal filling problem presented here. Therefore, a
comparison of the numerical results with experiment could not be
done ~see a discussion on the issue of numerical uncertainty in
Section 5 with reference to Fig. 15!.

6 Conclusions
In this paper, numerical simulation of the mold filling for the

production of a cylindrical object is presented. The material of the
object is LDPE. Novel finite-difference based general methodolo-
gies have been developed. Three cases have been considered,
namely; ~i! isothermal filling at constant injection pressure;~ii !
isothermal filling at constant flow rate; and~iii ! nonisothermal
filling at constant flow rate. The results show excellent agreement
with the corresponding analytical solutions for the first two cases
showing the correctness of the numerical method. The simulation
results for nonisothermal filling are new for this particular geom-
etry and show physically realistic trends and lend insight into
various important aspects of mold-filling including injection pres-
sure versus time, and effects of flow rates on melt temperature
fields at various axial locations as well as on frozen skin layer.

Nomenclature

b 5 temperature coefficient of viscosity~°C21!
cp 5 specific heat at constant pressure~J/kg•K!
D 5 diameter~m!
h 5 melt-mold thermal contact resistance coefficient

~W/m2
•K!

k 5 thermal conductivity~W/m•K!
L 5 length ~m!
m 5 consistency index~N•sn/m2!, also number of grid

points inz-direction
n 5 power-law index, also number of grid points in

r-direction
p 5 pressure~N/m2 or Pa!

pinj 5 injection pressure~N/m2 or Pa!
q9 5 heat flux~W/m2!
Q 5 flow rate ~m3/s!

Fig. 15 Grid independence test for one case of nonisothermal filling of the
cavity „QÄ0.515Ã10À4 m3Õs, TiÄ2000 C, Tmold Ä600 C, zÄ0.0113 m, i.e., at
4.448% of the total length of the cavity …
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r 5 radial coordinate~m!
Dr 5 grid spacing inr-direction ~m!

R 5 radius~m!
T 5 temperature~°C!

Tavg 5 average temperature of the melt~°C!
Ti 5 inlet melt temperature~°C!

Tref 5 reference melt temperature for nonisothermal flow
~°C!, Eq. ~12b!

Tmold 5 mold temperature~°C!
t 5 filling time ~s!

Vz 5 velocity of the melt in thez-direction ~m/s!
Vz,avg 5 average velocity of the melt over any cross-section

~m/s!
z 5 axial coordinate~m!

Dz 5 grid spacing inz-direction ~m!

Greek Letters

a 5 thermal diffusivity ~m2/s!
« 5 a very small value (51026)
m 5 viscosity ~N•s/m2!

m0 5 viscosity at zero shear rate~N•s/m2!
r 5 melt density~kg/m3!

t rz 5 shear stress~N/m2!

Subscripts

i 5 grid index inz-direction, also inlet
inj 5 injection

j 5 grid index in r-direction
melt 5 for melt

mold 5 for mold
ref 5 reference

Special Symbol

D 5 increment
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The Effects of Compression and
Pore Size Variations on the Liquid
Flow Characteristics in Metal
Foams
Open-cell aluminum foams were investigated using water to determine their hydraulic
characteristics. Maximum fluid flow velocities achieved were 1.042 m/s. The permeability
and form coefficient varied from 2.46310210 m2 and 8701 m21 to 3529310210 m2 and
120 m21, respectively. It was determined that the flowrate range influenced these calcu-
lated parameters, especially in the transitional regime where the permeability based Rey-
nolds number varied between unity and 26.5. Beyond the transition regime where ReK
*30, the permeability and form coefficient monotonically approached values which were
reported as being calculated at the maximum flow velocities attained. The results obtained
in this study are relevant to engineering applications employing metal foams ranging from
convection heat sinks to filters and flow straightening devices.@DOI: 10.1115/1.1429637#

Introduction
This study investigates the hydraulic characteristics of a liquid

flowing through a rigid, open-cell, metal foam. The metal foam is
an intricately detailed structure, which is manufactured from a
variety of molten aluminum processes~Fig. 1~a! and Fig. 1~b! in
uncompressed form and Fig. 1~c! and Fig. 1~d! in compressed
form!. The structure of the metal foam opens itself to many ap-
plications due to its large surface area to volume ratio and high
permeability. The list of possible applications includes light-
weight high-strength structural applications, mechanical energy
absorbers, filters, pneumatic silencers, containment matrices and
burn rate enhancers for solid propellants, flow straighteners, cata-
lytic reactors, heat sinks, and heat exchangers. In addition to flow
applications, thermally conductive porous media may also in-
crease the thermal conductance of a solid-fluid system simply by
their physical presence@1–3#.

The use of open-cell metal foams in fluid-flow applications re-
quires a thorough understanding of the pressure-drop behavior of
the fluid flowing through the porous structure. Extensive work has
been done to characterize the pressure-drop behavior of fluid flow
through porous media, but these are often limited to packed granu-
lar beds or beds of packed spheres. An excellent review on the
subject involving such granular materials can be found in@4#. As
seen in Fig. 1, the structure of the open-cell metal foam is com-
pletely different from that encountered in packed beds of spheres.
Because of these structural differences, the characterization of the
pressure-drop through the open-cell metal foams requires a re-
newed research effort.

Theory
Different models have been developed in the past 150 years to

characterize the fluid flow in a porous matrix on the basis of
macroscopically measurable flow quantities. A thorough historical
review of the work in porous media can be found in@5#. The first
of these models can be traced back to Darcy’s publication in 1856
@6#. He established the well-known Darcy’s law which states that
the pressure-drop per unit length for a flow through a porous

medium is proportional to the product of the fluid velocity and the
dynamic viscosity~later added by Kru¨ger @7#!, and inversely pro-
portional to the permeability.

Dp

L
5

m

K
v (1)

However, Darcy’s law is applicable only for relatively slow-
moving flows, where the permeability-based Reynolds number is
small.

ReK5
rAK

m
v,O~1! (2)

The velocity termv in Eq. ~1! can be either the Darcian velocity
of the fluid flow, which is based on the cross-section dimensions
of the channel

vD5
Q

areacs
(3)

or the pore~filter! velocity, as given by the Dupuit-Forchheimer
relation@8# which accounts for the presence of the solid phase in
the channel by dividing the Darcy velocity by the volumetric void
fraction of the medium~assuming an isotropic medium!.

vp5
vD

«
(4)

Either velocity can be used in the characterization and derivation
of the permeability, but one must state which velocity is used in
the calculations@4,9,10#.

As the flow velocity increases, the form drag becomes more
prevalent and must be considered for an accurate description of
the pressure-drop@11#. This effect is accounted by the addition of
the form drag termC as suggested by Dupuit@12# which yields
the following quadratic relation for the pressure-drop.

Dp
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5

m

K
v1rCv2 (5)

This form drag compensation,C, may vary according to the po-
rosity of the medium and the channel which contains it@13#. How-
ever, the porous medium container effects of a metal foam do not
resemble those generated in packed beds of spheres. In a packed
bed of spheres, the porosity of the bed increases exponentially to
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the container wall@14# causing ‘‘tunneling effects’’ which may
increase the permeability of the system@15#. This effect, however,
is not applicable in the study of the hydraulic characteristics of
metal foam because of the metal foam production process. The
metal foam production process generates large quantities of liquid
foam inside a container whose dimensions are much larger than
the pore size. After the foam has been produced in bulk, it is then
cut to specification, effectively eliminating any type of wall-
interference on the final foam structure. A consistent porosity is
thus maintained throughout the foam without the need for any
porosity variation considerations@16#.

There exists no general relationship between the permeability
of a porous medium and porosity because the permeability is af-
fected by the form of the solid structure@4#. Different mathemati-
cal models have been developed with varying degrees of success
in order to predict the permeability of porous media using simpli-
fied structures, with the majority consisting of packed beds of
spheres@15,17–19#. However, the structure of the metal foam
confronted here is notably more complex than that of a packed
bed of spheres. Although some models of flow through various
representations of this complex structure have been developed
with limited success@20–22#, detailed experimentation is still re-
quired to accurately measure the permeability of the material.

The addition of the quadratic term in Eq.~5! has been proven to
be applicable for packed beds of spheres for permeability based
Reynolds number in the range 80.ReK.5 by Dybbs and Ed-
wards @23#. Fand et al.@9# confirmed this for randomly packed
spheres, i.e., spheres of various diameters which composed the
packed bed instead of spheres of equal diameter which pack regu-
larly. Beyond this ReK range, Lage et al.@24# demonstrated the
existence of a third regime which requires a cubic velocity term
for an accurate description of the pressure-drop in metal foams,
which is in line with that considered by Forchheimer when study-
ing large sets of hydraulic data from flow through porous media
@25#.

There are several ways by which the permeability,K, and the
form coefficient,C, can be calculated through experimentation.
One approach has been to modify Eq.~5! to bring it into linear
form and then extrapolate to determine the coefficients as done by
Givler and Altobelli @26#. However, this method has been shown
to lack accuracy due to the extrapolation, and therefore a more
direct and accurate way has been introduced by Antohe et al.@27#
using a least-squares quadratic curve fit through the pressure-drop
versus fluid-speed data points. A direct advantage of the least-
squares curve fit using the form coefficient is the provision for an
accurate uncertainty analysis, which is beneficial when analyzing
and reporting quantities derived from experimental results. The
least squares curve-fitting process works as follows. Making the
following substitutions in Eq.~5!,

A5
m

K
(6)

and

B5rC (7)

yields the following quadratic equation for the length-normalized
pressure-drop

Dp

L
5Av1Bv2 (8)

in which A and B are solved through the least squares curve fit
technique. Applying the least-squares quadratic fit on Eq.~8!
gives the following results for the coefficientsA andB.
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In these equations, thexi ’s represent the various fluid flow veloci-
ties at which the data were taken and theyi ’s represent the respec-
tive measured pressure-drop per unit length values. KnowingA
and B, the permeability and inertia coefficient are obtained by
backsolving Eq.~6! and Eq.~7!.

Experimental Apparatus and Procedure
The experimental setup~Fig. 2! used to measure the pressure-

drop for characterization of the metal foams consisted of a foam
test housing, a pump to circulate the fluid, various flowrate mea-
suring apparati, two pressure transducers for different pressure
ranges, and degassed, deionized water as the working fluid. This
setup models that which would use metal foam heat exchangers to
cool electronics which dissipate large amounts of heat. The func-
tion of the foam test housing was to provide a secure means to

Fig. 1 „a… Aluminum foam block which measures 10.0 cm
Ã4.0 cmÃ1.5 cm, 92% porous „10 pores per linear inch
Ä6.9 mm pore diameter …; „b … magnified view of a single pore
from Fig. 1 „a…; „c … aluminum foam block as depicted in Fig. 1
„a…, but compressed by a factor of four, which decreased the
porosity from 92% to 76.1%; „d … magnified view of the foam in
Fig. 1 „c ….
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hold the metal foam, to channel the fluid flow through the open-
cell metal foam, and to provide a means to measure the pressure-
drop across the foam. Figure 3~a! is a cross-section of the foam
test housing showing the passage of the fluid through the housing
and the foam. Figure 3~b! shows the same housing but from a top
view without the lid for clarity, and allows one to see how the
metal foam blocks were placed in relation to the pressure ports
located in the bottom of the channel. The foam blocks~measuring
40.0 mm340.0 mm32.0 mm! were held securely by means of a
tight fit inside the channel. After numerous experiments requiring
the changing of the foam blocks by removing the lid, movement
of the foam in the channel direction was never observed. The
small ports which were drilled into the bottom of the channel were
0.4 mm in diameter and located before and after the foam test
pieces, as shown in Fig. 3~b!. These ports were attached to the
pressure transducer through eight different valves which allowed
each of the seven pressure ports to be measured directly against
the reference port, which was the last port downstream of the
water flow. All reported pressures were measured between the two
outermost ports, spanning a distance of 7.0 cm. By conservation
of mass, the incompressible liquid must accelerate as it enters the
foam because the effective cross-sectional area of the channel is
reduced by the physical presence of the foam in the channel. The
opposite occurs when the liquid leaves the foam; the liquid veloc-
ity must decrease in order to compensate the increase in the ef-
fective cross-sectional area of the channel. Locating the pressure

ports at a distance of 1.5 cm from the entrance and exit of the
foam reduced the static pressure-altering effects of the fluid accel-
eration and deceleration. The six additional ports located at the
edge of the foam block were used as a check for symmetry in the
pressure. Discrepancies between the left and right hand sides of
the pressure measurements during experimentation did not exceed
3%, and were therefore, neglected.

Two different pressure transducers were used depending upon
the pressure range of interest. For the lower range, a Huba 692
differential pressure transducer was used for the pressure range
between 0.0 and 0.200 bar with an accuracy of60.5% FS. For the
higher pressure range, an Omega differential pressure transducer
~PX81DO-050DT! was implemented for differential pressure
measurements up to 3.45 bar with an accuracy of60.25% FS.
The flowrate was measured with two flowmeters, the Omega FLR
1009 for a flowrate range from 0.0 l/min. to 0.500 l/min, and the
Omega FLR 1012 for the flowrate range between 0.500 l/min. and
5.000 l/min. Each flowmeter was calibrated to within61.5% FS
accuracy. For the larger flowrates attained in the uncompressed
foam experiments, a Wisag 2000 rotameter was used for the flow-
rate range from 1.000 l/min. to 11.220 l/min with61% FS accu-
racy.

The acquisition of the signals from the sensors which included
both pressure transducers and two electronic flowmeters was
handled by a USB data acquisition device manufactured by
IOTech. The device was attached via a USB port on a PC running
Windows 98 which controlled the IOTech data acquisition device
using LabVIEW software. With this configuration the pressure
and flow data were viewed and recorded to the PC hard drive in
real time.

A Neslab chiller~CFT-75! pumped water through the foam test
housing. It also regulated the water temperature at 20.0°C to
within 60.5°C. The pressure-drop experiments were conducted
from the low-end to the high-end of the flowrate range. As a check
for hysteresis, selected experiments were performed from the
high-end of the flowrate range to the low-end. No hysteresis was
observed in these experiments when they were compared to the
pressure measurement data taken by varying the flowrate from

Fig. 2 Diagram of the experimental apparatus used to mea-
sure the pressure drop over various configurations of metal
foam

Fig. 3 „a… Metal foam test housing cross-sectional view of the
inlet, outlet, and foam positioning during the pressure-drop
characterization experiments. „b … Top view of the metal foam
test housing with the lid removed for clarity.

Table 1 Compressed foam physical data
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low to high. Therefore, all data used in the calculations were taken
as an average from four experimental trials, adjusting the flowrate
from low to high. The temperature of the water during the experi-
ments was held constant at 20.060.5°C. Within the temperature
range of 0.5°C, the physical properties of water do not vary
enough to be considered in the calculations when compared to the
uncertainties generated by the data acquisition equipment.

Metal Foam. Table 1 gives an overview of the physical prop-
erties of all foams which were tested. All foams were manufac-
tured from 6101 aluminum alloy. To generate the array of com-
pressed foam blocks in Table 1, 40 PPI foam~2.3 mm pre-
compression pore diameter! of two different initial porosities, one
of 92% and the other of 95%, were compressed by various factors
ranging from two to eight. The notation used for the compressed
foams works as follows: The first two digits of the foam’s name
designate the porosity of the foam in pre-compressed form. The
second pair of numbers of the foam name after the hyphen signify
the compression factor. For example, foam 95-05 designates a
foam that was 95% porous in its uncompressed state and then
compressed by a factor of six, which in the final compressed state,
corresponds to finished foam of one-sixth of its original uncom-
pressed height.

The procedure for compressing the foams, as explained by the
manufacturer, allows the foam to expand freely on the open lateral
sides of the compression device. By not restraining the lateral
edges of the foam block while being compressed, the isotropicity
of the aluminum in the foam is claimed to be held more consistent
by avoiding mass accumulation along the edges of the compres-
sion device. However, as the foam is being compressed, whatever
mass of foam extends beyond the original lateral dimensions is
lost when the foam is machined to final tolerances, and hence, the
measured porosity of the final compressed state of the foam may
be higher than expected for a given compression factor because
this solid portion of the original foam is lost. To measure the
actual values of the porosity, each compressed foam block was
weighed, and based on the nominal external measurements, an
effective porosity was calculated and compared to an expected
final porosity based on the foam’s initial solid fraction and com-
pression factor. The expected porosity was based on the simple
physical relation for a change in volume, whereM is the com-
pression factor~ratio of the original uncompressed foam block
height to the final compressed height! and« is the void fraction of
the material (0,«<1).

«compressed512M ~12«uncompressed! (11)

Figure 4 shows the expected porosity of the compressed foam
blocks as lines with the actual porosity measurements represented
as points. The final overall dimensions of the compressed foam

blocks used in the pressure-drop experiments were 40.0 mm
340.0 mm32.0 mm, with the cross-sectional area normal to the
flow direction measuring 40.0 mm32.0 mm.

In Table 1, the physical characteristics of the three blocks of
uncompressed foam are given. The foams are labeled by their
characteristic pore diameter in inches~as specified by the manu-
facturer!, which are 10, 20, and 40 pores per linear inch~PPI!.
However, due to the subjective nature of the pore counting, the
uncompressed foams were viewed under a microscope and the
pore diameters were measured by hand to an accuracy of
60.5 mm and tabulated in Table 1. This provides a more objective
description of the actual foam geometry for comparison purposes.
These foams have open pore diameters of 6.9 mm, 3.6 mm, and
2.3 mm, respectively. Each uncompressed foam block tested was
12.0 mm338.0 mm380.0 mm, with the flow cross-section mea-
suring 12.0 mm338.0 mm. The blocks were cut to final external
tolerances by an electro-discharge machining system to minimize
deformation of the solid structure and to ensure uniform porosity
to the outer edges of each block. The porosity of each block was
calculated by dividing its weight by the volume, as measured by
the external dimensions, and then comparing this value to the
density of the solid metal, aluminum 6101. The surface area to
volume ratio~specific surface area! is also tabulated for the un-
compressed metal foam blocks in Table 1. This specific surface
area data were provided by the foam manufacturer@28#.

Results and Discussion
All data were calculated and reported on a Darcian flow veloc-

ity basis, as given by Eq.~3!. This velocity accounts only for the
channel dimensions, is independent of the porosity of the test
material, and is practical for comparison against other data sets of
porous media. The pressure-drop data for both the compressed
and uncompressed foam blocks were taken and normalized on a
length-scale basis, which was based on the respective lengths of
the foam blocks of 40.0 mm for the compressed metal foams and
80.0 mm for the uncompressed metal foams. From these data, a
quadratic curve was fitted through the data points for each foam
block according to Eqs.~6!–~10!.

Figure 5 shows the pressure-drop experimental data and the
fitted curves in graphical form for the compressed blocks based on
the Darcian velocity. Figure 5 is separated into (a) and (b) ac-
cording to pre-compression porosities of 95% and 92%, respec-
tively. The left-hand ordinate is the length-normalized pressure
drop and the right-hand ordinate is the pressure drop for one
40-mm long aluminum foam block. By backsolving the constants
A and B from the fitted curves as given in Eqs.~6! and ~7!, the
permeability, form coefficient, and their respective uncertainties,
were calculated for each foam block using the entire flowrate
range tested for each foam block. This corresponded to a flowrate
range of 0.00 l/min. to 5.00 l/min.~0.00 m/s to 1.04 m/s Darcian
flow velocity! for the compressed foam. The only exception was
foam 95-08. The maximum pressure for the pressure transducer
~3.45 bar! was reached with a flow velocity of 0.729 m/s while
testing the 95-08 foam block, and therefore, the maximum usable
data pair~flow velocity, pressure! in the quadratic least-squares
curve fit for foam 95-08 was obtained from this flow velocity
value. However, the fitted pressure-drop curve for foam 95-08 was
plotted over the entire flow velocity range from 0.00 m/s to 1.04
m/s in Fig. 5~a! for comparison purposes. Table 2 gives the per-
meability, the form coefficient, theA and B coefficients used in
the curve fitting procedure, and their respective uncertainties for
both the compressed and uncompressed foam blocks.

Reviewing the pressure-drop data from both the compressed
and uncompressed foams, it becomes apparent that the flow
through open-cell metal foams deviates from Darcy law flow be-
havior, i.e., the pressure-drop across the foam is a quadratic func-
tion of the flow velocity. It is of interest to compare the effects of
compression on the permeability and form coefficient for each
foam block, which are tabulated in Table 3. As seen in Fig. 5, the

Fig. 4 The expected compressed metal foam porosities based
on the precompression porosity and nominal compression fac-
tors are graphically compared against the measured values
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compression has a profound effect on the pressure-drop behavior
of a compressed foam. Both foam sample series which were 95%
and 92% porous before compression showed similar flow behav-
ior with respect to the changes in the compression factor. For the
95% original porosity series, increasing the compression factor
from two to four reduced the permeability from 44.4310210 m2 to
19.7310210 m2, or a relative reduction of 55.6%. Increasing the
compression factor from two to six reduced the permeability to a
value of 5.25310210 m2, which is a reduction of 88.2%. For the
last compressed foam block which was originally 95% porous,
increasing the compression factor from two to eight reduced the
permeability to 2.46310210 m2, which is a significant reduction
of 94.4%.

The other series of compressed foam blocks which where 92%
porous before compression showed approximately the same sen-
sitivity between the compression factor and the change in perme-
ability. The first sample, which was compressed by a factor of
two, had a measured permeability of 36.7310210 m2. Increasing
the compression factor from two to three reduced the permeability
to 23.0310210 m2, a reduction of 37.3%. Continuing from a com-
pression factor of two to four, the permeability is reduced to
13.9310210 m2, a reduction of 62.1%. This 62.1% reduction in
the compressed foam permeability between a compression factor
from two to four is compared with the change in permeability of
the 95% porous series between the compression factors of two and
four, which is similar at 55.6%. Increasing the compression factor
from two to five with the 92% original porosity foam decreased

the permeability to 8.07310210 m2, a decrease of 78.0%. The
highest compression ratio for the 92% foam series which was
tested was six. The permeability at this level of compression was
only 3.88310210 m2, which is a reduction of 89.4% when com-
pared to the permeability of the foam of the same initial porosity
but with a compression factor of two.

Figure 6 shows a plot of the permeability based on the mea-
sured porosity of the compressed metal foam samples. There is no
difference made in the plotting of data points between foams of
95% and 92% precompression porosity; all are placed on the same
scale by their measured porosity in compressed form. In Fig. 6,
the data plot a rather smooth curve. However, the dependence of
the permeability on porosity becomes steeper at higher values of
porosity. At the low end of the tested porosity range, foam 95-08,
with a measured porosity of 60.8%, had a calculated permeability
of 2.46310210 m2. Comparing this to the next foam, 92-06,
which had a measured porosity of 66.9%, the permeability in-
creased to 3.88310210 m2. An increase in porosity of 6.1%
caused an increase in the permeability of 58%. This change in
porosity and its associated change in permeability are contrasted
to the difference between the two foams which had a compression
factor of only two, namely 95-02 and 92-02. The foam 92-02 had
a measured porosity of 87.4% and a permeability of 36.7
310210 m2. Increasing the porosity by a mere 0.8% to 88.6%, as
characterized by foam 95-02, caused the permeability to increase
to 44.4310210 m2, an increase of 21%.

The form coefficient also varied with the compression of the

Fig. 5 „a… The experimentally obtained pressure-drop data are plotted along with the fitted curves for the 95-series
compressed foam blocks. The experimental uncertainty values are 0.22 bar Õm in the length-normalized pressure measure-
ment, 0.0088 bar in the actual pressure measurement, and 0.013 m Õs in the fluid flow velocity measurement. „b … the experi-
mentally obtained pressure-drop data are plotted along with the fitted curves for the 92-series compressed foam blocks. The
experimental uncertainty values are 0.22 bar Õm in the length-normalized pressure measurement, 0.0088 bar in the actual
pressure measurement, and 0.013 m Õs in the fluid flow velocity measurement.

Table 2 Calculated from flow characteristics
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metal foam blocks and the differing pre-compression porosities,
ultimately being controlled by the porosity of the compressed
metal foam. The form coefficient of the foams increased mono-
tonically with decreasing porosity, with only one exception. Foam
95-02 was the most porous foam tested with a measured porosity
of 88.2% and a form coefficient of 1168 m21. Foam 92-02, which
was the second most porous compressed foam tested~87.4%! had
a slightly lower form coefficient of 1142 m21. However, consid-
ering the calculated uncertainty of the form coefficients at 3.5%–
3.6%, these two values of 1168 m21 and 1142 m21 overlap, thus
giving reasonable answers when considering the monotonic in-
crease of the form coefficient with decreasing porosity.

Figure 7 shows the pressure-drop data and associated fitted
curves against the Darcian flow velocity for the uncompressed
foam blocks. The left-hand ordinate gives the length-normalized
pressure-drop, and the right-hand ordinate is the scale of the mea-
sured pressure-drop values across the 80 mm-long foam block.
The flowrate varied from 1.00 l/min to 11.22 l/min~0.036 m/s to
0.410 m/s Darcian flow velocity! for the uncompressed foam
blocks. Table 2 lists the permeability, form coefficient, and their
respective uncertainties. TheA and B coefficients used in the
curve fitting are also listed.

The three aluminum foam blocks which were tested were of
nearly the same porosity~within 0.8%!. The only difference be-
tween the samples was the average pore diameter. Referring to
Table 1, the porosities of these uncompressed aluminum foam
blocks ranged from 92.0% to 92.8%, and the pore diameter varied
from an average of 6.9 mm to 2.3 mm. The difference in pore
diameter appeared to dramatically affect the permeability and
form coefficient of the foams. Decreasing the pore diameter de-
creased the permeability and increased the form coefficient. The
10 PPI foam, which had a pore size of 6.9 mm, generated the least
flow resistance with a permeability of 3529310210 m2 and a form
coefficient of 120 m21. In contrast, the 40 PPI foam with a pore
size of 2.3 mm, had the greatest flow resistance with a permeabil-
ity of 712310210 m2 and a form coefficient of 362 m21. The

increase in flow resistance directly relates to the ‘‘effective surface
length’’ as explained by Lage@5#, which relates an increase in
drag to the increase in the specific surface area.

Transition From Linear Darcy Regime. An important out-
come of this study is the ability to determine when the pressure-
drop across a metal foam leaves the linear Darcy regime and
enters the form-dominated pressure-drop regime, characterized by
the addition of the quadratic term to the linear Darcy law, Eq.~5!.
Making the substitution of Eqs.~6! and ~7! into Eq. ~8! and rear-
ranging it into the following form, gives a graphical means by
which the linear and nonlinear flow regimes can be separated.

DP

Lv
5A1Bv (12)

The data from the pressure-drop experiments on the uncom-
pressed foam were plotted in Fig. 8 according to Eq.~12! against
the fluid flow speed. Figure 8 is separated into parts (a), (b), and
(c) depending on the pore diameter as labeled by the foam manu-
facturer as 10 PPI, 20 PPI, and 40 PPI. In Table 1, these labels
correspond to average pore diameters of 6.9 mm, 3.6 mm, and 2.3
mm, respectively. The discrete data points in Fig. 8 are the experi-
mentally obtained data points, and the lines which are shown
passing through the points are the second-order curves fitted to the
pressure-drop data points using the curve-fitting technique de-
scribed by Eqs.~5!–~10!.

As expected from a quadratic relationship when the coefficients
A andB of Eq. ~12! are constant, the plotted line has a slope ofB
and ay-intercept ofA. WhenB is equal to zero, the line is hori-
zontal. This horizontal region describes the pressure-drop region
where the form constant,C, is zero and the pressure-drop is gov-
erned entirely by Darcy’s law, Eq.~1!. These two regimes are seen
by the discrete experimental points plotted in Fig. 8. In Fig. 8~a–
c!, the experimental points form a horizontal line in the Darcian
flow regime where the flow speeds are less than 0.101 m/s, 0.110
m/s, and 0.074 m/s, respectively. At flow velocities greater than
these transitional flow velocity values, the experimental data
points turn onto the curve-fitted line with a non-zero slope ofB,
which by Eq.~7!, is the product of the fluid density,r, and the
form coefficient,C.

The question arises as to which parameter best describes the
transition of the pressure-drop from a linear to quadratic curve. A
factor commonly used to determine the transition between flow
regimes is the Reynolds number, which can be described in three
different ways in the area of open-cell metal foams. The first
method relates the Reynolds number to the square root of the
permeability,K.

Fig. 6 The permeability of compressed foams is plotted
against the values of the measured porosity. The uncertainty
values for the permeabilities are gives in Table 2, and the un-
certainty value of the measured porosity is estimated at a con-
servative 3%.

Fig. 7 Pressure-drop versus fluid flow velocity for the three
uncompressed metal foams. The experimental uncertainty val-
ues are 0.0125 bar Õm in the length-normalized pressure mea-
surement, 0.001 bar in the actual pressure measurement, and
0.004 mÕs in the fluid flow velocity measurement.

Table 3 Decrease in permeability †%‡
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However, the value forK may be calculated by two different
methods. One method uses the pressure-drop data points from a
zero flow velocity value up to and including the velocity at which
the transition to the quadratic regime takes place. The second

method uses a larger flow velocity range which encompasses the
transitional flow velocity by a subjective amount.

The third method bases the Reynolds number on the average
pore diameter. In this method, the permeability,K, in Eq. ~13! is
replaced by the average pore diameter of the respective uncom-
pressed open-cell aluminum foam, as tabulated in Table 1.

Rep5
rvDp
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(14)

Table 4 gives the Reynolds numbers at the transitional flow
velocities using these three methods as described above. Using the
permeability based on a maximum flow velocity which equals the
transitional flow velocity~limited range!, the flows for the three
open-celled aluminum foams entered the quadratic pressure-drop
relationship at Re values of 26.5, 22.3, and 14.2 for the 10 PPI, 20
PPI, and 40 PPI aluminum foams, respectively. These Re values
correspond to fluid flow velocities of 0.101 m/s, 0.110 m/s, and
0.074 m/s. These velocities are contrasted to the maximum flow
velocity tested, 0.410 m/s. This maximum velocity was used in the
second method~full range! and generated a larger spread of tran-
sitional Re of 62.4, 37.8, and 20.5 for the 10 PPI, 20 PPI, and 40
PPI foams, respectively. Using the third and final method of relat-
ing the Re to the average pore diameter gave the widest range of
transitional Re of 725, 412, and 177 for the 10 PPI, 20 PPI, and 40
PPI metal foams, respectively.

Even though each method produces transitional Re within its
respective order of magnitude, the best approach from these data
is first method, which uses the permeability calculated at the tran-
sitional flow velocity. This method provides the narrowest transi-
tional Re number range (;O(10)) with an easily calculable
scheme. The only drawback is that one must perform experiments
just beyond the transition point in order to witness the deviation of
the (DP/Lv) plot.

Permeability and Form Coefficient Flowrate Dependence.
Previous works which investigated the hydraulic characteristics of
highly porous media found that values for the permeability and
form coefficient of the porous medium depend upon the flow ve-
locity range over which they are calculated@27#. The permeability
and form coefficient were calculated for each compressed and
uncompressed foam by varying the flow velocity range over
which the terms were calculated to investigate this dependence.
For the compressed foam samples, each calculation used the range
of flow velocities from the common minimum, 0.010 m/s, to vary-
ing maxima at which the data points are plotted. Figures 9 and 10
plot the permeability and form coefficient against the fluid flow
velocity for the compressed foams, beginning at 0.010 m/s and
continuing to 1.042 m/s.

Looking at the permeabilities plotted against the fluid flow ve-
locity for the compressed foam blocks in Fig. 9, it becomes im-
mediately apparent that the range over which the permeability is
calculated affects its value. The relatively flat region of the per-
meability located near the low end of the range marks the linear
pressure-drop flow regime where Darcy’s law holds. The value of
the permeability reaches a maximum at a value of the Darcian
flow velocity of approximately 0.2 m/s. For example, at this flow
velocity, foam 95-02 has a peak permeability of 175310210 m2.
After this peak, all permeabilities decrease and level off to their
respective values which are tabulated in Table 2 and were ob-
tained using the entire flowrate range tested~up to 1.042 m/s fluid
flow velocity!. A possible explanation for this peak and the fol-

Fig. 8 „a… The quantity „DPÕLv … for the 10 PPI foam „6.9 mm
pore diameter … is plotted to show the pressure-drop deviation
from Darcy’s law at fluid flow velocities greater than 0.101 m Õs.
The discrete points represent the experimental data, and the
straight line is the corresponding quadratic curve-fit. „b … The
quantity „DPÕLv … for the 20 PPI foam „3.6 mm pore diameter … is
plotted to show the pressure-drop deviation from Darcy’s law
at fluid flow velocities greater than 0.110 m Õs. The discrete
points represent the experimental data, and the straight line is
the corresponding quadratic curve-fit. „c … The quantity
„DPÕLv … for the 40 PPI foam „2.3 mm pore diameter … is plotted
to show the pressure-drop deviation from Darcy’s law at fluid
flow velocities greater than 0.074 m Õs. The discrete points rep-
resent the experimental data, and the straight line is the corre-
sponding quadratic curve-fit.

Table 4 Transitional Reynolds number in uncompressed alu-
minum foams
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lowing decrease in value may be offered by the least-squares
method of calculating the permeability-based Reynolds number,
ReK . Forcing a curve fit onto data points which are comparably
weighted in both the linear and quadratic regimes caused this peak
to arise in the region of the transition points. When more points
are accumulated in the quadratic region, i.e., as the fluid flow
velocity continues to increase after the transition point, the major-
ity of the curve-fitting points in the quadratic region then domi-
nate and the permeability converges to its ultimate value.

The behavior of the form coefficients of the compressed foam
samples in Fig. 10 mimicked the behavior of the changes in per-
meability in Fig. 9, which showed a trend of rising values until
peaking at a fluid flow velocity of approximately 0.2 m/s. After
this peak, the form coefficients of all foam blocks converged in a
monotonic fashion to their respective values which were obtained
by using the entire flowrate range~up to 1.042 m/s!. These form
coefficient values obtained from the calculation over the entire
flowrate range are given in Table 2. This behavior in the lower
flow velocity range may be explained by the same reasoning for
the initial rise in the permeability, i.e., the flow is passing through
the transition point into the quadratic-dominated flow regime.
Forcing a curve fit onto the data points which are comparably
weighted in both the linear and quadratic regimes caused these
peaks to develop around the transition points.

The same permeability and form coefficient calculation process
was used for the data sets of the uncompressed foam blocks. How-
ever, the flowrates spanned from 1.000 l/min. to 11.220 l/min.,
which corresponded to Darcian flow velocities from 0.037 m/s to

0.410 m/s. The permeability, which is plotted at the lowest flow
velocity ~0.037 m/s!, is based only on that single data point. The
rest of the calculated permeabilities include all data points be-
tween the lowest flow velocity of 0.037 m/s and up to and includ-
ing the flow velocity at which the respective permeability value is
plotted. Figure 11 plots the permeability based on an increasing
maximum fluid flow speed. The permeabilities of the three un-
compressed foams are nearly constant in the lower fluid flow
speed range, up to the flow speed of approximately 0.1 m/s, which
was previously explained as being the range in which the fluid
enters the quadratic pressure-drop regime. The values of the per-
meability for the 20 PPI and 40 PPI foams peak at a fluid flow
velocity of approximately 0.2 m/s, and then decline and remain
somewhat steady for the rest of the flow speed range tested, up to
0.410 m/s. This behavior resembles the behavior of the com-
pressed metal foams, as seen in Fig. 9, and indicates that the
quadratic curve fits well to the data. The permeability of the 10
PPI foam, however, continued to rise after the transitional fluid
flow velocity of 0.101 m/s, ultimately peaking just short of the
maximum fluid flow speed tested, 0.410 m/s.

Figure 12 plots the form coefficients for the three uncom-
pressed foams. The values of the form coefficient of all three
foams start at a value of nearly zero and then increase up to a fluid
flow velocity of approximately 0.2 m/s. Here the form coefficients
obtain a maximum value and remain constant for the rest of the
fluid flow speed tested, up to 0.410 m/s. As previously explained,
decreasing the pore diameter consistently increased the flow resis-
tance, and this change was also reflected in the changing form

Fig. 9 Plot of the permeability, K , for the compressed alumi-
num foam blocks using a maximum flow velocity which corre-
sponds to the velocity value at which the K value is plotted

Fig. 10 Plot of the form coefficient, C, for the compressed
aluminum foam blocks using a maximum flow velocity
which corresponds to the velocity value at which the C value
is plotted

Fig. 11 Plot of the permeability, K , for the uncompressed alu-
minum foam blocks using a maximum flow velocity which cor-
responds to the velocity value at which the K value is plotted

Fig. 12 Plot of the form coefficient, C, for the uncompressed
aluminum foam blocks using a maximum flow velocity
which corresponds to the velocity value at which the C value
is plotted
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coefficients. The 10 PPI foam, which had the largest pore diam-
eter of 6.9 mm and the smallest specific surface area of
820 m2/m3, also had consistently the lowest form coefficient, with
an ultimate value of 120 m21. The 40 PPI foam, which had the
smallest pore diameter of 2.3 mm and the largest specific surface
area of 2700 m2/m3, consistently generated the largest form coef-
ficient, with an ultimate form coefficient value of 362 m21. This
behavior was already witnessed in the discussion of Fig. 7,
whereby increasing the surface area increased the total drag. The
steadiness of the form coefficient beyond the fluid flow speed
range of approximately 0.22 m/s indicates a good quadratic curve-
fit to the data and validates the use of the quadratic pressure-drop
relation, Eq.~5!, as long as the flowrate range used in the calcu-
lation extends beyond the transition point.

Uncertainty Analysis
The uncertainties generated by the least-squares curve fit are

given by the general formula for error propagation@29# applied to
the least-squares curve fit equations, Eqs.~9! and ~10!, which
yields the following equations for the uncertainty of theA andB
coefficients of Eq.~8!.

DA5A(
i 51

n S ]A

]xi
Dxi D 2

1(
i 51

n S ]A

]yi
Dyi D 2

(15)

DB5A(
i 51

n S ]B

]xi
Dxi D 2

1(
i 51

n S ]B

]yi
Dyi D 2

(16)

Eachi term represents a single data pair~Darcy flow velocity and
length-normalized pressure!. The corresponding partial deriva-
tives of Eqs.~9! and ~10! were calculated and inserted into Eqs.
~15! and~16! in order to obtainDA andDB. BacksolvingA for K
in Eq. ~6! yields the uncertainty for the permeability. Assuming
zero uncertainty for the dynamic viscosity, this gives the follow-
ing relationship.

sK5
DA

A
3100% (17)

The uncertainty of the form coefficient is given by backsolving
Eq. ~7! and applying the same error propagation technique as in
Eqs.~15! and~16!. Assuming zero uncertainty in the density term
gives the uncertainty of the form coefficient as

sC5
DB

B
3100% (18)

The uncertainties of the permeabilities and the form coefficients
are tabulated in Table 2.

Conclusions
Open-cell metal foams were experimentally tested to evaluate

their hydraulic characteristics using water. The experimental ma-
trix of metal foams consisted of open-cell aluminum foams of
various porosities and pore diameters in both compressed and un-
compressed form. The characterization procedure involved solv-
ing for two terms, the permeability and the form coefficient. These
two factors accurately described the pressure-drop vs. flow veloc-
ity behavior in porous media in general and were shown to be
applicable to high porosity metal foams. From these experiments
and the reduction of the data, several conclusions can be drawn.

1 The structural differences in the precompressed form be-
tween the originally 95% and 92% metal foams did not have a
noticeable effect on the permeability. When comparing com-
pressed foams with varying degrees of compression and initial
porosities, the post-compression porosity governs the permeability
and the resulting pressure-drop.

2 Similar compression factors had similarly weighted effects
on both foams with 95% and 92% pre-compression porosity. In-

creasing the compression factor decreased the permeability of the
foam by regular, incremental amounts, which were nearly equal
for each of the two foam series.

3 The permeability of the compressed foams became more sen-
sitive to changes in the porosity as the porosity increased.

4 Holding the porosity constant and decreasing the pore diam-
eter increased the flow resistance in the uncompressed metal
foams by reducing the permeability and increasing the form coef-
ficient. This increase is attributed to the higher specific surface
area generated by the smaller pore size.

5 The transition regime between the linear Darcy regime and
the well-defined quadratic flow regime for all metal foams tested
occurred in a ReK range between unity and 26.5 based on the
calculation of the permeability and form coefficient in this range.

6 The narrowest range of transitional ReK was obtained when
the permeability was calculated using a flowrate range from zero
to the flow velocity at which the transition occurred.

7 Using different flow velocity regimes resulted in various per-
meability and form coefficient values. Whenever the permeability
and the associated form coefficient for a high-porosity porous me-
dium are stated, the flow velocity range over which these terms
are calculated must also be specified for accuracy.
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Nomenclature

A 5 coefficient for curve fitting@bar•s•m22#
B 5 coefficient for curve fitting@bar•s•m23#
C 5 inertia coefficient@m21#
D 5 diameter@m#
K 5 permeability@m2#
L 5 length @m#

M 5 compression factor
P 5 pressure@bar#
Q 5 volumetric flowrate@m3s21#

ReK 5 permeability based Reynolds number@rvK1/2m21#
Rep 5 pore based Reynolds number@rvDpm21#

v 5 velocity @ms21#

Greek

D 5 difference
« 5 void fraction @range1.0>«.0.0#
m 5 dynamic viscosity@kg•m21s21#
r 5 density@kg•m23#
s 5 uncertainty@%#

Subscripts

D 5 Darcy
K 5 permeability based
cs 5 cross-section

i 5 single, independent data point reference notation
p 5 pore diameter based
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Creeping Flow Through an
Axisymmetric Sudden Contraction
or Expansion
Creeping flow through a sudden contraction/expansion in an axisymmetric pipe is
studied. Sampson’s solution for flow through a circular orifice in an infinite wall is used to
derive an approximation for the excess pressure drop due to a sudden contraction/
expansion in a pipe with a finite expansion ratio. The accuracy of this approximation
obtained is verified by comparing its results to finite-element simulations and other pre-
vious numerical studies. The result can also be extended to a thin annular obstacle in a
circular pipe. The ‘‘equivalent length’’ corresponding to the excess pressure drop is found
to be barely half the radius of the smaller tube.@DOI: 10.1115/1.1430669#

1 Introduction
One of the most widely-encountered problems in industries in-

volving the transport of fluids is the modification of the flow due
to a sudden change in the pipe diameter. Knowledge of the addi-
tional pressure drop resulting from an abrupt diameter change is
extremely important for a proper assessment of the pumping
power required in ducts, which explains the large amount of lit-
erature on this topic. Since many industries are interested in the
transport of non- Newtonian fluids such as paints or emulsions or,
in the case of aeronautics, the flow of low-viscosity fluids at high
Reynolds numbers, there have consequently been many studies of
laminar flow of non-Newtonian fluids@1# or turbulent flow of
Newtonian fluids@2#. However, there is a relative scarcity of stud-
ies involving flow of aNewtonianfluid through a sudden expan-
sion in thelaminar regime.

Nevertheless, the study of a laminar flow of a Newtonian fluid
through a sudden expansion/contraction in an axisymmetric tube
still presents some interest, from both a scientific and technical
point of view. The determination of the additional pressure drop is
indeed far from being resolved for a Newtonian fluid in the lami-
nar regime. In fact, most existing experimental results do not
agree with each other@3-5#, and do not agree with the results of
numerical studies@6,7#. Hence, further investigation of laminar
flow of a Newtonian fluid through a sudden expansion seems war-
ranted. Of particular interest is the creeping flow regime (Re
→0), for which the problem of flow through a thin orifice has
been solved analytically more than a century ago by Sampson@8#.
The related problem of flow from an infinitely large reservoir into
a circular tube of finite diameter has been investigated by Weiss-
berg@9#, but no similar analytical solution exists for the flow from
a finite radius tube into another tube of smaller radius.

The purpose of the present study is to link the solution obtained
by Sampson to the problem of flow through a sudden contraction/
expansion, in order to find an approximation for the excess pres-
sure drop generated by this geometry. We note that in the limit of
creeping flow, and only in this limit, the problem of flow through
an expansion is equivalent to flow through a contraction, and so
no further distinction will be made between these two cases. A
numerical study of this problem is also performed using the finite-
element code FLUIDITY@10#. The results from this numerical
study are used to assess the accuracy of our proposed approximate
formula, and both are compared to previous studies. Due to the

existing discrepancies in the experimental results, as mentioned
earlier, our results are compared with previousnumericalstudies
only.

2 Analytical Considerations
The effects of a sudden expansion/contraction in an axisymmet-

ric duct ~Fig. 1! on creeping flow of a Newtonian fluid are inves-
tigated. This process is important for many industries, and interest
has increased among petroleum engineers and hydrologists with
the development of models representing porous rocks as network
of pore throats connected at nodes@11#. Despite the apparent sim-
plicity of the present problem, Sigli and Monnet@12# found that a
closed-form solution for a circular tube with a finite expansion
ratio is not attainable. Instead, analytical solutions in each tube
had to be found independently, and then patched together at the
‘‘interface’’ by appropriate choice of the coefficients. The stream
function thus obtained is consequently difficult to implement, due
to the computation required to find the coefficients. As a closed-
form solution is not possible, we will attempt to derive an ap-
proximate analytical expression for the excess pressure drop. As a
starting point, we begin with the problem of flow through a small
circular hole in an infinite plate~Fig. 2!.

2.1 Thin Circular Orifice. Sampson@8# solved the problem
of flow through a circular orifice of zero thickness in an infinite
wall ~Fig. 2! in the creeping flow regime for a Newtonian fluid,
and gave the solution for the difference between the pressures at
infinity, Dps . The correct result, without typographical error, was
first given by Roscoe@13# as

Dps5
3qm

a3 , (1)

whereq is the volumetric flowrate,m is the viscosity of the fluid,
anda is the radius of the orifice.

The relation between pressure difference and flowrate has been
determined experimentally by different investigators, usually
making no reference to Sampson’s theoretical work. A review of
these studies can be found in@14#. In particular, the work of Jo-
hansen@15#, who studied the flow of castor oil through circular
orifices situated within a pipe, confirms Sampson’s result, al-
though Johansen did not seem to be aware of the earlier theoret-
ical work. For an orifice diameter as small as 0.090 of the diam-
eter of the pipe, a factor of 2.99 can be obtained from the
graphical presentation of Johansen’s results; this is very close to
the theoretical value of 3 that appears in Eq.~1!.
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2.2 Circular Orifice of Finite-Length in an Infinite Wall.
Sampson’s work has been extended to the case of an orifice of
finite-lengthL ~Fig. 3! by Dagan et al.@16#. They expressed the
pressure drop through such an orifice as

Dp5P~L !
3qm

a3 , (2)

where P(L) is a dimensionless function of the lengthL, with
P(0)51, so as to agree with Sampson’s solution for a thin orifice.
The functionP(L) was calculated numerically by matching the
normal and tangential stresses at the pore opening. Dagan et al.
@16# found thatP(L) can be approximated with less than 1% error
by the expression

P~L !511
8L

3pa
. (3)

This approximation was obtained by assuming Poiseuille flow
throughout the tube in Fig. 3, and Sampson’s solution outside.
One interpretation of this result is that the pressure drop through
an orifice of finite length is the sum of the pressure drop due to the
Poiseuille pressure loss along the finite length of the tube, plus the
pressure dropDps calculated by Sampson that accounts for the
expansion and contraction. This result is in agreement with similar
work carried out by Weissberg@9#, who studied the viscous dissi-
pation near the ends of long round tubes. He expressed the pres-
sure drop through such a tube as

Dp5
8mq~L/a!

pa3 1
cmq

a3 , (4)

wherec is a constant. For a thin orifice, i.e.,L/a50, Weissberg
@9# rederived Sampson’s solution and found a value ofc equal to
3. In light of experimental results, he also hypothesized that the
constantc is independent of the length-to-radius ratioL/a, and is
equal to 3. Although he could not prove this previous assumption,
he demonstrated, using Helmholtz’s minimum-energy theorem,
that c,3.47 forL/a→`.

Due to the symmetry of the geometry, and the symmetry of the
equations of creeping flow, the pressure dropDp` due to the
entrance or exit from a tube of radiusa into an infinite plane is
therefore given by

Dp`5
3qm

2a3 , (5)

which is exactly half the pressure drop through a thin orifice as
found by Sampson.

2.3 Sudden ExpansionÕContraction in an Axisymmetric
Tube. We now consider flow from a finite radius tube into an-
other finite radius tube~Fig. 1!. Assuming that Poiseuille flow can

be applicable to the entire tubing, the pressure dropDp1→2 be-
tween cross-section 1 and cross-section 2~Fig. 1! can be decom-
posed into

Dp1→25DpF11Dpe1DpF2 , (6)

where DpF1 and DpF2 are the pressure losses due to fully-
developed friction in the tubes of radiusR1 andR2 respectively,
i.e.,

DpFi5
8m

pRi
4 Liq, for i 51 or 2, (7)

and Dpe is an excess pressure drop due to the contraction. This
excess pressure drop was defined in@6# as the total pressure drop
minus the pressure drop that would occur if the fluid were in
fully-developed flow in each of the circular tubes.

In order to find an approximation for the excess pressure drop
Dpe , we consider again the case of a thin circular orifice men-
tioned in Section 2.1. Sampson@8# introduced a stream function
c, defined in cylindrical coordinates as@14#

ur5
1

r

]c

]z
, uz52

1

r

]c

]r
, (8)

where ur and uz are, respectively, the radial and axial velocity
components. Oblate spheroidal coordinates~j,h,u! were also in-

Fig. 1 Sudden contraction in an axisymmetric tube

Fig. 2 Circular orifice of radius a and zero-thickness in an
infinite space; the z-axis is an axis of rotation

Fig. 3 Orifice of radius a and finite length, L
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troduced~see pp. 512-15 of@14#!. These coordinates are obtained
from the cylindrical coordinates (r ,z,u) by the transformation

z1 ir 5a sinh~j1 ih!, (9)

with a.0, 0<j,`, 0<h<p and 0<u,2p. The condition
that the stream function must vanish along the tube axis requires
that

c50 for cosh51. (10)

The boundary of the thin orifice is located ath5p/2, and it
follows from the definition of the stream function that

c52
q

2p
for cosh50. (11)

For a thin orifice, Sampson@8# showed that the stream function
c for flow through a circular hole in a plane wall is given by

c52
q

2p
~12cos3 h!. (12)

The streamlines obtained from Eq.~12! are hyperbolas, as can be
seen in Fig. 4. Close to the wall, the fluid actually flows along the
wall orthogonal to thez-axis, i.e., orthogonal to the main flow
direction. In this case, the excess pressure loss should be due to
the additional pressure drop due to friction against this wall. As
the friction is related to the area in contact with the fluid, the
excess pressure lossDpe can indeed be assumed to be an increas-
ing function of the cross-sectional area acting as an obstacle to the
flow. In the limiting case of an infinitely large wall, withR1 /R2
→0, the maximum value of this pressure drop is therefore the
value Dp` found in Section 2.2.Assumingproportionality be-
tween the cross-sectional area and the excess pressure drop, the
excess pressure dropDpe through a contraction can then be writ-
ten as

Dpe5Dp`S 12
R1

2

R2
2D . (13)

This is the only expression that gives an excess pressure drop
proportional to the obstruction area, and which reduces to the
correct values in the two limiting cases. AsR1 /R2→1, it correctly
gives zero excess pressure drop, whereas forR1 /R2→0 it reduces
to Sampson’s result. Moreover, asDp` is its maximum value, Eq.
~13! also respects Weissberg’s upper bound@9# mentioned in Sec-
tion 2.2.

Equation ~13! can be nondimensionalized with respect to
rU1

2/2, wherer is the density of the fluid andU1 is the average
velocity of the fluid in the smaller tube, to yield

Dpe

rU1
2/2

5
6p@12~R1

2/R2
2!#

Re
, (14)

where the Reynolds number is defined as Re5rU1D1 /m, with D1
being the diameter of the smaller tube. This result is qualitatively
consistent with experimental observations that show the dimen-
sionless pressure drop to be inversely proportional to the Rey-
nolds number for low Reynolds numbers@4,5#. These researchers
therefore expressed their results in the form

Dpe

rU1
2/2

5
K8

Re
, (15)

where the coefficientK8 is called the Couette coefficient. Accord-
ing to the present approximation, Eq.~13!, the Couette coefficient
is given by

K856pS 12
R1

2

R2
2D . (16)

In the context of rock pores, a parameter called thehydraulic
conductanceis often used to quantify the capacity of a pore to
conduct fluid@17#. The hydraulic conductanceC of the system
located between section 2 and 1, as indicated in Fig. 1, can be
defined as

q5
C

m
Dp1→2 . (17)

The pressure dropDp1→2 is obtained from Eq.~6!. The
expansion/contraction therefore introduces an excess conductance
Ce that isconnected in serieswith the two conductances obtained
from the Hagen-Poiseuille equation for the tubes 1 and 2, and
thereforedecreasesthe overall conductance. Using Eq.~13!, this
excess conductance can be expressed as

Ce5
2R1

3

3@12~R1
2/R2

2!#
. (18)

3 Numerical Simulations

3.1 Numerical Method for a Sudden Expansion. In order
to assess the accuracy of Eq.~13!, numerical calculations have
been carried out to calculate the excess pressure drop induced by
a sudden expansion, for several diameter ratios, using the general
purpose CFD code FLUIDITY@10#. This code is capable of nu-
merically solving the Navier-Stokes equations using iterative so-
lutions methods. In the present case, since our focus is on the
creeping flow regime (Re50), FLUIDITY was used to solve the
Stokes equations. The finite element mesh generator GEM@18#
was used to describe the geometry of the cylindrical tube with a
sudden expansion. The output is a list of elements, nodal coordi-
nates and other items in the format required by the code FLUID-
ITY. The computational grids were generated using patched
blocks, one for the inlet pipe, and two for the larger outlet pipe.
The mesh spacing was uniform, although this is not a requirement
of the program, and square grids were used. Optimization of the
number of grids was not a goal of this study, and so no attempt
was made to use nonuniform mesh spacing with more mesh points
concentrated near the expansion plane, as was done by Oliveira
and Pinho@19#.

All the velocity components were set to zero at the wall, to
satisfy the no-slip and no-penetration boundary conditions. As the
geometry is axisymmetric, the radial component of the velocity
was set to zero along the centerline. In the inlet pipe, the flow was
allowed to develop from an initial plug velocity profile into a
Poiseuille parabolic profile well before reaching the expansion
plane, by using a long inlet pipe havingL1 /R1510. The outlet
pipe was also chosen to be long enough~L2 /R1515! to allow the
velocity to regain a parabolic profile after the expansion plane.

Fig. 4 Flow through the thin circular orifice of Fig. 2 „after
†14‡…
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3.2 Grid Testing. In order to validate our simulations, the
configurationR2 /R154 was investigated in detail. The pressure
was calculated atz/R1523 andz/R1514, withz being the axial
coordinate along the main flow direction, and the origin being
located at the expansion plane. The velocity and the pressure were
calculated at various radial positions. The velocity profile was
found to be parabolic, the radial velocity component was essen-
tially zero, and the pressure was uniform at these two locations. It
can be shown that these facts imply that the flow is fully-
developed, in the sense thatdp/dx is constant.

A series of tests with different grid sizes was conducted in order
to verify the convergence of the results. The radiusR1 of one unit
length was subdivided into 10n intervals ~Fig. 5!. The problem
studied is axisymmetric, i.e., so there is no component of the
velocity in theu-direction. Hence, the problem can be treated as a
2D problem in a finite-element scheme, and square elements were
used. For this type of grid, the length of the inlet duct~L1 /R1
510! and outlet duct~L1 /R1515! were subdivided into 100n and
150n intervals, respectively. Table I shows that the pressure drop
seems to have converged by the third level of refinement, i.e., by
n54.

The same procedure was applied to expansions having diameter
ratios of 1.2, 1.4, 1.6, 1.8, 2.0, 2.6, 3, 3.5 and 5.0, chosen because
these values were considered by previous investigators@6,7#. For
these diameter ratios, refinement of the grid ton53 was sufficient
to ensure accuracy of better than 1%. However, for large expan-
sion ratios the lengthL2 had to be increased in order to guarantee
fully-developed flow in the outlet duct. Indeed, for a diameter
ratio of 5, an outlet duct of lengthL2 /R1525 was needed in order
to obtain a uniform pressure over the outlet plane. The excess
pressure dropDpe was calculated by subtracting the Poiseuille
loss from the pressure drop calculated numerically, using Eq.~6!.

4 Estimation of the Couette Coefficient
The validity of the results obtained withn54 will now be

compared with the finite-volume simulations carried out by Ol-
iveira et al. in@7#. These investigators performed simulations for
Re50.5, 1.0, 2. 0, 3.5, and 5.0, for diameter ratios of 1.5, 2.0, 2.6,
3.0 and 4.0~Table 2!. In order to compare their results to our
creeping flow results, we have extrapolated their Couette coeffi-
cients down to Re50, for each diameter ratio. This was done by

fitting a least-squares straight line through the values. However, as
the curve of Couette coefficient versus Re is almost perfectly lin-
ear in this range, essentially the same values would be found at
Re50 if we had merely extrapolated from the two values at Re
51 and 0.5. The discrepancy between our values and their~ex-
trapolated! values is generally only a few percent, reaching about
5.5% for an expansion ratio of 4:1.

Note that Oliveira et al. decomposed the total pressure dropDp
as

Dp5DpR1DpI1DpF , (19)

whereDpR is the reversible pressureincrease, DpI is the irrevers-
ible pressure drop, andDpF is the fully-developed pressure drop
obtained with Eq.~7!. The reversible pressure increase corre-
sponds to the Bernoulli effect, associated with the decrease of the
velocity across the expansion. The irreversible pressure drop in-
cludes the inefficient dissipation of energy as the fluid decelerates.
The excess pressure dropDpe used in the present study is there-
fore the sum of their reversible and irreversible pressure drops.

The Couette coefficients calculated using FLUIDITY (n54)
are plotted as a function of the diameter ratio in Fig. 6, where they
are compared to the values obtained using the approximation~16!,
the values extrapolated to Re50 from @7#, along with the results
obtained by Vrentas and Duda@6# using finite differences. The
agreement between all three sets of numerical results is reason-
ably good. As found in@6#, extrapolation of the excess pressure
drop obtained for a diameter ratio of 4 to larger expansion ratios
introduced little error, since the excess pressure drop has nearly

Fig. 5 Grid generated for a sudden expansion of R2 ÕR1Ä2,
and for nÄ1. The radius R1 is subdivided into 10 n intervals

Table 1 Number of grids and convergence of the results for a
1:14 expansion

n Number of cells
Change in pressure drop between

n21 andn

1 7,000 -
2 28,000 20.45%
3 63,000 20.26%
4 112,000 10.10%

Table 2 Couette coefficients obtained numerically in †7‡, for
different values of Re. The next-to-last row shows the values
found by extrapolation to Re Ä0. Last row shows values ob-
tained in the present work, using nÄ4 grid refinement.

Fig. 6 Couette coefficient K 8 as a function of the expansion
ratio
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reached its asymptotic value of 6p518.85 whenR2 /R154. It
also appears that the accuracy of Eq.~16! is best for a diameter
ratio R2 /R1.1.5, for which the discrepancy with the other nu-
merical results is less than 10%. ForR2 /R1.2, the estimations of
the Couette coefficient provided by Eq.~16! are within 5% of the
results obtained with FLUIDITY or from@7#.

The agreement between the results deteriorates forR2 /R1
,1.5. This is to be expected, as the approximation is based on the
assumption that the fluid flows along the wall orthogonal to the
z-axis, which is less true for expansion/contractions of small di-
ameter ratio. However, although therelative error for the excess
pressure drop becomes substantial forR2 /R1,1.5, the excess
pressure drop is so small in this case that its accurate estimation is
not really of much practical interest.

The effect of a sudden expansion or contraction is in a sense
equivalent to adding an additional length of tubing into the sys-
tem. In order to be able to encompass the case of an infinite
expansion ratio, we will quantify this in terms of an additional
length of the tube having the diameter of thesmallertube. Assum-
ing a Poiseuille pressure loss in this additional section of tubing,
Eq. ~15! allows us to express this equivalent lengthLe in terms of
the Couette coefficient, as follows:

Le

R1
5

K8

32
. (20)

For small values of the Couette coefficient, which is to say for
small diameter ratios, the additional length is negligible. The
maximumvalue of the equivalent length corresponds to the limit-
ing caseR2 /R1→`, and is given by

S Le

R1
D

max

5
6p

32
.0.6. (21)

The pressure drop due to a sudden contraction/expansion therefore
adds, at most, an equivalent length that is barely half the radius of
the smaller tube.

5 Extension to a Thin Circular Orifice in an Axisym-
metric Tube

The results obtained by Dagan et al.@16# also suggest that Eq.
~14! can be applied to the problem of thin orifice in an axisym-
metric tube of finite radius~Fig. 7!. As the phenomenon is sym-
metric for creeping flow, it follows from Section 2 that the excess
pressure dropDpd due to a thin annular disk can be approximated
as

Dpd

rU1
2/2

5
12p@12~R1

2/R2
2!#

Re
. (22)

Davis @20# studied the effect of an annular obstacle on the creep-
ing flow in an axisymmetric tube. Using a Fredholm integral
equation formulation, the value of the dimensionless pressure
drop, R1Dpd/32mU, was calculated for different diameter ratios.
The velocity U corresponds to the axial Poiseuille velocity far
from the orifice. This allows us to compare the excess pressure

drop obtained using Eq.~22! with Davis’s results. Very good
agreement, with less than 3% discrepancy, was obtained for
R1 /R2 lying between 0.4 and 0.6, as shown in Fig. 8. The dis-
agreement is more significant for more extreme values of the con-
traction ratio. For a very slight constriction, i.e.,R1 /R2→1, the
value of the excess pressure drop is, however, so small as to not
be of much practical interest. For severe constrictions, e.g., a di-
ameter ratioR1 /R2 of 0.25, the discrepancy between the two stud-
ies is as high as 31%. However, our previous comparison with the
results obtained in@7# for the same diameter ratio showed good
agreement of the excess pressure drops. The results obtained by
Vrentas and Duda@6# using a finite difference method also agree
with Oliveira et al.’s results. Moreover, plotting the results as in
Fig. 8 shows that Davis’s values donot tend asymptotically to-
wards Sampson’s solution asR1 /R2→0.

Flow through a thin annular disk was also studied by Wang
@21#, using eigenfunction expansions and a matching method; his
results are also displayed in Fig. 8. Although Wang’s results are
difficult to extract accurately from his original curve asR1 /R2
→0, his results show clearly that the excess pressure drop tends
towards Sampson’s solution asR1 /R2→0. Wang@21# also con-
cluded that Sampson’s solution was an accurate approximation for
the excess pressure drop forR1 /R2.0.2. The results obtained by
Davis@20# for large contraction ratios therefore seem to have been
corrupted by substantial numerical errors.

6 Discussion
Assuming that the excess pressure drop in the creeping regime

is mainly due to friction against the wall orthogonal to the direc-
tion of the flow, an approximation@Eq. ~13!# based on early work
of Sampson@8# on flow through an orifice, was found for the
excess pressure drop due to a sudden contraction/expansion in an
axisymmetric tube. Very good agreement can be obtained with
previous numerical investigations@6,7#, and also with finite-
element calculations using the code FLUIDITY@10#, for diameter
ratios larger than 2. For expansion/contraction diameter ratios less
than 1.5, the approximation is less accurate. However, the addi-
tional pressure drop generated by such a slight diameter variation
is probably too small to be of practical interest. The approxima-
tion for the excess pressure drop can also, to a certain extent, be
used for estimating the excess pressure drop due to a thin annular
disk @20,21#. This suggests that Sampson’s analysis for a thin
orifice in an infinite plane can be extended for flow through a
sudden contraction/expansion in an axisymmetric tube. The ap-
proximation found in this study presents the advantage of being

Fig. 7 Thin circular orifice in an axisymmetric tube

Fig. 8 Dimensionless pressure drop for a thin circular orifice
in an axisymmetric tube
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linked to Sampson’s results, and of being simple to implement,
when compared to existing correlations@7# or to computationally
extensive methods such as finite-elements.

As mentioned in Section 3.2, the additional pressure drop gen-
erated by the sudden expansion/contraction represents a small per-
centage of the total pressure drop. However, this result is due to
the lengths of tubing considered. Using the concept of ‘‘excess
momentum loss factor’’ introduced by Azzam and Dullien@22#,
we consider the ratiob defined as

b5
DpHP

Dp1→2
, (23)

whereDpHP is the Poiseuille loss along the two tubes of lengths
L1 andL2 . For simplicity, the particular caseL15L2 was consid-
ered and the value ofb was calculated for various diameter ratios
and lengths of tubing,L1 . The value ofDp1→2 was calculated
using Eq.~7! for various diameter ratios, and the excess pressure
drop was calculated using the approximation~13!. As the length
of the tube decreases, the ratiob decreases, as shown in Fig. 9.
For a given diameter ratio, the excess pressure drop can represent
less than 5%, or more than 30%, of the total pressure drop, de-
pending on the length of the tubes considered. This result is in
agreement with the numerical results of Azzam and Dullien@22#.
This discussion is also closely related to the notion of equivalent
length introduced in Section 4. Obviously, the equivalent length
added by the excess pressure drop becomes more substantial when
the tubes considered are short. This equivalent length was, how-
ever, found to be at most barely half than the radius of the smaller
tube.

No comparison to experimental results was performed, owing
to the discrepancies between existing experimental studies. Some
experimental studies found an excess pressure drop@3-5# that was
much higher~by up to one order of magnitude! than predicted by
numerical and theoretical studies, and it is difficult to explain this
discrepancy without questioning the reliability of these experi-
mental studies. Nevertheless, the pressure drop measurements per-
formed by Young et al.@23# for contraction in arteries, and also
the experimental results obtained in@22#, indicate no excessive
additional pressure drop due to contraction or expansion. The data
presented in these two studies do not, however, allow a suffi-

ciently accurate estimation of the excess pressure drop for a
proper comparison with the present study. Further experimental
investigations need to be conducted at very low Reynolds number
in order to resolve the existing disagreements. However, the sta-
bility of the flow necessary for the pressure measurements re-
quires a long system of tubing for the flow to recover a parabolic
Poiseuille profile after the expansion/contraction. This makes an
accurate measurement of the excess pressure drop very difficult,
as its contribution to the total pressure drop becomes smaller, as
shown in Fig. 9.
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Introduction
A proof showing that the contribution from the extra stress

tensor to the component of stress normal to the surface of a rigid
body, in an incompressible Oldroyd-B fluid, is zero was briefly
proposed by Huang et al.@1#. In this note we present a more
complete proof based on the property of frame indifference of the
constitutive equation of an Oldroyd-B fluid.

Consider a rigid body moving with some translational velocity
V and angular velocityV in an incompressible Oldroyd-B fluid at
time t. The stresss at a point in the fluid is given by

s52pI1T (1)

where p is the pressure,I is the identity tensor andT is the
extra-stress tensor. For an Oldroyd-B fluid the extra-stress is given
by the following constitutive equation

T1l1T
¹

5h S A1l2A
¹ D (2)

whereA5(¹u1¹uT) is the rate-of-deformation tensor,h is the
viscosity,l1 is the relaxation time andl2 is the retardation time.
Hats on the stress and rate-of-deformation tensors denote the
upper-convected time derivative.

One of the main axioms of mechanics is the requirement that
material response be independent of the observer. This is the con-
dition of frame indifference or material objectivity. The extra-
stress tensorT is frame indifferent if during any change in ob-
server it transforms according to~Gurtin @2#!

T* 5QTQT (3)
whereT and T* are the extra-stress tensors with respect to the
two observers, say unstarred and starred, respectively.Q(t) is a
rotation tensor which transforms the starred axes to the unstarred
axes. It can be verified that the constitutive equation forT, given
in ~2!, satisfies the condition of frame indifference given by~3!
~Bird @3#!. Hence, observers in different frames of reference
should conclude the same about the state of extra stress at any
point in an Oldroyd-B fluid. We therefore choose a frame of ref-
erence translating and rotating with the rigid body in order to
study the state of stress on its surface. The rigid body is stationary
with respect to this moving frame.

Define an orthogonal curvilinear coordinate system (j1 ,j2 ,j3)
such that the coordinatesj1 and j2 are along the surface of the
stationary rigid body andj3 is normal to the surface. Let the
origin be at any point of interest on the surface of the rigid body.
We assume that the surface of the rigid body is smooth so that the
normal and tangent directions can be defined. By the no-slip con-
dition, the fluid velocity on the surface of the rigid body is zero
~u50!. The no-slip condition also implies

]u

]j1
50 and

]u

]j2
50 (4)

at any point on the surface. Letu1 , u2 , u3 be the components of
velocity in each of the coordinate directionsj1 , j2 , j3 , respec-
tively. The no-slip condition and the divergence-free constraint for
the velocity together imply that

]u3

]j3
50 (5)

Due to the no-slip condition and~5! the velocity gradient tensorL
at any given point on a rigid body becomes

L5F 0 0
1

h3

]u1

]j3

0 0
1

h3

]u2

]j3

0 0 0

G5F 0 0 L13

0 0 L23

0 0 0
G (6)

whereh3 is a scale factor for the curvilinear coordinatej3 and the
orthogonal bases are along the three coordinate directions, respec-
tively. The extra-stress tensor is

T5F T11 T12 T13

T12 T22 T23

T13 T23 T33

G (7)
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Using the no-slip condition,~6! and~7!, the constitutive equation
can be written as

F T11 T12 T13

T12 T22 T23

T13 T23 T33

G1l1S ]

]t F T11 T12 T13

T12 T22 T23

T13 T23 T33

G
2F 2L13T13 L13T231L23T13 L13T33

L13T231L23T13 2L23T23 L23T33

L13T33 L23T33 0
G D

5hF 0 0 L13

0 0 L23

L13 L23 0
G1hl2S ]

]t F 0 0 L13

0 0 L23

L13 L23 0
G

2F 2L13
2 2L13L23 0

2L13L23 2L23
2 0

0 0 0
G D (8)

The equation for the normal component of the extra stress on the
surface of the rigid body is given by

T331l1

]T33

]t
50 (9)

This equation represents a linear initial value problem forT33.
T3350 at all times, if its value at the initial instant is zero. For any
nonzero initial value,T33 will exponentially decay to zero with a
time constant equal tol1 .

At a given instant, the value of the normal component of extra
stress on the rigid surface, with respect to an observer in any other
frame of reference, can be calculated using~3!. Let n* denote a
unit normal vector on the surface of the rigid body at a given point
with respect to a new observer andn denote a unit normal at the
same point with respect to an observer moving with the body. The
two normal vectors are related by

n* 5Qn (10)
whereQ is the rotation tensor. LetT* be the extra stress tensor
with respect to the new observer. The normal component of extra
stress with respect to the new observer is given by

TN* 5n* T* n* (11)

Using ~3!, ~10! and the fact that tensorQ is orthogonal and pre-
serves inner products

TN* 5QnQTn5nTn5T33. (12)

Thus we see that the value of the normal component of extra
stress in any frame is the same as that inferred by an observer
moving with the body.

The above results can also be proved using the Oldroyd-B
model in its integral form. The well-known result that the normal
component of extra stress on a rigid surface in an incompressible
Newtonian fluid is zero can be obtained as a special case of~8!.
Consider any incompressible fluid with the constitutive model of
the following form

a1A1a2A
¹

1a3T1a4T
¹

50 (13)
wherea1 , a2 , a3 , anda4 are constants or some scalar functions
of the invariants ofA and T. All such fluids will have a zero
normal component of extra stress on a rigid body surface. This is
because these models will give rise to a homogeneous equation
for T33 on the surface of a rigid body similar to the one obtained
for the Oldroyd-B fluid. The consequence of zero normal compo-
nent of extra stress on the rigid surface is that the normal force
acting on a solid boundary in such fluids is caused only by pres-
sure, where the pressure is as defined in~1!.

Caswell@4# had considered the kinematics and state of stress on
a surface at rest. He assumed a general form of the constitutive
equation for viscoelastic fluids and arrived at several conclusions
regarding the state of stress on a surface at rest. His results when

applied to Oldroyd-B fluids in contact with moving surfaces
would lead to the same conclusion as ours. This note is an attempt
to propose another method to derive the result. The forms of the
equations obtained in deriving the result have direct relevance to
the forms of equations encountered in the simulation of moving
particles in Oldroyd-B fluids@1#. We have frequently used the
above result to validate our codes for moving particles in
Oldroyd-B fluids@5#.
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Variable pitch axial flow fans are widely used in industrial appli-
cations to satisfy variable operating conditions. The change of the
blade pitch leads to a different rotor geometry and has a major
influence on the unsteady operation of the machine. In this work,
an experimental research on an axial flow fan with variable pitch
blades has been carried out. First of all, the fan performance
curves has been obtained. Then the flow field has been measured
at ten radial locations both at the inlet and exit rotor plane using
hot wire anemometry. Velocity components and total unsteadiness
were determined and analyzed in order to characterize the influ-
ence of pitch blade and operating conditions on the flow structure.
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Introduction
In recent years, much research effort has been concerned with

the study of the unsteadiness generated in axial flow turbomachin-
ery. Some researchers have shown encouraging results and pro-
vided useful data for further study@1–3#. Despite a number of
experimental and computational efforts in studying the unsteady
phenomena in axial compressors, in the literature there are few
relevant works regarding flow unsteadiness in axial fans.

Many industrial ventilation systems require a wide operating
range. One of the most efficient methods to fulfill the regulation
purpose in axial flow fans is to provide variable pitch blades@4,5#.
However, the aerodynamic behavior of the fan changes in such a
way that the stall margin is modified and the maximum efficiency
is reduced. The pitch variation implies that the blade geometry is
not as well adapted to the resulting flow as in the design setting.
This situation modifies not only the mean flow field but the un-
steady flow pattern characteristics.

In this work, an experimental research on an axial flow fan with
variable pitch blades has been carried out. First, the fan perfor-
mance curves have been obtained. Then the flow field has been
measured at ten radial locations at the rotor exit using hot wire
anemometry. Velocity components and total unsteadiness were de-
termined and analyzed in order to characterize the influence of
pitch blade and operating conditions on the flow structure.

Fan Performance
The fan analyzed is an eight-blade rotor based on the NACA-65

family, and designed in order to provide a free vortex distribution
of the absolute tangential velocity component. The rotor has a 600
mm tip diameter and a 380 mm hub diameter. The tip clearance is
2% of the blade height. Other relevant data are listed in Table 1. In
this paper blade pitch refers to the blade setting~i.e., a fixed
angular position of the blade! at the hub. The rotor has the possi-
bility of manually changing the blade pitch. In all the subsequent
experiments, the rotational speed was 3000 rpm.

Figure 1 represents total to total pressure coefficientc5(P2

2P1)/(0.5rUt
2) and efficiency against the flow coefficientw

5Vm /Ut for three blade pitches: 52.5, 48, and 57 deg~with re-
spect to the tangential direction!, which correspond to the design
geometry~‘‘Nom.’’ in the figures! and variations of24.5 and 4.5
deg, respectively~‘‘Nom.24.5 deg’’ and ‘‘Nom.14.5 deg’’ in the
figures!. The uncertainty has been estimated in62% for the flow
rate and61.4% for the total pressure. This figure shows how
either the pressure and the flow rate increase as the blade pitch
increases. The design geometry provides the highest efficiency,

showing a little reduction as the blade pitch is modified, and we
can work in the enveloping curve of all the efficiency curves.
Using this regulation method, an important increment on the op-
erative range of flow rates is obtained. The maximum efficiency
values obtained~slightly higher than 80%! are typical for this kind
of machines. The relatively large tip clearance~2% of blade
height!, needed to permit blade movements, could be the origin of
efficiency losses up to 2%@6#.

Flow Field Measurements
Hot wire techniques were used in order to measure the velocity

field at rotor exit. Details of the measurement procedure, calibra-

Table 1 Rotor blade characteristics „design …

Fig. 1 Fan performance curves

Fig. 2 Radial distribution of the velocity components at rotor
exit „design pitch angle …
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tion, and uncertainties have been published in@7,8#. The probe
uncertainty has been estimated in 1 deg in the center of the mea-
surement range and 3 deg at the borders. The uncertainty of the
absolute velocity value has been estimated in 1.7% in the center
and up to 5% near the borders. The flow field measurements have
been taken for the best efficiency point (Qo! of each blade pitch
tested, and for a lower and higher flow rate: 0.953Qo and 1.05
3Qo. The measurement plane is 142 mm downstream the blade
axis.

Figures 2 and 3 show the radial distributions of the velocity
components at rotor exit for the three operating points and pitch
blade angles reported above. The axial component has been nor-
malized with respect to the mean axial velocityVm in each par-

Fig. 3 Radial distribution of the velocity components at rotor
exit „best efficiency point …

Fig. 4 Radial distribution of the total unsteadiness parameter
at rotor exit „design pitch angle …

Fig. 5 Radial distribution of the total unsteadiness parameter
at rotor exit „best efficiency point …

Fig. 6 Blade-to-blade distribution of the axial component of
velocity and phase-locked total unsteadiness at rotor exit
„nominal pitch blade angle, best efficiency point …
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ticular test condition, and the radial and tangential components
with respect to the tip blade velocity,Ut . The axial component is
quite uniform except in the tip region. The tangential component
decreases from hub to mid-span, presenting a free vortex distribu-
tion modified by the blockage in the casing viscous region.

Figures 4 and 5 represent the radial distributions at rotor exit of
the total unsteadiness parameterq divided by Vm , where q is
defined as:

q5
AVax821Vtg8

21Vrd8
2

2
(1)

and Vax8 , Vtg8 , and Vrd8 are the axial, tangential, and radial rms
fluctuating velocity components. Generally speaking, total un-
steadiness formation is mainly caused by real turbulence and flow
perturbations generated by the rotor wake velocity deficit. In ad-
dition, unsteadiness due to vortex shedding, sawing movements of
tip leakage vortices, fluttering of separated flows, and unsteadi-
ness of separation points may also contributed to the total un-
steadiness@1#. The analysis of blade-to-blade distribution of total
unsteadiness and power spectra of velocity fluctuation allows dif-
ferentiating the wake velocity deficit effect from other small-scale
fluctuations due to the above mentioned phenomena.

In Figs. 4 and 5 high levels of total unsteadiness appear in the
hub and casing regions. The lowest levels correspond to the nomi-
nal pitch angle and the best efficiency point. The unsteadiness
flow pattern shown presents very similar characteristics to the
results obtained from axial compressors in Refs.@1–3#.

Figure 6 represents the blade-to-blade distribution of the axial
velocity component and total unsteadiness at three spanwise loca-
tions of the rotor exit, for the nominal pitch blade angle and
the best efficiency point. At midspan the axial component of ve-
locity presents a clear jet-wake structure with high levels of un-
steadiness in the blade wakes. At the hub region, this structure is
not so clear and the zone with high levels of unsteadiness at the
wakes is wider. At the casing region, the periodic structure of the

flow is masked by small-scale fluctuations, and high levels of
unsteadiness appear in all the blade pitch, not only in the blade
wakes.

The power spectra of axial component of velocity fluctuation at
rotor exit for the Nom.24.5 deg pitch blade and best efficiency
point are shown in Fig. 7. Although noise spectra from this kind of
fans frequently exhibit strong second harmonics, these velocity
spectra show a little harmonic structure. The power spectra at
midspan contain relatively large-scale systematic unsteadiness
which originates within blade wakes~note that the blade passing
frequency is 400 Hz!. The power spectrum increases gradually
toward the hub and blade passing frequency is noticeable very
close to the hub surface. On the other hand, within the casing
region high levels of unsteadiness at the low frequency range
below the blade passing frequency are observed. These levels
are possibly created by the unstable tip leakage vortices. The
blade passing frequency is partially masked by the small-scale
unsteadiness.

Further investigations are still needed to clarify the influence of
the stator on the propagation of all this unsteadiness and how far
downstream do these effects persist.

Conclusions
The performance and flow characteristics of an axial fan with

variable pitch blades have been analyzed. The variation of the
blade pitch has proved to be a good regulation method, which
provides a valuable increase on the range of operation while the
maximum efficiency does not experience a significant reduction
with respect to the nominal geometry.

High levels of total unsteadiness have been observed at the hub
and casing regions. These levels were higher for off-design oper-
ating conditions and pitch blade angles different from the nominal
one.

At midspan the flow field contains relatively large-scale sys-
tematic unsteadiness, which originates within the blade wakes. In
the hub region, this periodic effect is also noticeable and low
levels of small-scale fluctuations appear. The high levels of un-
steadiness observed near the casing mainly consist of unstable tip
leakage vortices and small-scale turbulence inside the casing vis-
cous region.
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The findings of a numerical solution of the flowfield downstream
of a six-plate array are compared to a previous experimental
study. In both studies, the chord-to-thickness ratio,c/t, is 6.67,
the Reynolds number, Re, is 500, and the spacing-to-thickness
ratio, H/t, is 3.67. Consistent with experimental results, the nu-
merical simulation shows that the recirculation zones formed at
the trailing edges of the surfaces that form channels in the plate
array are in-phase. Also consistent, they are nearly 180 deg out-
of-phase with the recirculation zones formed at the trailing edges
of the surfaces of adjacent channels. Comparison of the locations
of recirculation zones and peaks in the downstream variation in
axial velocity confirms that ‘‘vortex pumping’’ is described by 1)
the axial velocity increase on the midplane of the channel in the
region where the separation between pairs of recirculation zones
is a minimum and 2) the axial velocity decrease in the region
where the separation between pairs of recirculation zones is a
maximum. @DOI: 10.1115/1.1436094#

Introduction
Arrays of vanes—flat or curved—are commonly used to condi-

tion flow fields. Examples include turning vanes in ducts and swirl
vanes in gas turbine combustors. In addition to controlling the
flow, vanes also generate large scale vortical structures that affect
the flow field.

There is a dearth of reported studies on the effects of plate
arrays on a flowfield. The studies that are available typically focus
on the phenomenon called ‘‘flopping’’ which is the spontaneous
change in relative base pressure and wake size behind an indi-
vidual plate in the array. For example, Hayashi et al.@1# study
flopping using two-, three-, and four-plate arrays with 0.014
<c/t<0.114, wherec/t is the plate chord-to-thickness ratio, and
63103<Rec<1.93104, where the characteristic length is the
chord, and with plate-separation to plate-thickness ratios,H/t, of
0<H/t<3.75. They find flopping to occur with the two-plate ar-
ray only when H/t52.75. For the two-plate arrays withH/t
Þ2.75 they find that some plates have wide wakes and others
exhibit narrow wakes downstream from their trailing. This pattern
of wide and narrow wakes is called ‘‘quasi-stable’’~Guillaume
and LaRue@2#!.

Miau et al.@3,4# study the flow downstream of two-plate arrays
with 1.4<H/t<3.0, c/t50.150, and 1.33103<Re<1.23104.
They find flopping for 1.5<H/t<1.85 with 1.33103<Re<1.2
3104 and quasi-stable wake behavior for 1.85<H/t,2.6, but
stable wakes forH/t.2.6.

In summary, Hayashi et al.@1#, for 0.014<c/t<0.114, and 6
3103<Rec<1.93104, report that flopping and quasi-stable be-
havior can be avoided ifH/t.3.25 and Miau et al.@4#, for c/t
50.150, and 1.33103<Rec<1.23104, report that these behav-
iors can be avoided ifH/t.2.6. Both studies agree that the wakes
downstream of a plate array withH/t.3.5 are stable and equal in
size.

Background
Guillaume and LaRue@5# use smoke visualization to study a

six-plate array and observe that the mean separation between
streaklines for the flow downstream of adjacent channels is nega-
tively correlated. Consistent with this observation, they use two
hot-wire anemometers to show that the vortices shed at the trailing
edges of the bounding surfaces that form a channel in the plate
array are in-phase, but they are nearly 180 deg out-of-phase with
the vortices shed at the trailing edges of the bounding surfaces of
adjacent channels. They also observe that axial velocity, relative
to the freestream, on the midplane of the channel periodically
increases and decreases in a pattern that is nearly 180 deg out-of-
phase with the periodic increase and decrease in the relative axial
velocity observed on the midplane of the adjacent channels.
Power spectra for a mean upstream velocity of 2.0 m/s show that
the vortices are shed at a frequency of 128 Hz which corresponds
to a period of 0.0078 s.

Based on these observations, Guillaume and LaRue@5# hypoth-
esize that the relative increase in mean velocity occurs in the
region between each pair of vortices and the relative decrease in
mean velocity occurs in the region not near the vortex pair. They
define this periodic increase and decrease in the midplane velocity
between adjacent plates as vortex pumping. They propose that the
synchronous shedding of vortices at the trailing edges of the chan-
nel surfaces with the 180 deg out-of-phase shedding of vortices
between adjacent channels leads to vortex pumping which is con-
sistent with the negative correlation of the fluctuating velocity
measured on the midplanes between adjacent channels.

Although the mechanism of this flow is unknown, it is impor-
tant to note that flow visualization shows that pressure and viscous
stress gradients exist between the plates that form the channel.
Guillaume and LaRue@5# hypothesize that as the flow first devel-
ops, the first vortex shed entrains the flow down the channel and
triggers, via these gradients, the neighboring plate to shed a vortex
down the same channel. This is followed by an alternating shed-
ding pattern and produces the in-phase pattern.

The goals of the present study are to 1! show that a commercial
CFD program can confirm that the recirculation zones~i.e., vortex
structures! shed at the trailing edges of the bounding surfaces that
form a channel in the plate array are in-phase, but they are nearly
180 deg out-of-phase with the recirculation zones shed at the trail-
ing edges of the bounding surfaces of adjacent channels and 2!
verify the hypothesis that since the relative increase and decrease
in mean velocity occur, respectively, in the regions near a recir-
culation zone pair and in regions far from a recirculation zone
pair, the change in velocity can be used to imply the presence of
vortex pairs and the cause of the vortex pumping flow pattern.

Numerical Model
The flowfield around and downstream of the plate array is mod-

eled as a laminar flow since the Reynolds number used in this
study, based the plate thickness, is 500~Fox and McDonald@6#!.
The Semi-Implicit Method for Pressure-Linked Equations, i.e.,
SIMPLE, family of algorithms is used to iterate for values of
pressure and velocity as implemented in FLUENT. Since the val-
ues of pressure and velocity are stored at the centers of the control
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volume, a second order discretization scheme, which uses the
lower order terms of a Taylor expansion, is used to interpolate the
values at the faces of each control volume. The solution is taken to
converge when the sum of the normalized residuals of pressure
and velocity is less than 131023.

A two-dimensional model with rectangular cells is used with a
computational domain that extends 113.3t or 30.9H~419 cells! in
the downstream direction and 23.3t or 3.36H~319 cells! in the
transverse direction. The leading edge of the plate array is posi-
tioned 13.3t from the inlet boundary and the array has 6 plates
with c/t56.67 andH/t53.67 ~Fig. 1!. The inlet boundary condi-
tion is taken to be a simple plug flow with a velocity of 2 m/sec in
the downstream direction and the outlet boundary condition is
taken to be uniform at atmospheric pressure. In order to obtain a
converged solution, the time step is set initially to 0.00001 s for
the first 10 iterations and then it is set to 0.001 sec for the subse-
quent iterations. To check for grid dependence, the simulation was
repeated using a grid with twice the number of cells. Since no
change in the solution was observed, the original solution is not
grid dependent.

Results
Results are presented for 1! the recirculation zones downstream

of the plate array and for 2! the vortex pumping observed between
adjacent channels.

Recirculation Zones. Figure 2~a! shows the streamlines
about the four center plates at an equivalent time of 0.2235 sec-
onds. For the channel formed between plates 3 and 4, the numeri-
cal prediction shows that the recirculation zones downstream and
below the centerplane of plate 3 are in phase with the recirculation
zones downstream and above the centerplane of plate 4. For the
adjacent channel which is formed between plates 4 and 5, the
recirculation zones downstream and below the centerplane of
plate 4 are in-phase with the recirculation zones downstream and
above the centerplane of plate 5. Further, the recirculation zone
downstream and above the centerplane of plate 4, i.e., the bottom
surface of the upper channel, and the recirculation zone down-
stream and above the centerplane of plate 5, i.e., the bottom sur-
face of lower adjacent channel, are nearly 180 deg out-of-phase.

Figure 2~b! shows the streamlines about the four center plates
of the array at an equivalent time of 0.2275 seconds, i.e., 0.004 s
later. The recirculation zones below the centerplane and near the
trailing edge of plate 3 and above the centerplane and near the
trailing edge of plate 4 remain in-phase but have moved down-
stream. New recirculation zones that are in-phase have formed

above the centerplane and near the trailing edge of plate 5 and
below the centerplane of plate 4. Thus, consistent with results of
Guillaume and LaRue@5#, the recirculation zones downstream of
the bounding surfaces of each channel are in-phase but are 180
deg out-of-phase with the recirculation zones downstream of the
bounding surfaces of adjacent channels.

Vortex Pumping. Figure 3 is a series of plots of the down-
stream variation in the axial velocity for 0.2235<t<0.2275 cal-
culated at 0<x/t<20 on the midplane and downstream of adja-
cent channels formed between plates 3 and 4 and plates 4 and 5.
At t50.2235, the variation of the axial velocity downstream of
the channel formed between plates 3 and 4 shows peaks at about
x/t51.1 and 5.3 and a valley at about 3.3. The streamline plot of
Fig. 2~a! shows a pair of recirculation zones near the upper and
lower surfaces that form this channel~i.e., the recirculation zone
is below the centerplane of plate 3 and above the centerplane of
plate 4! at x/t locations of about 1.1 and 5.3. Thus the relative
increase in axial velocity corresponds to the minimum spacing
between the pair of recirculation zones about the midplane of the
channel. Atx/t53.3, Fig. 2~a! shows that the pair of recirculation
zones is not near the upper and lower surfaces that form this
channel~i.e., the recirculation zone is above the centerplane of
plate 3 and below the centerplane of plate 4!. Thus the relative

Fig. 1 Schematic of the test setup illustrating the definitions
of the symbols and the coordinate system employed

Fig. 2 Streamlines from the numerical model that show the
recirculation zones downstream of the channels formed be-
tween plates 2 and 3, plates 3 and 4, and plates 4 and 5. Figure
2„a… is at tÄ0.2235 seconds and Fig. 2 „b… at tÄ0.2275 seconds,
i.e., 0.004 s later
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decrease in axial velocity again corresponds to the maximum
spacing between the pair of recirculation zones about the mid-
plane of the channel.

Likewise, the downstream variation of the axial velocity on the
centerplane of the channel formed by plate 4 and 5 shows a ve-
locity peak at approximatelyx/t53.5 and valleys at aboutx/t
51.6 and 5.5. Figure 2~a! shows a pair of recirculation zones that
have a minimum spacing about the midplane of this channel at
approximatelyx/t53.5 and pairs of recirculation zones that have
a maximum spacing about the midplane of this channel at ap-
proximatelyx/t51.6 and 5.5 which again corresponds to the rela-
tive increase in axial velocity.

This velocity increase and decrease that corresponds to the lo-
cations of recirculation zone pairs is also apparent in Figs. 2~a!
and 2~b!. About the midplane of a channel, the separation between
streamlines is decreased where the separation between recircula-
tion zones is a minimum and the separation is increased where the
separation between recirculation zones is a maximum. A decrease
in streamline separation implies a velocity increase whereas an
increase in separation implies a velocity decrease.

Thus consistent with the vortex pumping hypothesis of Guil-
laume and LaRue@5#, the relative increase and decrease in mean
velocity occurs in the region where the separation of pairs of
recirculation zones about the midplane of a channel is a minimum
and a maximum, respectively.

The locations of the velocity peaks on the centerplane and
downstream of the channel formed by plates 3 and 4 are approxi-
mately out-of-phase with the locations of the velocity peaks cal-
culated on the centerplane and downstream of the channel formed

between plates 4 and 5. At 2 m/s, the distance between these peaks
corresponds to a period of 0.008 which is consistent with the
shedding period observed by Guillaume and LaRue@5#. This cor-
responds to a Strouhal number of 0.24.

Figure 3 shows the downstream variation of the axial velocity
on the midplane of the channel formed between plates 3 and plate
4 for 0.000<Dt<0.004 s. Velocity peaks occur at aboutx/t
53.1 and valleys at aboutx/t51.1 and 5.0. These correspond to
the locations of the pairs of recirculation zones shown in Fig. 2~b!.
Likewise the downstream variation of the axial velocity on the
midplane of the channel formed between plates 4 and 5 shows
peaks at aboutx/t51.5 and 5.1 and a valley at aboutx/t53.5.
This is again consistent with the locations of the recirculation
zone pairs shown in Fig. 2~b!. Thus, at a time difference of 0.004
s, the velocity peaks on the midplane of a channel occur at nearly
the same locations where a valley occurred atDt50.000 s. This
180 deg phase change is consistent with both the streamlines
shown in Figs. 2~a! and 2~b! and the vortex shedding measure-
ments of Guillaume and LaRue@5#.

Summary

The numerical results shown in Figs. 2~a! and 2~b! indicate that
the recirculation zones formed at the trailing edges of the bound-
ing surfaces that form a channel in the plate array are in-phase,
but at the same downstream location, they are nearly 180 deg
out-of-phase with the vortices shed at the trailing edges of the
bounding surfaces of adjacent channels. This demonstrates that
FLUENT can predict the vortex shedding behavior that is experi-
mentally observed downstream of a plate array. Further, a com-
parison of the locations of the recirculation zone pairs observed in
the streamline plots with the locations of velocity peaks in the
corresponding downstream variation in axial velocity confirms the
mechanism that causes vortex pumping. Specifically, the axial ve-
locity on the midplane between adjacent plates increases and de-
creases in regions where the separation between a pair of recircu-
lation zones about the midplane of the channel is, respectively, a
minimum and a maximum. Thus the numerical results show that
the formation of recirculation zone pairs at the trailing edges of
the plate array cause vortex pumping.
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Fig. 3 Plots of the downstream variation in the axial velocity
for 0.2235ËtË0.2275 and 0Ëx ÕtË20 on the midplane of adja-
cent channels. The velocity variation observed between plates
3 and 4 is represented by and the velocity variation ob-
served between plates 4 and 5 is represented by
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A computational method is used to analyze the viscous flow in the
spiral grooves of the molecular drag pump of Holweck type. The
flow is assumed in the slip flow regime and, thus, the slip bound-
ary condition is imposed at walls. Tests are conducted to examine
the effects of clearance gap, spiral angle, channel height, number
of channels, and rotating speed. The appearance of clearance
brings about lower pressure gradient between side walls of the
channel and, thus, reduces the pressure rise in the channel. Test-
ing on spiral angle and channel height indicates that these pa-
rameters need to be optimized to achieve better performance. Re-
sults also reveal that increase of rotating speed is an effective way
to promote compression ratio. In calculations, pressure rise is
enhanced when the number of channel is decreased. However, it
should be understood that by reducing channel number the cross-
sectional area of the channel is decreased, which has the effects of
reducing the pressure rise.@DOI: 10.1115/1.1431268#

1 Introduction
The turbomolecular pump has advantages of high pumping

speed and low ultimate pressures while the molecular drag pump
provides high compression ratio and has high discharge pressure.
Therefore, it is beneficial to combine these two pumps to form
hybrid pumps. To analyze the flow in molecular pumps either the
transmission probability method@1# or the DSMC method@2# is
often employed. However, the working pressures for the molecu-
lar drag pump can reach 103 Pa, at which the flow falls in the
viscous flow regime. Thus, the CFD method is a better way for
analysis.

In this study, a finite volume method is used to investigate the
flow in the grooves~or flow channels! of a molecular drag pump.
A geometrical parameter greatly affecting pumping performance
is the clearance gap between the rotator and the housing. This
clearance will be taken into account in the calculation. Another
important geometrical parameter is the angle of the flow channel.
In the molecular pump of Gaede type the flow channel is in the
direction of rotation. But a certain angle exists between the rota-
tional direction and the flow channel in the pumps of Holweck
type and Siegbahn type. The effects of the channel angle will be
examined in detail. Also considered are channel height, number of

channels together with rotating speed. In order to better depict the
flow affected by the geometrical parameters a momentum balance
over the entire flow channel is undertaken.

2 Mathematical Method
The grooves of the flow channels are sited on a rotating shaft.

To deal with the spiral channels body-fitted, curvilinear grids are
adopted. Since the frame of reference is situated on the rotating
shaft, the centrifugal force and the Coriolis force raised are taken
into account in formulation. In calculations the discharge pressure
at the outlet is fixed at 133 pa. At this level of pressure the flow is
in the slip flow regime. The slip flow velocityV0 at the solid wall
is usually expressed as

V05Vw1
22 f

f
lS dV

dyD
w

, (1)

whereVw is the velocity of the solid wall itself,l the mean free
path of gas molecules, andf the accommodation coefficient for
molecules colliding with the wall. Usually, the accommodation
coefficient is close to 1. The value of unity is adopted in the
following calculations.

Difference equations are obtained by the finite volume method
through integrating the governing equations over each grid cell
volume. Convection terms are approximated by the second-order
linear upwind difference@3# while the diffusion terms by the cen-
tral difference. All the variables are placed on each cell center. To
avoid checkerboard oscillations caused by the non-staggered grid
arrangement the momentum interpolation practice of Rhie and
Chow @4# is utilized to calculate the mass flux through each cell
face. Although there are a number of grooves on the rotor, only
one groove is considered in simulation and periodic conditions are
imposed at the clearance boundary between adjacent grooves~see
Fig. 1!. In implementing the periodic condition both the mass flux
and the momentum flux must be conserved across the periodic
boundaries. The calculation of the momentum flux through each
boundary cell face is treated in the same way as that for the
internal cell face using the momentum interpolation method@4#.
All other variables, including pressure and velocity etc., can be
obtained through linear interpolation between the grid points on
the two sides of the periodic boundaries.

3 Results and Discussion
A schematic drawing of the pump is illustrated in Fig. 1. Unless

stated otherwise, there are six grooves on the rotor. The axial
length ~L! of the rotor is 115 mm and the outer diameter~D! is
137.6 mm. The height~H! of the flow channel is 4.06 mm and the
width ~W! at the bottom of the channel is 52.5 mm. The clearance
gap~G! between the rotor and the housing is 0.65 mm. The spiral
angle~a! of the channel is 15 deg. The rotor rotates at 18000 rpm.
In calculations the pressure at the exit of the pump was fixed at
133 Pa and a mesh with 102*27*33 nodes was used.

A comparison of the pressure rise across the channel between
predictions and measurements@5# is given Fig. 2. In this figure,
P1 and P2 represent the average pressures at the inlet and the
outlet, respectively. It is obvious that the pressure rise is reduced
when there exists a clearance gap. It is also evident from the
figure that with the gap simulated the agreement with the mea-
surements is improved.

Since the frame of reference is placed on the rotator, the hous-
ing surface moves relative to the flow channel. The inclination of
the channel to the moving surface causes pressure built up not
only in the channel direction, but in the transverse direction also.
To illustrate the relation between the pressure rise across the pump
and the pressure difference between the side walls the flow chan-
nel is straightened as given in Fig. 3 and a momentum balance is
made over the entire channel in the axial direction:

~P22P1!A'~Pp2Ps!Aw cosa2Fx , (2)
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wherePp and Ps denote the average pressures over the pressure
and suction side walls,A andAw designate the cross-sectional area
of the channel and the side-wall area, andFx represents the fric-
tional force exerted by the solid walls in the axial direction. It is
noted that the difference between the inlet and outgoing momen-

tum fluxes is ignored. It is clear from this equation that the pres-
sure rise across the channel is directly linked to the pressure dif-
ference between side walls and the spiral angle.

Effects of Clearance Gap G. The axial variation of the av-
erage pressures for clearance heights of 0.5, 0.65, and 0.8 mm for
the flow rate of 400 sccm is presented in Fig. 4~a!. As expected,
the pressure rise decreases with the increase of the height. This is
definitely attributed to the leaking flow in the clearance gap,
which results in reduction of the pressure difference between side
walls as seen in Table 1 and, in turn, the decrease of the pressure
rise along the channel.

Effects of Spiral Angle a. As given in Table 2, the pressure
difference between side walls increases with the spiral angle be-
cause the transverse component of the moving wall velocity also
increases. At 90 deg the wall is moving in the direction normal to
the channel, i.e., the channel is in the direction of the axis, which
creates the largest pressure difference. However, it should be
noted that the value of cosa decreases as the spiral angle in-
creases. In addition, the side wall areaAw also decreases because
the length of the channel is shortened. As a consequence, there
exists an optimum spiral angle to generate maximum pumping
performance. According to Fig. 4~b!, the optimum angle is in the
range 20–25 deg.

Effects of Channel Height H. When the height of the chan-
nel is increased, the mean velocity in the channel decreases be-
cause the overall flow rate needs to be conserved. Therefore, more
momentum is transferred from the moving wall to the flow. How-
ever, on the other side, it is easy to cause reverse flow due to the
adverse pressure gradient prevailing in the channel, which can
cause large pressure loss. Examination of Fig. 4~c! reveals that the
pressure rise is enhanced as the height is increased to 4.5 mm,
followed by deteriorating for the case with 6 mm height. An ef-
fective way to improve pumping performance is to gradually re-
duce the height along the channel. As an example, the channel
height, originally fixed at 4.06 mm, is decreased from 6 mm at

Fig. 1 A schematic drawing of the pump and the flow
channels

Fig. 2 Comparison of the pressure rise with measurements

Fig. 3 Illustration of the momentum balance over the entire
flow channel
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Fig. 4 Pressure variation along the channel for „a… various clearances; „b… various spiral angles; „c…
various channel heights; „d… a linear reduction of channel height from 6mm to 4 mm; „e… various
channel numbers; „f… various rotational speeds

Table 1 Side wall pressures for various clearances „400 sccm …

0 mm 0.5 mm 0.65 mm 0.8 mm

Pp (nt/m2) 87.1 96.7 102.3 110.1
Ps (nt/m2) 75.4 87.2 95.9 103.9

Table 2 Side wall pressures for various spiral angles „600
sccm …

15 deg 20 deg 25 deg 30 deg 90 deg

Pp (nt/m2) 102.3 103.5 104.9 107.1 143.9
Ps (nt/m2) 95.9 91.6 87.0 86.4 112.6
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inlet to 4 mm at outlet in a linear fashion in Fig. 4~d!. The pres-
sure rise is greatly increased for the two large flow rates of 600
and 960 sccm.

Effects of Channel Number. The numbers of channels se-
lected for test are 4, 6, and 8. The channel number determines the
width of the channel. For wider channels there are more spaces for
the transverse pressure gradient to develop. It results in increase
of pressure difference between the two sided walls, evidenced in
Table 3. Consequently, the pressure rise through the channel in-
creases with decrease of channel number as seen in Fig. 4~e!.
However, it should be pointed here that the reduction of channel
number leads to increase of cross-sectional area A. According to
Eq. ~2!, the pressure rise may be decreased by increasing the area
A if the side-wall pressure difference is increased by a relatively
small extent.

Effects of Rotating SpeedV. The pressure variation for a
number of rotating speeds is presented in Fig. 4~f!. The speed of
the moving wall is linearly related to the rotating speed. When the
rotating speed becomes higher, more momentum is transferred to
the gas via shear force at the moving wall and more effective
pumping is obtained. A logarithmic correlation between the pres-
sure rise and the rotating speed for the considered speed range can
be found:

~P22P1!/P250.552* ~ log V!24.68, (3)

4 Conclusions
A numerical analysis has been conducted to examine the vis-

cous flow in the slip flow regime in the spiral grooves of a mo-
lecular drag pump of the Holweck type. A summary of main find-
ings is given as follows.

1. The momentum balance indicates that the pressure rise
across the channel is directly related to the pressure difference
between the two side walls and the spiral angle of the channel.

2. The flow in the clearance gap between the housing and the
rotator leads to reduction of pressure gradient between side walls.
This, in turn, causes deterioration of pumping performance.

3. The merit of large spiral angle is the generation of greater
pressure difference between side walls. However, the side wall
area together with the projection of the side wall pressures in the
axial direction are decreased. Therefore, the spiral angle needs to
be optimized.

4. By increasing the channel height the flow velocity is de-
creased and more momentum is transferred to the gas from the
wall. But large heights may cause reverse flow. A good strategy is
to have large height at inlet and small height at outlet.

5. The decrease of channel number brings about wider channel.
This has two contradictory impacts: one is to increase pressure
rise in the channel by increasing the side-wall pressure difference
and the other to decrease pressure rise due to the increase of
cross-sectional area. However, for the cases tested the former has
larger impact.

6. By increasing rotating speed more momentum is transferred
to the gas and, thus, the pumping performance is enhanced.
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